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EQUATIONS

Navier Stokes equations (NSEs) or Euler equations (EEs) on
Q = {(z,y) € R*; H < L} "thin layer domain”
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HYDROSTATIC APPR_

EQUATIONS

Navier Stokes equations (NSEs) or Euler equations (EEs) on
Q = {(z,y) € R*; H < L} "thin layer domain”

| [Ped]

Hydrostatic approximation (asymptotic analysis with e = H/L = W/V < 1 and
rescaling Z =z/L, § = y/H, 4 = u/U @& = w/W )— Primitive equations (PEs)

J. Pedlowski

Geophysical Fluid Dynamics.
2nd Edition, Springer-Verlag, New-York, 1987
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HYDROSTATIC APPROXI_

EQUATIONS

Navier Stokes equations (NSEs) or Euler equations (EEs) on
Q = {(z,y) € R*; H < L} "thin layer domain”

| [Ped]

Hydrostatic approximation (asymptotic analysis with e = H/L = W/V <« 1 and
rescaling z = ¢/L, § = y/H, @ = u/U w = w/W )— Primitive equations (PEs)

1 [GP]

Averaged PEs with respect to depth or altitude y — Saint-Venant Equations
(SVEs)

ﬁ J. Pedlowski

Geophysical Fluid Dynamics.
2nd Edition, Springer-Verlag, New-York, 1987
@ J-F Gerbeau and B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1), 2001.
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o Modeling : Compressible Navier-Stokes equations
Hydrostatic approximation —> compressible primitive equations (CPEs)

Op +divy(pu) + 0y (pv) = 0
O¢(pu) + divz(pu @ u) + 0y (puv) + Vop = divg(og) + f
04 (pv) + divg (puv) + 9, (pv?) +0yp = — pg + divy(ay)
2
p = P
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@ Modeling : Compressible Navier-Stokes equations
Hydrostatic approximation —> compressible primitive equations (CPEs)

Op +divy(pu) + 0y (pv) = 0
O¢(pu) + divy(pu @ u) 4+ 0y (puv) + Vop = divy(og) + f
04 (pv) + divg (puv) + 9, (pv?) +0yp = — pg + divy(ay)
2
p = ¢
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o Modeling : Compressible Navier-Stokes equations

Hydrostatic approximation — compressible primitive equations (CPEs)

Owp + divy(pu) + 0y(pv) = 0
O¢(pu) + divy(pu @ u) + 9y (puv) + Vep = divy(og) + f
Op = —pg
p = "G
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SEDIMENTATION

o Sediment : produced by erosion process
Sédiment @ o -

@ Dynamic :
» Incompressible fluid
» Small vertical extension with respect to horizontal
» Principally horizontal movements
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SEDIMENTATION

o Sediment : produced by erosion process

@ Dynamic :
» Incompressible fluid
> Small vertical extension with respect to horizontal
> Principally horizontal movements

o Modeling : Saint-Venant-Exner equations
> hydrodynamic part — Saint-Venant equations (averaged IPEs)

O:h + div(q) = 0,
- h?
Byq + div (&fb’q) Vv <g7> = —ghVb

» morphodynamic part —> Exner equations
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SEDIMENTATION

o Sediment : produced by erosion process

@ Dynamic :
> Incompressible fluid
» Small vertical extension with respect to horizontal
> Principally horizontal movements
» variable bottom, example : bed river
o Modeling : Saint-Venant-Exner equations
> hydrodynamic part — Saint-Venant equations (averaged IPEs)

O¢h + div(q) = 0,
2
Bvq + div (&iq) v <g%> = _ghVb

» morphodynamic part —> Exner equations

0¢b + &div(gn(h, q)) =0
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UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES

o mixed : Free surface and pressurized flows
» Free Surface area (FS)
Section non filled and incompressible flow. ..
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UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES

o mixed : Free surface and pressurized flows
> Free Surface area (FS)
Section non filled and incompressible flow. ..
> Pressurized area (P)
Section completely filled and compressible flow. . .
z = R(z)

Piezometric line
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UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES

o Dynamic :
» Incompressible or compressible fluid following the area
» Small vertical extension with respect to horizontal
» Principally horizontal movements : unidirectional
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UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES

@ Dynamic :
> Incompressible or compressible fluid following the area
» Small vertical extension with respect to horizontal
> Principally horizontal movements : unidirectional
o Modeling : A nice coupling of Saint-Venant like equations
> free surface part — usual Saint-Venant equations

atAfs . a:ers = 01
Lo, di
0:Qfs + 0z (AJ; +prs(z, Ags) | = —gAfs% + Prys(z, Afs) — G(z, A

_K(m, Afs) ijifsl

» pressurized part —> Saint-Venant like equations
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UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES
@ Dynamic :

> Incompressible or compressible fluid following the area
» Small vertical extension with respect to horizontal
> Principally horizontal movements : unidirectional

o Modeling : A nice coupling of Saint-Venant like equations
> free surface part — usual Saint-Venant equations

atAfs +a:ers = 07

2

8ths F 81 (ifﬁ

dZ
s (T, Afs)) —94rs e Pris(z,Ags) — G(z, A,

_K(x, Afs) Qf;‘?f5|

» pressurized part —> Saint-Venant like equations
OAp +0:Qp = 0
dZ
+ pp(z, Ap) = —gAp—— + Prp(z, 4p) — G(z, 4p)

dx
Kz, ) 221

2

0tQp + Ox (Q

M. Ersoy (BCAM) 15 october 2010 10 / 59



UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES

@ Dynamic :
> Incompressible or compressible fluid following the area
» Small vertical extension with respect to horizontal
> Principally horizontal movements : unidirectional

o Modeling : A nice coupling : The PFS model
» from the coupling :

B { ﬁis ii E’S :  the mixed variable
@ = Au :  the discharge
1
9:(Q) + 0 Q72+ (z, A, E) = _ Aiz()
t s A plx, A, = g dm T
+Pr(z, A, E)
—G(z, A, E)
g K(a,5) A

where E is a state indicator and appropriate p and Pr
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CPEs :

Op + divy (pu) + 9y (pv) = 0,

Ot (pu) +divy (pu®u) + 9y (pou) + Vup(p) = 2div, (11 Dy (u)) 4+ 0y (120,u) ,
9yp(p) = —gp

p(p) = p
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CPEs :
Op + divy (pu) + 9y (pv) =0,

Ot (pu) +divy (pu®u) + 9y (pou) + Vup(p) = 2div, (11 Dy (u)) 4+ 0y (120,u) ,
9yp(p) = —gp

p(p) = p

Problem : How to obtain energy estimates since : the sign of

/ pgv dzdy
Q

dt/p|u|2+plnp—p+1 dmdy—i—/ 201 | Dy () | 412|020 ul dmdy—i—/ pgvdxdy =0
Q Q Q

is unknown !
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ENERGY ESTIMATES 7

CPEs : .
Op + divy (pu) + 9y (pv) = 0,
9 (pu) +divy (pu®@u) + 9y (pvu) + Vap(p) = 2div, (11 D, (u)) + Oy (v20yu)
dyp(p) = —gp
p(p) = p

Problem : How to obtain energy estimates since : the sign of

/ pgv dzdy
Q

d
dt/p|u| +plnp— p+1dmdy+/ 2V1|Dm(u)|2+ug|8§u|dmdy—i—/ pgvdxdy =0
Q

is unknown !

Consequently standard techniques
fails
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Using the hydrostatic equation, we obviously have :

p(t,z,y) = &(t,2)e 9/

for some function £(t, x) : p is stratified
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Using the hydrostatic equation, we obviously have :

p(t,z,y) = E(t,x)e 9/

for some function £(t, x) : p is stratified
Problem : find equations satisfied by &
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THE KEY POINT :NEHE w
Using the hydrostatic equation, we obviously have :

plt,a,y) = E(t, x)e=9/ Y
for some function £(¢,x) : p is stratified

Problem : find equations satisfied by £
An intermediate model :

@ replace p by 56_9/023’ in CPEs
8t(fe_g/c2y) + div,, (56_9/62@’ u) + 0y (56_9/623’1)) =0,
Oy (56_9/“29 u) + div, (56_9/62?’ u® u) + 0y (56_9/629 vu)

VLV, (Ee9/7Y) = 2div, (11 Dy (u)) + 0y (120,u) ,
p= 56—9/62?4

o multiply CPEs by e9/¢"v
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THE KEY POINT : THE H
Using the hydrostatic equation, we obviously have :

plt,a,y) = E(t, x)e=9/ Y
for some function £(¢,x) : p is stratified

Problem : find equations satisfied by £
An intermediate model :

@ replace p by 56_9/‘321’ in CPEs
2
e multiply CPEs by e9/¢¥
0U(E) + divs (€w) +e9/"v0, (e7/¥0) = 0,
¢ (Eu) +div, (Eu®u) + eg/CQy(‘)y (5@‘57/62-” Uu) + PV € =
2e9/Ydiv,, (11 Dy (u)) + €9/, (1,0,u) ,
p= ge—g/czy

o set z=1— ¢ 9/ such that eg/czyay = 0. and w = ¢ 9/"¥y under
suitable choice of viscosities.
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Using the hydrostatic equation, we obviously have :

p(t,z,y) = E(t,x)e 9/

for some function £(t, x) : p is stratified
Problem : find equations satisfied by &
An intermediate model :

{ 0¢& + div,(Eu) + €0, w = 0,

O (&u) +divy (Eu®u) + 9, (Ewu) + AV, (&) = 2div, (11D, (u)) + 0. (190,u) ,
0.£=0
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THE KEY POINT.: TH_

Using the hydrostatic equation, we obviously have :

p(t,z,y) = E(t,x)e 9/

for some function £(t, x) : p is stratified
Problem : find equations satisfied by &
An intermediate model :

{ 0¢& + div,(Eu) + €0, w = 0,

O (&u) +divy (Eu®u) + 9, (Ewu) + AV, (&) = 2div, (11D, (u)) + 0. (190,u) ,
0.£=0

%/g|u|2+gln§—§+1dxdz+/2u1|Dm(u)|2+y2|a§u|dxdz:0
Q Q
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We set

— 2 . o .
v (t,x,y) = e 9/2 “Y for some given positive constant vy,
va(t,x,y) = v1€9/¢Y for some given positive constant v;.

the boundary conditions (BC)

Vly=0 = Vy=h =0,
ayulyzo = 8y“|y=h =0

and the initial conditions (IC) :
{ U|t=0 = uO(xay)v y
Pli=o = o(x)e 9/

where & :
0<m<EE <M <o
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THEOREM ([EN2010])

Suppose that initial data (£0,uo) have the properties :
(€0,u0) € WH2(Q), UO|z=0 = U0|g=1 = 0.

Then p(t,z,y) is a bounded strictly positive function and the 2D-CPEs with BC has a
weak solution in the following sense : a weak solution of 2D-CPEs with BC is a collection
(p,u,v) of functions such that p > 0 and

p € L®0,T;Wh2(Q)), dip e L*(0,T; L*(Q)),

u € L*(0,T; W>*(Q)) nWh2(0,T; L*(Q)), v e L*(0,T; L*(Q))

which satisfies the 2D-CPEs in the distribution sense; in particular, the integral identity
holds for all ¢|,—7 = 0 with compact support :

7
/ / pudsp + pu8pd + puvd.d + pdad + pve drdydt
o Ja

i
=— / / V103U0z ¢ + v20yudy ¢ dedydt + / U0 PO P|t=0 dxdy
0o Ja Q

@ M. Ersoy and T. Ngom

Existence of a global weak solution to one model of Compressible Primitive Equations.
submitted to Applied Mathematics Letters, 2010
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THE PROOF

The intermediate model (IM) is exactly the model studied by Gatapov et al
[GKO5], derived from Equations 2D-CPEs by neglecting some terms, for which
they provide the following global existence result :

THEOREM (B. GATAPOV AND A.V. KAZHIKHOV 2005)

Suppose that initial data (£y,ug) have the properties :
(60,11/()) € WLQ(Q), u0|z:0 = uO\z:l =0.

Then &(t, x) is a bounded strictly positive function and the IM has a weak solution
in the following sense : a weak solution of the IM satisfying the BC is a collection
(&, u, w) of functions such that £ > 0 and

€€ L>(0,T;Wh2(0,1)), 08, € L*(0,T;L*(0,1)),
u € L20,T; W32(Q)) nWh2(0,T; L*(R2)), w € L*(0,T;L*(Q))
which satisfy the IM in the distribution sense.

D B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics.
Sibirsk. Mat. Zh., pages 1011 :1020-722, 2005.

15 october 2010 18 / 59



By the simple change of variables z =1—¢ ] :

o || pllez= |l & ll2e).
° || Vap 2= || Vag L2,

o [[9yp 2= a |l € 2
-1

1—e
where a = / (1 — 2)dz < +00. We deduce then,
0

| o llwrz@)=a |l & llwiz@
which provides

p € L0, T; WH2(Q)) and 9;p € L*(0,T; L*(9)).
v € L*(0,T; L*(Q)) since the inequality holds :

vl = //|vtxy>|2dydx
l—e™
= // <1_ ) lw(t, z, 2)|? dz dz

< & w llz2(q) -
Finally, all estimates on u remain true. OJ
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Tue 3D-CPEs |

We set
Vl(ta €T, y) = ﬁlp(tv T, y) and v = DQp(ta €T, y)62y
for some positive constant 7; and .

We consider the IC and BC' where we prescribe periodic conditions on the spatiale
domain with respect to x.

We define the set of function p € PE(u,v;y, po) such that

p € L®(0,T; L*(2), VP € L¥(0,T; H' (),
vpu € L*(0,T; (L*(Q))?), Vpv € L0, T; L2()),
VpD.(u) € L*(0,T; (L

@))%, Vpdy € L*(0,T; L*(Q)),
Vvp € L*(0,T; (L*())%)

with p > 0 and where (p, \/pu, \/pv) satisfies :

{ Oup -+ diva(y/5y/7) + 0, (/) = 0,

Pt=0 = Po-

-
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We define, for any smooth test function ¢ wi as

o(T, z,y) =0 and g = pi—o, the operators :

Alp,u,vip,dy) = / / pudyp dzdydt

//21/1tazpr() puu) : Vpdrdydt

//rp|u|ug0d;z:dydt //pdlv ) dxdydt

/ / udy (va(t, x, y)0yp) dedydt

— / / pvudyp drdydt
0o Ja

T
B(p,u,v;so,dy)=/ /pmpdzdydt
0 Q

and

Clp,u;p,dy) = /th:ouu:owo dxdy

M. Ersoy (BCAM) PhD Works



A WEAK SOLUTION -

DEFINITION

A weak solution of System 3D-CPEs on [0, 7] x €, with BC and IC, is a collection
of functions (p, u,v) such as p € PE(u,v;y, po) and the following equality holds
for all smooth test function ¢ with compact support such as (T, z,y) = 0 and
Yo = Pt=0 *

A(p,u,v;0,dy) + B(p,u,v; ¢, dy) = C(p,u; p,dy) .

ﬁ M. Ersoy, T. Ngom, M. Sy
Compressible primitive equations : formal derivation and stability of weak solutions.
submitted to NonLinearity, 2010

-
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A WEAK SOLUTION |

THEOREM ([ENS2010])

Let (pn,un,,vy,) be a sequence of weak solutions of System 3D-CPEs, with BC
and IC, satisfying an entropy and energy inequality (EEI) such as

pn =0, pb— poin LY(Q), phul — poug in L' (Q).

Then, up to a subsequence,
e pn converges strongly in C°(0,T; L3/?(12)),
o \/pnu,, converges strongly in L?(0,T; (L*/?(Q))?),
® puu, converges strongly in L'(0,T; (L*(Q))?) for all T > 0,
® (P, /Pnln, /pnvy) converges to a weak solution of System 3D-CPEs,
@ (pn,un,v,) satisfies the EEl and converges to a weak solution of
3D-CPEs-BC.

@ M. Ersoy, T. Ngom, M. Sy

Compressible primitive equations : formal derivation and stability of weak solutions.
submitted to NonlLinearity, 2010
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Prove first the stability for the IM" with IC and BC',

até + div, (6 u) + az (5 ’LU) =0,
O (€u) +divy (Cu®u) + 9, (Cuw)+ Vi€ + réluju =

2i1divy (€D, (u)) + 920, (£0,u),
0,£=0

and by the reverse change of variables “transport” the result to the 3D-CPEs.
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SKETCH OF THE PROOE=SEER

Prove first the stability for the IM" with IC and BC,

O& + div, (Eu) + 9. (Ew) =0,
O (Eu) +divy (Eu®u) + 9, (Euw) + V€ + r&juju =

201 divy, (€D, (u)) + 020, (£0,u),
9.£=0

and by the reverse change of variables “transport” the result to the 3D-CPEs.
So,

DEFINITION

A weak solution of System IM' on [0, 7] X Q,, with BC’ and IC, is a collection of
functions (&, u, w), if £ € PE(u,w; z,&) and the following equality holds for all
smooth test function ¢ with compact support such as (T, z,y) = 0 and
Yo = Pt=0 *

A&, u,wsi o, dz) = C(§, u; 0, dz).
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SKETCH OF THE PROOE-SHEE

Prove first the stability for the IM" with IC and BC’,

atg + div, (5 u) + 0, (£ ’LU) =0,
O (€u) +divy (Cu®u) + 9, (Cuw)+ Vi€ + réluju =

201 divy, (€D, (u)) + 020, (£0,u),
0.£=0

and by the reverse change of variables “transport” the result to the 3D-CPEs.
So,

DEFINITION

A weak solution of System IM' on [0, 7] X Q,, with BC’ and IC, is a collection of
functions (&, u, w), if £ € PE(u,w; z,&) and the following equality holds for all
smooth test function ¢ with compact support such as (T, z,y) = 0 and
Yo = Pt=0 *

A&, u,w; p,dz) = C(&, u; @, dz).

Difficulty : show that under suitable sequence of weak solutions, we can pass to the
limit in the non-linear term £ u ® u : typically \/gu requires strong convergence.
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THEOREM

Let (&n,un,wy) be a sequence of weak solutions of the IM’ with BC' and IC satisfying
an energy and entropy inequality (EEI) such as

£.20, & — & in LNQ), &hup — &uo in L'(Q).
Then, up to a subsequence,
o &, converges strongly in C°(0,T; L3/2(Q,)),
o \/€,u, converges strongly in L*(0,T; (LB/Z(Q’))2),
® &,u, converges strongly in L' (0,T; (Ll(Q/))z) for all T > 0,

(&n, V&nun, \/Enwy) converges to a weak solution of the IM’,

(&n, un,wy) satisfies the EEl and converges to a weak solution of the IM’ with BC'.

The energy inequality :

2
% . (g% + (Eng —€+1)) dadz + /Q £(201| Dy (u) > + 72|0.u?) dzdz

—H"/ £luf® dzdz < 0
Q/
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THEOREM

Let (&n,un,ws) be a sequence of weak solutions of the IM’ with BC' and IC satisfying
an energy and entropy inequality (EEI) such as

€20, & —& inLNQ), &hul — &uo in LNQ).
Then, up to a subsequence,
e &, converges strongly in C°(0, T L3/2(Q,)),
o \/&,u,, converges strongly in L*(0, T (Lg/Q(Q/))Q),
® &nuy converges strongly in L'(0,T; (LI(Q,))Q) for all T > 0,

(&ny V/Enun, \/Enwy) converges to a weak solution of the IM’,

(&n, un, wy) satisfies the EEI and converges to a weak solution of the IM’ with BC'.

The entropy inequality :

Ld [
2dt Jo
+/, 201 £|0.w|? + 201 €| Ar (u)]? + D26]0,u]? dzdz + / réul® + 2017 |uuV € dedz

Q Q

+/ 81| Vu/€|? dzdz = 0.
Q,

flu+ 201 Ve Ing|* +2(€log€ — £+ 1)) dadz
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SKETCH OF THE PROOE-SHEENE

To prove the stability result on IM’, we proceed as follows :
@ we obtain suitable a priori bounds on (£, u, w),

@ we get estimates from the energy inequality,
@ we get estimates from the BD-entropy inequality, i.e. : a kind of energy with
the muliplier u 4 20, V€.
@ we show the compactness of sequences (&, u,,w,) in appropriate space
function,
@ we show the convergence of the sequence \/5
@ we seek bounds of \/&,u, and \/&Enwn,
@ we prove the convergence of £, u,,
@ we prove the convergence of \/&nuy,.

@ we prove that we can pass to the limit in all terms of the IM’,

@ We “transport” this result with the reverse change of variable to the
3D-CPEs. O
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@ Prove the existence of weak solutions of the 3D-CPEs
@ Generalize to any anisotropic pair of viscosities
@ Deal with the case of p = kp?, v # 1, k = cte (also the case k = k(¢,z,vy))

M. Ersoy (BCAM) PhD Works
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The PFS Equation are :

9 (A) + 0:(Q)

2

M. Ersoy (BCAM)

0@ +o. (% 4w a.)

—
d
- gA—Z

94 ()

+Pr(z,AE)
—G(z,AE)

—gK(.T,S) %
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FINITE VOLUME (

CELL-CENTERED NUMERICAL SCHEME

m;
—>
| L
L ) m’l, 19 i
i—1/2 Tit1/2
< '
L

PFS equations under vectorial form :

oU(t,x) + 0, F(x,U) = S(t, )
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it VoLume (V)
CELL-CENTERED NUMERICAL SCHEME

m;
—>
| L
L ) m’l, 19 i
i—1/2 Tit1/2
< '
L

PFS equations under vectorial form :

oU(t,x) + 0, F(x,U) = S(t, )

cte per mesh 1

with U} ~ E/ U(t,, x) dz and S(t, z) constant per mesh,

M. Ersoy (BCAM) PhD Works



CELL-CENTERED NUMERICAL SCHEME

—>
| L
L ) m’l, 19 i
i—1/2 Tit1/2
< '
L

PFS equations under vectorial form :

8tU(ta IE) + aacF(x7 U) = 8(t7 LZI)

cte per mesh 1

with U} ~ E/ U(t,, x) dz and S(t, z) constant per mesh,

Cell-centered numerical scheme :

At?

n+1l _ n__ =v
v =U Az

(}-z‘+1/2 - fi—l/2) + At"S(U7)

where
tn+1
At"S] %/ / S(t,z) dz dt
t mg

{ -
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UPWINDED NUMERICAL SCHEME

i
—>
| L
L ) m’l, 19 i
i—1/2 Tit1/2
< '
L

PFS equations under vectorial form :

8tU(ta "E) + 8acF(x7 U) = 8(t7 1.)

cte per mesh 1

with U} ~ E/ U(t,, x) dz and S(t, z) constant per mesh,

Upwinded numerical scheme :

U?H = U? - AA—Z (J‘Ez‘+1/2 - fi—l/Q)

M. Ersoy (BCAM) PhD Works




Our goal : define F; /5 in order to preserve continuous properties of the
PFS-model

Positivity of A ,

conservativity of A, discrete equilibrium, discrete entropy inequality
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Positivity of A

te equilibrium
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OSITIVILY O ,

conservativity of A, discrete equilibrium, discrete entropy inequality
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CHOICE OF THE NUMER_.

Our goal : define F; /5 in order to preserve continuous properties of the
PFS-model

Positivity of A ,

conservativity of A, discrete equilibrium, discrete entropy inequality

VFRoe solver[BEGVF] Kinetic solver[BEG10]

ﬁ C. Bourdarias, M. Ersoy and S. Gerbi.
A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme.
International Journal On Finite Volumes , Vol 6(2) 1-47, 2009.

ﬁ C. Bourdarias, M. Ersoy and S. Gerbi.
A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms.

To appear in J. Sci. Comp., 2010,
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PRINCIPLE

DENSITY FUNCTION

We introduce

M. Ersoy (BCAM) PhD Works



GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

x(@) = x(~w) >0, /R X(w)dw =1, /R WP x(w)dw =1,

then we define the Gibbs equilibrium by

b(t, x) b(t,x)
with
- 2

M. Ersoy (BCAM) PhD Works =



MICRO-MACROSCOPIC RELATIONS

Since
X(@) = x(~w) > 0, /R X(w)dw = 1, /R why(w)dw =1,
nd Atx) (€ ult,z)
T —u(t,x
M0 = e ()
then

M. Ersoy (BCAM) PhD Works



PRINCIPLE [P02] | ee—

THE KINETIC FORMULATION

(A4, Q) is solution of the PFS system if and only if M satisfy the transport
equation :

oM+ -0, M — gP O M =K(t,x,€)

where K(t, z, ) is a collision kernel satisfying a.e. (¢, z)

AKd&zO,ASKd{zO

and ® are the source terms.

@ B. Perthame.

Kinetic formulation of conservation laws.
Oxford University Press.
Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.
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PRINCIPE | ee—

THE KINETIC FORMULATION

(A4, Q) is solution of the PFS system if and only if M satisfy the transport
equation :

OHM + € 0, M — gBIM = K(t,z,€)

where K(t, z, ) is a collision kernel satisfying a.e. (¢, z)

/RICdfzo,/RflCdfzo

and ® are the source terms.

General form of the source terms :

conservative  non conservative friction
d d Q|Q|
b= —Z7 + B-
dx

with W = (Z, S, cos 0)
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DISCRETIZATION —

@ Recalling that A, Q and Z, .S, cosf constant per mesh
o forgetting the friction : « splitting ». ..
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DISCRETIZATION -

@ Recalling that A, Q and Z, S, cos @ constant per mesh
o forgetting the friction : « splitting ». ..

Then Y(t, ) € [tn, tny1][Xx My

O(t,z) =0
since i d
b= —7+B- —W
dx + dx

M. Ersoy (BCAM) PhD Works =



@ Recalling that A, Q and Z, .S, cosf constant per mesh
o forgetting the friction : « splitting ». ..

Then V(t,2) € [tn, tnsr[x My

O(t,z) =0
since d d
b= —27+B- —W
dx + dx
—
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SIMPLIFICATION OF _

@ Recalling that A, Q and Z, .S, cosf constant per mesh
o forgetting the friction : « splitting ». ..

Then V(t,2) € [tn, tnsr[x My

O(t,z) =0
since d d
b= —27+B- —W
dx + dx
—

ftn, 2, §) = M(tn,z,8)

def Altn, 2, €) <€—u(tmm’€>>
T b(tn7$,§) X b(tnax7§)

by neglecting the collision kernel

-
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On [tn, tnt1[xm;, we have :

{ O0f+&-0uf
ftn, 2,€)

[l
o

M (E)
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On [tn, tnt1[xm;, we have :

{atf+§-axf =0
w28 = M)
i.e. A

FIFHE) = M) + 65— (M7, () - ME,(©)

M. Ersoy (BCAM) PhD Works



On [tn, tnt1[xm;, we have :

{ Of+&-0:f = 0

F(tn2,6) M ()
i.e. A
FIFHE) = M) + 65— (M7, () - ME,(©)
where

M. Ersoy (BCAM)



On [tn, tnt1[xm;, we have :

{ Of+&-0:f = 0

ftn,x,€) M(E)
i.e. At™
FIHO = MU €5 (MO - ME4(©)
or n
Uttt =ur - AAt (]?;1/2 ]?;r—l/?>
with
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INTERPRETATION : POTENTIAL BAREER

positive transmission

—_—
- _ n
i+1/2(€) = legpM; ()
n _ 2 _ n
+ ]1{€<0,52—29A<1>?+1/2>0}Mi+1 ( 5 29A(I)Z+1/2)
negative transmission
AZ
Mi—+1/2 M:rﬂ/z
------------------------------- >
,,,,,,,,, Zit1
o
A®?+1/2
barriere de potentiel
7.
r 1 1 »
wit1/a ey Tibage
i M
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Tw MiorosCOPIC LS
INTERPRETATION : POTENTIAL BAREER

positive transmission reflection
M08 = Loy MP(€)  +Ljeco, 229007, <0y Mi'(=E)
+ Lg<o, 229007, >0 My (— £ —2gAQ7, /2>

negative transmission

AZ
Mz‘+1/2 M;l/z

Ziv1

Aq)?+1/2

q\_q\ barriere de potentiel
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Tz microscorio L
INTERPRETATION : POTENTIAL BAREER

positive transmission reflection
_ - n n
Mii1)0(8) = Loy MP(€)  + Ljeco,e2—29n07, <0y Mi'(=E)
n _ 2 _ n
+ ]1{€<0,52—29A<1>?+1/2>0}Mi+1 ( 5 29A(I)Z+1/2>
negative transmission
B AZ
Mz‘+1/2 M:+1/2
B T >
Zit1
o
A(I>;'ﬂb-¢—1/2
q\_q\ barriere de potentiel
7.
L 7 1 » T
z11-1/2 Tit1/2 11:3/2
n
M; Mi

A®}\, ), may be interpreted as a time-dependant slope!

M. Ersoy (BCAM) PhD Works



THE MICROSCOPIC FW
INTERPRETATION : PENTE DYNAMIQUE — DECEN

positive transmission reflection
_ - n ny_
Mii1)0(8) = Loy MP(€)  + Ljeco,e2—29n07, <0y Mi'(=E)
n _ 2 _ n
+ ]1{€<0,52—29A<1>?+1/2>0}Mi+1 ( 5 29A(I)Z+1/2>
negative transmission
B AZ
Mz‘+1/2 M:A/z
--------------------------- >
B Zit1
o
A(I>;'ﬂb-¢—1/2
q\_q\ barriere de potentiel
7.
L 7 1 » T
z11-1/2 Tit1/2 11:3/2
n
M; Mi

A®}\, 5 may be interpreted as a time-dependant slope!

... We reintegrate the friction ...

PhD Works
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@ conservative 0, W :
Wi —W;

@ non-conservative BO, W : B
B(W,; 1 —W;)

where )
E:/ B(s, ¢(s,W;, W, 1)) ds
0
for the « straight lines paths », i.e.

qZS(S,Wi,WH_l) = SWH_] + (1 — S)Wi, CES [0, 1]

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products.
J. Math. Pures Appl. , Vol 74(6) 483-548, 1995.
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With [ABPOO]
1

x(w) = 2_\/511[_\/1\/3](“)
we have :

@ Positivity of A (under a CFL condition),
o Conservativity of A,
@ Natural treatment of drying and flooding area.

for example

E. Audusse and M-0. Bristeau and B. Perthame.
Kinetic schemes for Saint-Venant equations with source terms on unstructured grids.
INRIA Report RR3989, 2000.
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Nunerioat Pror RS

With [ABPOOQ]
1
x(w) = 2_\/511[_\/3,\/3](“)

we have :
@ Positivity of A (under a CFL condition),

o Conservativity of A,

@ Natural treatment of drying and flooding area.

for example

— non well-balanced scheme with such a x

— but easy computation of the numerical fluxes

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids.
INRIA Report RR3989, 2000.
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UPWINDING OF THE FRICTION

THE « DOUBLE DAM BREAK »

|

2.05

2

e horizontal pipe : L =100 m, R =1m.
e initial state : Q = 0 m3/s, y = 1.8 m.
e Symmetric boundary conditions :

1.95

Hauteur piezometrique (m)

1.9

1.85

1.8

20 80 100

40 60
Temps (s)

downstream and upstream

EEE R

Décentré Ky =1/100 Centré K, = 1/100

AEEE R

Décentré Ks =1/10 Centré K, = 1/10
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QUALITATIVE ANALYSIS OE M

T= 0000

=
Ligne piezometrique

md’ean

0 100 200 300 400 500 600 700 800 900

@ upstream piezometric head 104 m

Niveau piezometrique aval
1032

103

1028

102.6

102.4

md’eau

1022

102
101.8
101.6

1014

Hauteur piezo
haut du tuyau

0 2 4 6 8 10 12 14

@ downstream piezometric head : Temp )
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During unsteady flows ¢ = 100 s
Erreur L2 : Ligne piezometrique au tempst=100s
0.8 T T T

T T T
Ordre VFRoe (polyfit) = 0.91301 ==
VFRoe (sans polyfit) =======
Ordre FKA (polyfit) = 0.88039 -
FKA (sans polyfit)

0.6 F,

0.4

- I I
2 2.2 24 2.6 2.8
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Stationary ¢ = 500 s
Erreur L2 : Ligne piezometrique au temps t = 500 s
0 T T T

T T T
Ordre VFRoe (polyfit) = 1.0742 =
VFRoe (sans polyfit) =======
Ordre FKA (polyfit) = 1.0371 -
FKA (sans polyfit)

1 1
22 2.8 . o
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© Study of the convergence with respect to the x function

@ Study of the convergence with respect to the paths used to define the
non-conservative product
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OUTLINE
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@ FORMAL DERIVATION OF A SVES LIKE MODEL
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@ Hydrodynamic limit, toward a “mixed model”
@ A Viscous Saint-Venant-Exner like model
@ Perspective
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A SAINT-VENANT- EXNER MODEE

Saint-Venant equations for the hydrodynamic part :
O¢h + div(q) = 0,

h2
0yq + div (qi”*’) v <g2> = —ghVb

+

a bedload transport equation for the morphodynamic part :

O + &div(gr(h,q)) =0
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A SAINT—VENANT—E)m
Saint-Venant equations for the hydrodynami 3
Och + div(q) =0,
h2
Brq + div (%) v <g?> — _ghVb
+
a bedload transport equation for the morphodynamic part :
Ob + &div(gn(h, q)) =0
with
@ h : water height,
@ ¢ = hu : water discharge,
@ ¢ : sediment discharge (empirical law : [MPM48], [G81]),
e £=1/(1— 1) : porosity coefficient.

E. Meyer-Peter and R. Miiller,

Formula for bed-load transport,
Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., 39-64, 1948

A.J. Grass,

Sediment transport by waves and currents,
SERC London Cent. Mar. Technol. Report No. FL29 , 1981.
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A SAINT—VENANT-EXN_
Saint-Venant equations for the hydrodynamic part :
Och + div(q) =0,

h2
Ovq + div (%) +V (g;) = —ghVb

+
a bedload transport equation for the morphodynamic part :
9¢b + &div(gy(h, q)) =0
with
@ h : water height,
@ ¢ = hu : water discharge,
@ ¢ : sediment discharge (empirical law : [MPM48], [G81]),
e £=1/(1— 1) : porosity coefficient.

Our goal : derive formally this type of equation from a non classical way

-
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THE MORPHODYNAMIC PART s

is governed by the Vlasov equation :
O f +dive(vf) +div,((F+9)f) =rA,f

where :
o f(t,z,v) density function of particles
° g‘: (0,07 _g)t'

6mpa

o ['=

> a radius of a particle (assumed constant)

(u — v) Stokes drag force with

» M = pp§7ra3 mass of a particle (assumed constant) with p, density of a
particle (assumed constant)
@ wu fluid velocity
@ u characteristic viscosity of the fluid (assumed constant)
e rA, f brownian motion of particles where r is the velocity diffusivity
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is governed by the Compressible Navier-Stokes equations

Opw + div(pyyu) =0,
O (puwu) + div(pyu @ u) = divo(puy, u) + §,
p :p(t,x) (1)

where o (py, ) is the anisotropic total stress tensor :
—pls + 23 (py).D(u) + A(py)div(u) I3

The matrix X(p,,) is anisotropic
(pw)  pr(pw)  p2(pw)
(pw)  i(pw)  p2(pw)
1 p

with p; # p; for i # j and 4,5 = 1,2, 3.
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THE COUPLING |

As the medium may be heterogeneous, we propose the following inhomogeneous
pressure law as :

h(t
p(t,z) = k:(t,:cl,ﬂcQ)p(t.,ac)2 with  k(t, 21, 22) = W
f

where p := p,, + p, is called mixed density
We set ps, the macroscopic density of sediments :

mz/f@
R3

The last term § on the right hand side of CNEs is the effect of the particles
motion on the fluid obtained by summing the contribution of all particles :

- 9 S
5=- Ffdv—i—pwg:zTu/(v—u)fdv—I—pwg.
R3 a=pp JRrs

-
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@ For the hydrodynamic part :

> on the free surface : a normal stress continuity condition
> at the movable bottom : a wall-law condition and continuity of the velocity at
the interface x3 = b(¢,x)

PhD Works



BOUNDARY CONDITI_

@ For the hydrodynamic part :

> on the free surface : a normal stress continuity condition
> at the movable bottom : a wall-law condition and continuity of the velocity at
the interface x3 = b(¢,x)

@ For the morphodynamic part :

> kinetic boundary conditions ? (work in progress) replaced by the equation :

S = atb + V 1 + |vxb|2u|x3:b Ny

and S — /14 |Vxb|2u|z,—p - np takes into account incoming and outgoing
particles.
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RESCALING FOR BOT.‘

Let
o V0 be the fluctuation of kinetic velocity,
@ il be a characteristic vertical velocity of the fluid,
@ % be a characteristic time,
@ 7 be a relaxation time,

o £ be a characteristic vertical height,

B:ﬁ, C:E’ F:£
b T Vo

with the following asymptotic regime :

and

EHOFE

B =0(1), czé, F=0(1), E=0(1).

T. Goudon and P-E. Jabin and A. Vasseur,

Hydrody ic limit for the VI, Navier-Stokes Equations. I. Light particles regime,
Indiana Univ. Math. J., 53(6) :1495-1515,2004 1'
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Formally, € — 0, we obtain :
@ Takes the two first moments of the the hydrodynamic limit of Vlasov equation
_|_

@ Rescaled Navier Stokes Equation

Op + div(pu) = 0,

O¢(pu) + divk(pu @ u) + 9y, (puv) + Vi P

= divy (11 (p) Dx(0)) + Do (112(p) (O, + Viz))
+V, (A(p)div(u))

On(puz) + divy(putsz) + Or, (pu3) + O, P
= divw (112(p) (st + Vxtz) ) + O,y (113(0) D, 13)
0y (A(p)div(w)

where
P=p+6ps
and

P = Pw + Ps-
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Applying an asymptotic analysis to the mixed model :
we finally obtain :

1 _h . _ £1(u)
3F3Vh2 = —ITEVb+d|v(hD(u)) - ( R;(u) )

S=0b+ 1+ |be|2u|m3=b c Ny

O¢(ha) + div(ha @ @) +
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o find appropriate kinematic boundary condition
@ generalize this procedure to a real mixed model
@ justify such a formal derivation mathematically

M. Ersoy (B PhD Works
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