

Modeling, Mathematical and Numerical Analysis for some Compressible and Incompressible Equations in Thin Layer.

M. Ersoy

15 october 2010

OUTLINE OF THE TALK

1 INTRODUCTION

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes
- 2 Mathematical results on CPEs
 - An intermediate model
 - Toward an existence result for the 2D-CPEs
 - Toward a stability result for the 3D-CPEs
 - Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives
- Formal derivation of a SVEs like model
 - A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
 - Hydrodynamic limit, toward a "mixed model"
 - A Viscous Saint-Venant-Exner like model
 - Perspective

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes
- 2 Mathematical results on CPEs
 - An intermediate model
 - Toward an existence result for the 2D-CPEs
 - Toward a stability result for the 3D-CPEs
 - Perspectives

3 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives
- Formal derivation of a SVEs like model
 - A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
 - Hydrodynamic limit, toward a "mixed model"
 - A Viscous Saint-Venant-Exner like model
 - Perspective

HYDROSTATIC APPROXIMATION AND AVERAGED EQUATIONS

Navier Stokes equations (NSEs) or Euler equations (EEs) on $\Omega = \{(x, y) \in \mathbb{R}^3; H \ll L\}$ "thin layer domain"

HYDROSTATIC APPROXIMATION AND AVERAGED EQUATIONS

Navier Stokes equations (NSEs) or Euler equations (EEs) on $\Omega = \{(x, y) \in \mathbb{R}^3; H \ll L\}$ "thin layer domain"

 $\downarrow [\mathsf{Ped}]$

Hydrostatic approximation (asymptotic analysis with $\varepsilon = H/L = W/V \ll 1$ and rescaling $\tilde{x} = x/L$, $\tilde{y} = y/H$, $\tilde{u} = u/U$ $\tilde{w} = w/W$) \longrightarrow Primitive equations (PEs)

J. Pedlowski Geophysical Fluid Dynamics. 2nd Edition, Springer-Verlag, New-York, 1987.

HYDROSTATIC APPROXIMATION AND AVERAGED EQUATIONS

Navier Stokes equations (NSEs) or Euler equations (EEs) on $\Omega = \{(x, y) \in \mathbb{R}^3; H \ll L\}$ "thin layer domain"

 $\downarrow [\mathsf{Ped}]$

Hydrostatic approximation (asymptotic analysis with $\varepsilon = H/L = W/V \ll 1$ and rescaling $\tilde{x} = x/L$, $\tilde{y} = y/H$, $\tilde{u} = u/U$ $\tilde{w} = w/W$) \longrightarrow Primitive equations (PEs)

 $\downarrow [\mathsf{GP}]$

Averaged PEs with respect to depth or altitude $y \longrightarrow$ Saint-Venant Equations (SVEs)

J. Pedlowski

Geophysical Fluid Dynamics. 2nd Edition, Springer-Verlag, New-York, 1987.

J.-F Gerbeau and B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B, 1(1), 2001.

OUTLINE

1 INTRODUCTION

Atmosphere dynamic

- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPE
- Perspectives

AN UPWINDED KINETIC SCHEME FOR THE PFS EQUATIONS

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

FORMAL DERIVATION OF A SVES LIKE MODEL

- A nice coupling : Vlasov and Anisotropic Navier-Stokes
- Hydrodynamic limit, toward a "mixed mode
- A Viscous Saint-Venant-Exner like model
- Perspective

• Dynamic :

- Compressible fluid
- Small vertical extension with respect to horizontal
- Principally horizontal movements
- Density highly stratified

• Dynamic :

- Compressible fluid
- Small vertical extension with respect to horizontal
- Principally horizontal movements
- Density highly stratified

Modeling : Compressible Navier-Stokes equations

Hydrostatic approximation \rightarrow compressible primitive equations (CPEs)

$$\begin{array}{rcl} \partial_t \rho + \operatorname{div}_x(\rho \mathbf{u}) + \partial_y(\rho v) &=& 0\\ \partial_t(\rho \mathbf{u}) + \operatorname{div}_x(\rho \mathbf{u} \otimes \mathbf{u}) + \partial_y(\rho \mathbf{u} v) + \nabla_x p &=& \operatorname{div}_x(\sigma_x) + f\\ \partial_t(\rho v) + \operatorname{div}_x(\rho \mathbf{u} v) + \partial_y(\rho v^2) + \partial_y p &=& -\rho g + \operatorname{div}_y(\sigma_y)\\ p &=& c^2 \rho \end{array}$$

- Dynamic :
 - Compressible fluid
 - Small vertical extension with respect to horizontal
 - Principally horizontal movements
 - Density highly stratified
- Modeling : Compressible Navier-Stokes equations

Hydrostatic approximation — compressible primitive equations (CPEs)

$$\begin{array}{rcl} \partial_t \rho + \operatorname{div}_x(\rho \mathbf{u}) + \partial_y(\rho v) &=& 0\\ \partial_t(\rho \mathbf{u}) + \operatorname{div}_x(\rho \mathbf{u} \otimes \mathbf{u}) + \partial_y(\rho \mathbf{u} v) + \nabla_x p &=& \operatorname{div}_x(\sigma_x) + f\\ \partial_t(\rho v) + \operatorname{div}_x(\rho \mathbf{u} v) + \partial_y(\rho v^2) + \partial_y p &=& -\rho g + \operatorname{div}_y(\sigma_y)\\ p &=& c^2 \rho \end{array}$$

- Dynamic :
 - Compressible fluid
 - Small vertical extension with respect to horizontal
 - Principally horizontal movements
 - Density highly stratified $p = \xi(t, x)e^{-g/c^2y}$
- Modeling : Compressible Navier-Stokes equations

Hydrostatic approximation \rightarrow compressible primitive equations (CPEs)

$$\partial_t \rho + \operatorname{div}_x(\rho \mathbf{u}) + \partial_y(\rho v) = 0$$

$$\partial_t(\rho \mathbf{u}) + \operatorname{div}_x(\rho \mathbf{u} \otimes \mathbf{u}) + \partial_y(\rho \mathbf{u} v) + \nabla_x p = \operatorname{div}_x(\sigma_x) + f$$

$$\partial_y p = -\rho g$$

$$p = c^2 \rho$$

OUTLINE

1 INTRODUCTION

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipe

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPE
- Toward a stability result for the 3D-CPEs
- Perspectives

3 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

4 Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed mode
- A Viscous Saint-Venant-Exner like model
- Perspective

• Sediment : produced by erosion process

• Dynamic :

- Incompressible fluid
- Small vertical extension with respect to horizontal
- Principally horizontal movements

• Sediment : produced by erosion process

• Dynamic :

- Incompressible fluid
- Small vertical extension with respect to horizontal
- Principally horizontal movements

• Modeling : Saint-Venant-Exner equations

morphodynamic part —> Exner equations

• Sediment : produced by erosion process

• Dynamic :

- Incompressible fluid
- Small vertical extension with respect to horizontal
- Principally horizontal movements

• Modeling : Saint-Venant-Exner equations

hydrodynamic part — Saint-Venant equations (averaged IPEs)

$$\partial_t h + \operatorname{div}(q) = 0,$$

 $\partial_t q + \operatorname{div}\left(\frac{q \otimes q}{h}\right) + \nabla\left(g\frac{h^2}{2}\right) = -gh\nabla b$

morphodynamic part —> Exner equations

• Sediment : produced by erosion process

• Dynamic :

- Incompressible fluid
- Small vertical extension with respect to horizontal
- Principally horizontal movements
- variable bottom, example : bed river
- Modeling : Saint-Venant-Exner equations
 - hydrodynamic part —> Saint-Venant equations (averaged IPEs)

$$\partial_t h + \operatorname{div}(q) = 0,$$

 $\partial_t q + \operatorname{div}\left(\frac{q \otimes q}{h}\right) + \nabla\left(g\frac{h^2}{2}\right) = -gh\nabla b$

morphodynamic part — Exner equations

$$\partial_t \mathbf{b} + \xi \operatorname{div}(q_b(h,q)) = 0$$

OUTLINE

1 INTRODUCTION

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes
- 2 MATHEMATICAL RESULTS ON CPES
 - An intermediate mode
 - Toward an existen
 - Toward a stability result for the 3D-CPEs
 - Perspectives

3 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and hum
- Numerical results
- Perspectives

4 Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model
- A Viscous Saint-Venant-Exner like mode
- Perspective

- mixed : Free surface and pressurized flows
 - ► Free Surface area (FS)

Section non filled and incompressible flow...

- mixed : Free surface and pressurized flows
 - Free Surface area (FS) Section non filled and incompressible flow...
 - Pressurized area (P)

Section completely filled and compressible flow...

• Dynamic :

- Incompressible or compressible fluid following the area
- Small vertical extension with respect to horizontal
- Principally horizontal movements : unidirectional

- Dynamic :
 - Incompressible or compressible fluid following the area
 - Small vertical extension with respect to horizontal
 - Principally horizontal movements : unidirectional
- Modeling : A nice coupling of Saint-Venant like equations
 - ▶ free surface part → usual Saint-Venant equations

▶ pressurized part → Saint-Venant like equations

• Dynamic :

- Incompressible or compressible fluid following the area
- Small vertical extension with respect to horizontal
- Principally horizontal movements : unidirectional
- Modeling : A nice coupling of Saint-Venant like equations
 - ▶ free surface part → usual Saint-Venant equations

$$\partial_t A_{fs} + \partial_x Q_{fs} = 0,$$

$$\partial_t Q_{fs} + \partial_x \left(\frac{Q_{fs}^2}{A_{fs}} + p_{fs}(x, A_{fs}) \right) = -gA_{fs} \frac{dZ}{dx} + Pr_{fs}(x, A_{fs}) - G(x, A_{fs})$$

$$-K(x, A_{fs}) \frac{Q_{fs}|Q_{fs}|}{A_{fs}}$$

▶ pressurized part → Saint-Venant like equations

• Dynamic :

- Incompressible or compressible fluid following the area
- Small vertical extension with respect to horizontal
- Principally horizontal movements : unidirectional
- Modeling : A nice coupling of Saint-Venant like equations

$$\partial_t A_{fs} + \partial_x Q_{fs} = 0,$$

$$\partial_t Q_{fs} + \partial_x \left(\frac{Q_{fs}^2}{A_{fs}} + p_{fs}(x, A_{fs}) \right) = -gA_{fs} \frac{dZ}{dx} + Pr_{fs}(x, A_{fs}) - G(x, A_{fs}) - G(x, A_{fs}) \frac{Q_{fs}|Q_{fs}|}{A_{fs}}$$

pressurized part — Saint-Venant like equations

$$\partial_t A_p + \partial_x Q_p = 0,$$

$$\partial_t Q_p + \partial_x \left(\frac{Q_p^2}{A_p} + p_p(x, A_p)\right) = -gA_p \frac{dZ}{dx} + Pr_p(x, A_p) - G(x, A_p)$$

$$-K(x, A_p) \frac{Q_p |Q_p|}{A_p}$$

• Dynamic :

- Incompressible or compressible fluid following the area
- Small vertical extension with respect to horizontal
- Principally horizontal movements : unidirectional
- Modeling : A nice coupling : The PFS model
 - from the coupling :

$$A = \begin{cases} A_{fs} & \text{if FS} \\ A_p & \text{if P} \end{cases} : \text{ the mixed variable} \\ Q = Au & : \text{ the discharge} \end{cases}$$

$$\begin{cases} \partial_t(A) + \partial_x(Q) &= 0 \\ \partial_t(Q) + \partial_x \left(\frac{Q^2}{A} + p(x, A, E)\right) &= -g A \frac{d}{dx} Z(x) \\ + Pr(x, A, E) \\ -G(x, A, E) \\ -g \mathbf{K}(x, \mathbf{S}) \frac{Q|Q|}{A} \end{cases}$$

where ${\boldsymbol E}$ is a state indicator and appropriate p and ${\boldsymbol P} r$

OUTLINE

INTRODUCTION

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 Mathematical results on CPEs

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

3 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

ENERGY ESTIMATES ? CPEs :

$$\begin{cases} \begin{array}{l} \partial_t \rho + \operatorname{div}_x \left(\rho \, \mathbf{u}\right) + \partial_y \left(\rho v\right) = 0, \\ \partial_t \left(\rho \, \mathbf{u}\right) + \operatorname{div}_x \left(\rho \, \mathbf{u} \otimes \mathbf{u}\right) + \partial_y \left(\rho \, v \mathbf{u}\right) + \nabla_x p(\rho) = 2 \operatorname{div}_x \left(\nu_1 D_x(\mathbf{u})\right) + \partial_y \left(\nu_2 \partial_y \mathbf{u}\right), \\ \partial_y p(\rho) = -g\rho \\ p(\rho) = c^2 \rho \end{cases}$$

ENERGY ESTIMATES ? CPEs :

$$\begin{cases} \partial_t \rho + \operatorname{div}_x \left(\rho \,\mathbf{u}\right) + \partial_y \left(\rho v\right) = 0, \\ \partial_t \left(\rho \,\mathbf{u}\right) + \operatorname{div}_x \left(\rho \,\mathbf{u} \otimes \mathbf{u}\right) + \partial_y \left(\rho \,v \mathbf{u}\right) + \nabla_x p(\rho) = 2 \operatorname{div}_x \left(\nu_1 D_x(\mathbf{u})\right) + \partial_y \left(\nu_2 \partial_y \mathbf{u}\right), \\ \partial_y p(\rho) = -g\rho \\ p(\rho) = c^2\rho \end{cases}$$

Problem : How to obtain energy estimates since : the sign of

$$\int_{\Omega} \rho g v \, dx dy$$

$$\frac{d}{dt} \int_{\Omega} \rho |u|^2 + \rho \ln \rho - \rho + 1 \, dx dy + \int_{\Omega} 2\nu_1 |D_x(u)|^2 + \nu_2 |\partial_y^2 u| \, dx dy + \int_{\Omega} \rho g v \, dx dy = 0$$

is unknown !

ENERGY ESTIMATES? CPEs :

$$\begin{cases} \partial_t \rho + \operatorname{div}_x \left(\rho \,\mathbf{u}\right) + \partial_y \left(\rho v\right) = 0, \\ \partial_t \left(\rho \,\mathbf{u}\right) + \operatorname{div}_x \left(\rho \,\mathbf{u} \otimes \mathbf{u}\right) + \partial_y \left(\rho \,v \mathbf{u}\right) + \nabla_x p(\rho) = 2 \operatorname{div}_x \left(\nu_1 D_x(\mathbf{u})\right) + \partial_y \left(\nu_2 \partial_y \mathbf{u}\right), \\ \partial_y p(\rho) = -g\rho \\ p(\rho) = c^2 \rho \end{cases}$$

Problem : How to obtain energy estimates since : the sign of

$$\int_{\Omega} \rho g v \, dx dy$$

$$\frac{d}{dt} \int_{\Omega} \rho |u|^2 + \rho \ln \rho - \rho + 1 \, dx dy + \int_{\Omega} 2\nu_1 |D_x(u)|^2 + \nu_2 |\partial_y^2 u| \, dx dy + \int_{\Omega} \rho g v \, dx dy = 0$$
is unknown l

Consequently standard techniques fails

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

MATHEMATICAL RESULTS ON CPES

• An intermediate model

- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

Using the hydrostatic equation, we obviously have :

$$\rho(t, x, y) = \xi(t, \mathbf{x})e^{-g/c^2y}$$

for some function $\xi(t, x)$: ρ is stratified

Using the hydrostatic equation, we obviously have :

$$\rho(t, x, y) = \xi(t, x)e^{-g/c^2y}$$

for some function $\xi(t, x) : \rho$ is stratified Problem : find equations satisfied by ξ

Using the hydrostatic equation, we obviously have :

$$\rho(t, x, y) = \xi(t, x)e^{-g/c^2y}$$

for some function $\xi(t, x) : \rho$ is stratified Problem : find equations satisfied by ξ An intermediate model :

• replace ρ by $\xi e^{-g/c^2 y}$ in CPEs

$$\begin{cases} \partial_t (\xi e^{-g/c^2 y}) + \operatorname{div}_x \left(\xi e^{-g/c^2 y} \mathbf{u} \right) + \partial_y \left(\xi e^{-g/c^2 y} v \right) = 0, \\ \partial_t \left(\xi e^{-g/c^2 y} \mathbf{u} \right) + \operatorname{div}_x \left(\xi e^{-g/c^2 y} \mathbf{u} \otimes \mathbf{u} \right) + \partial_y \left(\xi e^{-g/c^2 y} v \mathbf{u} \right) \\ + \nabla_x c^2 \nabla_x (\xi e^{-g/c^2 y}) = 2 \operatorname{div}_x \left(\nu_1 D_x(\mathbf{u}) \right) + \partial_y \left(\nu_2 \partial_y \mathbf{u} \right), \\ \rho = \xi e^{-g/c^2 y} \end{cases}$$

• multiply CPEs by e^{+g/c^2y}

Using the hydrostatic equation, we obviously have :

$$\rho(t, x, y) = \xi(t, x)e^{-g/c^2y}$$

for some function $\xi(t, x) : \rho$ is stratified Problem : find equations satisfied by ξ An intermediate model :

- replace ρ by $\xi e^{-g/c^2 y}$ in CPEs
- $\bullet\,$ multiply CPEs by e^{+g/c^2y}

$$\begin{cases} \partial_t(\xi) + \operatorname{div}_x\left(\xi \,\mathbf{u}\right) + e^{g/c^2 y} \partial_y \left(\xi e^{-g/c^2 y} v\right) = 0, \\ \partial_t\left(\xi \,\mathbf{u}\right) + \operatorname{div}_x\left(\xi \,\mathbf{u} \otimes \mathbf{u}\right) + e^{g/c^2 y} \partial_y \left(\xi e^{-g/c^2 y} \,v \mathbf{u}\right) + c^2 \nabla_x \xi = \\ 2e^{g/c^2 y} \operatorname{div}_x\left(\nu_1 D_x(\mathbf{u})\right) + e^{g/c^2 y} \partial_y\left(\nu_2 \partial_y \mathbf{u}\right), \\ \rho = \xi e^{-g/c^2 y} \end{cases}$$

• set $z = 1 - e^{-g/c^2y}$ such that $e^{g/c^2y}\partial_y = \partial_z$ and $w = e^{-g/c^2y}v$ under suitable choice of viscosities.

The key point : the hydrostatic equation

Using the hydrostatic equation, we obviously have :

$$\rho(t, x, y) = \xi(t, x)e^{-g/c^2y}$$

for some function $\xi(t,x):\rho$ is stratified Problem : find equations satisfied by ξ An intermediate model :

$$\begin{cases} \partial_t \xi + \operatorname{div}_x(\xi \mathbf{u}) + \xi \partial_z w = 0, \\ \partial_t(\xi \mathbf{u}) + \operatorname{div}_x(\xi \mathbf{u} \otimes \mathbf{u}) + \partial_z(\xi w \mathbf{u}) + c^2 \nabla_x(\xi) = 2 \operatorname{div}_x(\nu_1 D_x(\mathbf{u})) + \partial_z(\nu_2 \partial_z \mathbf{u}), \\ \partial_z \xi = 0 \end{cases}$$

The key point : the hydrostatic equation

Using the hydrostatic equation, we obviously have :

$$\rho(t, x, y) = \xi(t, x)e^{-g/c^2y}$$

for some function $\xi(t,x):\rho$ is stratified Problem : find equations satisfied by ξ An intermediate model :

$$\begin{cases} \partial_t \xi + \operatorname{div}_x(\xi \mathbf{u}) + \xi \partial_z w = 0, \\ \partial_t(\xi \mathbf{u}) + \operatorname{div}_x(\xi \mathbf{u} \otimes \mathbf{u}) + \partial_z(\xi w \mathbf{u}) + c^2 \nabla_x(\xi) = 2 \operatorname{div}_x(\nu_1 D_x(\mathbf{u})) + \partial_z(\nu_2 \partial_z \mathbf{u}), \\ \partial_z \xi = 0 \end{cases}$$

$$\frac{d}{dt} \int_{\Omega} \xi |u|^2 + \xi \ln \xi - \xi + 1 \, dx \, dz + \int_{\Omega} 2\nu_1 |D_x(u)|^2 + \nu_2 |\partial_z^2 u| \, dx \, dz = 0$$

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

• An intermediate model

• Toward an existence result for the 2D-CPEs

- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective
THE 2D-CPES

We set

$$\begin{cases} \nu_1(t, x, y) = \nu_0 e^{-g/c^2 y} \text{ for some given positive constant } \nu_0, \\ \nu_2(t, x, y) = \nu_1 e^{g/c^2 y} \text{ for some given positive constant } \nu_1. \end{cases}$$

the boundary conditions (BC)

$$\left\{ \begin{array}{l} u_{|x=0} = u_{|x=l} = 0, \\ v_{|y=0} = v_{|y=h} = 0, \\ \partial_y u_{|y=0} = \partial_y u_{|y=h} = 0 \end{array} \right.$$

and the initial conditions (IC) :

$$\begin{cases} u_{|t=0} = u_0(x, y), \\ \rho_{|t=0} = \xi_0(x) e^{-g/c^2 y} \end{cases}$$

where ξ_0 :

$$0 < m \leqslant \xi_0 \leqslant M < \infty.$$

THEOREM ([EN2010])

Suppose that initial data (ξ_0, u_0) have the properties :

$$(\xi_0, u_0) \in W^{1,2}(\Omega), \quad u_{0|x=0} = u_{0|x=l} = 0.$$

Then $\rho(t, x, y)$ is a bounded strictly positive function and the 2D-CPEs with BC has a weak solution in the following sense : a weak solution of 2D-CPEs with BC is a collection (ρ, u, v) of functions such that $\rho \ge 0$ and

 $\rho \in L^{\infty}(0,T;W^{1,2}(\Omega)), \quad \partial_t \rho \in L^2(0,T;L^2(\Omega)),$

 $u \in L^{2}(0,T; W^{2,2}(\Omega)) \cap W^{1,2}(0,T; L^{2}(\Omega)), \quad v \in L^{2}(0,T; L^{2}(\Omega))$

which satisfies the 2D-CPEs in the distribution sense; in particular, the integral identity holds for all $\phi_{|t=T} = 0$ with compact support :

$$\int_{0}^{T} \int_{\Omega} \rho u \partial_{t} \phi + \rho u^{2} \partial_{x} \phi + \rho u v \partial_{z} \phi + \rho \partial_{x} \phi + \rho v \phi \, dx dy dt$$
$$= -\int_{0}^{T} \int_{\Omega} \nu_{1} \partial_{x} u \partial_{x} \phi + \nu_{2} \partial_{y} u \partial_{y} \phi \, dx dy dt + \int_{\Omega} u_{0} \rho_{0} \phi_{|t=0} \, dx dy$$

M. Ersoy and T. Ngom

Existence of a global weak solution to one model of Compressible Primitive Equations. submitted to Applied Mathematics Letters, 2010.

THE PROOF

The intermediate model (IM) is exactly the model studied by Gatapov *et al* [GK05], derived from Equations 2D-CPEs by neglecting some terms, for which they provide the following global existence result :

THEOREM (B. GATAPOV AND A.V. KAZHIKHOV 2005)

Suppose that initial data (ξ_0, u_0) have the properties :

 $(\xi_0, u_0) \in W^{1,2}(\Omega), \quad u_{0|x=0} = u_{0|x=1} = 0.$

Then $\xi(t, x)$ is a bounded strictly positive function and the IM has a weak solution in the following sense : a weak solution of the IM satisfying the BC is a collection (ξ, u, w) of functions such that $\xi \ge 0$ and

 $\xi \in L^{\infty}(0,T; W^{1,2}(0,1)), \quad \partial_t \xi \in L^2(0,T; L^2(0,1)),$

 $u\in L^2(0,T;W^{2,2}(\Omega))\cap W^{1,2}(0,T;L^2(\Omega)), \quad w\in L^2(0,T;L^2(\Omega))$

which satisfy the IM in the distribution sense.

B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics. *Sibirsk. Mat. Zh.*, pages 1011 :1020–722, 2005.

THE PROOF

By the simple change of variables $z = 1 - e^{-y}$ in the integrals, we get :

•
$$\| \rho \|_{L^{2}(\Omega)} = \alpha \| \xi \|_{L^{2}(\Omega)},$$
•
$$\| \nabla_{x} \rho \|_{L^{2}(\Omega)} = \alpha \| \nabla_{x} \xi \|_{L^{2}(\Omega)},$$
•
$$\| \partial_{y} \rho \|_{L^{2}(\Omega)} = \alpha \| \xi \|_{L^{2}(\Omega)}$$
where $\alpha = \int_{0}^{1-e^{-1}} (1-z) dz < +\infty$. We deduce then,
$$\| \rho \|_{W^{1,2}(\Omega)} = \alpha \| \xi \|_{W^{1,2}(\Omega)}$$

which provides

$$\rho \in L^{\infty}(0,T; W^{1,2}(\Omega)) \text{ and } \partial_t \rho \in L^2(0,T; L^2(\Omega)).$$

 $v \in L^2(0,T;L^2(\Omega))$ since the inequality holds :

$$\| v \|_{L^{2}(\Omega)} = \int_{0}^{1} \int_{0}^{1} |v(t, x, y)|^{2} dy dx = \int_{0}^{1} \int_{0}^{1-e^{-1}} \left(\frac{1}{1-z}\right)^{3} |w(t, x, z)|^{2} dz dx < e^{3} \| w \|_{L^{2}(\Omega)}.$$

Finally, all estimates on u remain true. \Box

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

THE 3D-CPES

We set

$$\nu_1(t, x, y) = \bar{\nu}_1 \rho(t, x, y)$$
 and $\nu_2 = \bar{\nu}_2 \rho(t, x, y) e^{2y}$.

for some positive constant $\bar{\nu}_1$ and $\bar{\nu}_2$.

We consider the IC and BC' where we prescribe periodic conditions on the spatiale domain with respect to x.

We define the set of function $ho \in \mathcal{PE}(\mathbf{u}, v; y,
ho_0)$ such that

$$\begin{array}{ll} \rho \in L^{\infty}(0,T;L^{3}(\Omega)), & \sqrt{\rho} \in L^{\infty}(0,T;H^{1}(\Omega)), \\ \sqrt{\rho}\mathbf{u} \in L^{2}(0,T;(L^{2}(\Omega))^{2}), & \sqrt{\rho}v \in L^{\infty}(0,T;L^{2}(\Omega)), \\ \sqrt{\rho}D_{x}(\mathbf{u}) \in L^{2}(0,T;(L^{2}(\Omega))^{2\times 2}), & \sqrt{\rho}\partial_{y}v \in L^{2}(0,T;L^{2}(\Omega)), \\ \nabla\sqrt{\rho} \in L^{2}(0,T;(L^{2}(\Omega))^{3}) \end{array}$$

with $\rho \geqslant 0$ and where $(\rho, \sqrt{\rho} \mathbf{u}, \sqrt{\rho} v)$ satisfies :

$$\begin{cases} \partial_t \rho + \operatorname{div}_x(\sqrt{\rho}\sqrt{\rho}\mathbf{u}) + \partial_y(\sqrt{\rho}\sqrt{\rho}v) = 0, \\ \rho_{t=0} = \rho_0. \end{cases}$$

THE 3D-CPES

We define, for any smooth test function φ with compact support such as $\varphi(T, x, y) = 0$ and $\varphi_0 = \varphi_{t=0}$, the operators :

$$\mathcal{A}(\rho, \mathbf{u}, v; \varphi, dy) = -\int_{0}^{T} \int_{\Omega} \rho \mathbf{u} \partial_{t} \varphi \, dx dy dt + \int_{0}^{T} \int_{\Omega} (2\nu_{1}(t, x, y)\rho D_{x}(\mathbf{u}) - \rho \mathbf{u} \otimes \mathbf{u}) : \nabla_{x} \varphi \, dx dy dt + \int_{0}^{T} \int_{\Omega} r\rho |\mathbf{u}| \mathbf{u} \varphi \, dx dy dt - \int_{0}^{T} \int_{\Omega} \rho \operatorname{div}(\varphi) \, dx dy dt - \int_{0}^{T} \int_{\Omega} \mathbf{u} \partial_{y} (\nu_{2}(t, x, y) \partial_{y} \varphi) \, dx dy dt - \int_{0}^{T} \int_{\Omega} \rho v \mathbf{u} \partial_{y} \varphi \, dx dy dt$$

$$\mathcal{B}(\rho,\mathbf{u},v;\varphi,dy) = \int_0^T \int_{\Omega} \rho v \varphi \, dx dy dt$$

and

$$\mathcal{C}(\rho,\mathbf{u};\varphi,dy) = \int_{\Omega} \rho_{|t=0} \mathbf{u}_{|t=0} \varphi_0 \, dx dy$$

DEFINITION

A weak solution of System 3D-CPEs on $[0,T] \times \Omega$, with BC and IC, is a collection of functions (ρ, \mathbf{u}, v) such as $\rho \in \mathcal{PE}(\mathbf{u}, v; y, \rho_0)$ and the following equality holds for all smooth test function φ with compact support such as $\varphi(T, x, y) = 0$ and $\varphi_0 = \varphi_{t=0}$:

$$\mathcal{A}(\rho,\mathbf{u},v;\varphi,dy) + \mathcal{B}(\rho,\mathbf{u},v;\varphi,dy) = \mathcal{C}(\rho,\mathbf{u};\varphi,dy) + \mathcal{B}(\rho,\mathbf{u},v;\varphi,dy) +$$

M. Ersoy, T. Ngom, M. Sy

Compressible primitive equations : formal derivation and stability of weak solutions. *submitted to NonLinearity*, 2010.

A WEAK SOLUTION

THEOREM ([ENS2010])

Let $(\rho_n, \mathbf{u}_n, v_n)$ be a sequence of weak solutions of System 3D-CPEs, with BC and IC, satisfying an entropy and energy inequality (EEI) such as

$$\rho_n \ge 0, \quad \rho_0^n \to \rho_0 \text{ in } L^1(\Omega), \quad \rho_0^n \mathbf{u}_0^n \to \rho_0 \mathbf{u}_0 \text{ in } L^1(\Omega).$$

Then, up to a subsequence,

- ρ_n converges strongly in $\mathcal{C}^0(0,T;L^{3/2}(\Omega))$,
- $\sqrt{\rho_n}\mathbf{u}_n$ converges strongly in $L^2(0,T;(L^{3/2}(\Omega))^2)$,
- $\rho_n u_n$ converges strongly in $L^1(0,T;(L^1(\Omega))^2)$ for all T>0,
- $(\rho_n, \sqrt{\rho_n} \mathbf{u}_n, \sqrt{\rho_n} v_n)$ converges to a weak solution of System 3D-CPEs,
- (ρ_n, u_n, v_n) satisfies the EEI and converges to a weak solution of 3D-CPEs-BC.

M. Ersoy, T. Ngom, M. Sy

Compressible primitive equations : formal derivation and stability of weak solutions. submitted to NonLinearity, 2010.

Prove first the stability for the IM' with IC and BC',

$$\begin{cases} \partial_t \boldsymbol{\xi} + \operatorname{div}_x \left(\boldsymbol{\xi} \, \mathbf{u}\right) + \partial_z \left(\boldsymbol{\xi} \, w\right) = 0, \\ \partial_t \left(\boldsymbol{\xi} \, \mathbf{u}\right) + \operatorname{div}_x \left(\boldsymbol{\xi} \, \mathbf{u} \otimes \mathbf{u}\right) + \partial_z \left(\boldsymbol{\xi} \, \mathbf{u} \, w\right) + \nabla_x \boldsymbol{\xi} + r \boldsymbol{\xi} |\mathbf{u}| \mathbf{u} = \\ 2\bar{\nu}_1 \operatorname{div}_x \left(\boldsymbol{\xi} D_x(\mathbf{u})\right) + \bar{\nu}_2 \partial_z(\boldsymbol{\xi} \partial_z \mathbf{u}), \\ \partial_z \boldsymbol{\xi} = 0 \end{cases}$$

and by the reverse change of variables "transport" the result to the 3D-CPEs.

Prove first the stability for the IM' with IC and BC',

$$\begin{cases} \partial_t \boldsymbol{\xi} + \operatorname{div}_x \left(\boldsymbol{\xi} \, \mathbf{u}\right) + \partial_z \left(\boldsymbol{\xi} \, w\right) = 0, \\ \partial_t \left(\boldsymbol{\xi} \, \mathbf{u}\right) + \operatorname{div}_x \left(\boldsymbol{\xi} \, \mathbf{u} \otimes \mathbf{u}\right) + \partial_z \left(\boldsymbol{\xi} \, \mathbf{u} \, w\right) + \nabla_x \boldsymbol{\xi} + r \boldsymbol{\xi} |\mathbf{u}| \mathbf{u} = \\ 2\bar{\nu}_1 \operatorname{div}_x \left(\boldsymbol{\xi} D_x(\mathbf{u})\right) + \bar{\nu}_2 \partial_z(\boldsymbol{\xi} \partial_z \mathbf{u}), \\ \partial_z \boldsymbol{\xi} = 0 \end{cases}$$

and by the reverse change of variables "transport" the result to the 3D-CPEs. So,

DEFINITION

A weak solution of System IM' on $[0,T] \times \Omega'$, with BC' and IC, is a collection of functions (ξ, \mathbf{u}, w) , if $\xi \in \mathcal{PE}(\mathbf{u}, w; z, \xi_0)$ and the following equality holds for all smooth test function φ with compact support such as $\varphi(T, x, y) = 0$ and $\varphi_0 = \varphi_{t=0}$:

$$\mathcal{A}(\xi,\mathbf{u},w;\varphi,dz)=\mathcal{C}(\xi,\mathbf{u};\varphi,dz).$$

Prove first the stability for the IM' with IC and BC',

$$\begin{cases} \partial_t \boldsymbol{\xi} + \operatorname{div}_x \left(\boldsymbol{\xi} \, \mathbf{u}\right) + \partial_z \left(\boldsymbol{\xi} \, w\right) = 0, \\ \partial_t \left(\boldsymbol{\xi} \, \mathbf{u}\right) + \operatorname{div}_x \left(\boldsymbol{\xi} \, \mathbf{u} \otimes \mathbf{u}\right) + \partial_z \left(\boldsymbol{\xi} \, \mathbf{u} \, w\right) + \nabla_x \boldsymbol{\xi} + r \boldsymbol{\xi} |\mathbf{u}| \mathbf{u} = \\ 2\bar{\nu}_1 \operatorname{div}_x \left(\boldsymbol{\xi} D_x(\mathbf{u})\right) + \bar{\nu}_2 \partial_z(\boldsymbol{\xi} \partial_z \mathbf{u}), \\ \partial_z \boldsymbol{\xi} = 0 \end{cases}$$

and by the reverse change of variables "transport" the result to the 3D-CPEs. So,

DEFINITION

A weak solution of System IM' on $[0,T] \times \Omega'$, with BC' and IC, is a collection of functions (ξ, \mathbf{u}, w) , if $\xi \in \mathcal{PE}(\mathbf{u}, w; z, \xi_0)$ and the following equality holds for all smooth test function φ with compact support such as $\varphi(T, x, y) = 0$ and $\varphi_0 = \varphi_{t=0}$:

$$\mathcal{A}(\xi,\mathbf{u},w;\varphi,dz)=\mathcal{C}(\xi,\mathbf{u};\varphi,dz).$$

Difficulty : show that under suitable sequence of weak solutions, we can pass to the limit in the non-linear term $\xi \mathbf{u} \otimes \mathbf{u}$: typically $\sqrt{\xi}\mathbf{u}$ requires strong convergence.

THEOREM

Let $(\xi_n, \mathbf{u}_n, w_n)$ be a sequence of weak solutions of the IM' with BC' and IC satisfying an energy and entropy inequality (EEI) such as

$$\xi_n \ge 0, \quad \xi_0^n \to \xi_0 \text{ in } L^1(\Omega'), \quad \xi_0^n \mathbf{u}_0^n \to \xi_0 \mathbf{u}_0 \text{ in } L^1(\Omega').$$

Then, up to a subsequence,

- ξ_n converges strongly in $\mathcal{C}^0(0,T;L^{3/2}(\Omega'))$,
- $\sqrt{\xi_n}\mathbf{u}_n$ converges strongly in $L^2(0,T;(L^{3/2}(\Omega'))^2)$,
- $\xi_n u_n$ converges strongly in $L^1(0,T;(L^1(\Omega'))^2)$ for all T>0,
- $(\xi_n, \sqrt{\xi_n} \mathbf{u}_n, \sqrt{\xi_n} w_n)$ converges to a weak solution of the IM',
- $(\xi_n, \mathbf{u}_n, w_n)$ satisfies the EEI and converges to a weak solution of the IM' with BC'.

The energy inequality :

$$\frac{d}{dt} \int_{\Omega'} \left(\xi \frac{\mathbf{u}^2}{2} + (\xi \ln \xi - \xi + 1) \right) dx dz + \int_{\Omega'} \xi(2\bar{\nu}_1 |D_x(\mathbf{u})|^2 + \bar{\nu}_2 |\partial_z \mathbf{u}|^2) dx dz + r \int_{\Omega'} \xi |\mathbf{u}|^3 dx dz \leqslant 0$$

THEOREM

Let $(\xi_n, \mathbf{u}_n, w_n)$ be a sequence of weak solutions of the IM' with BC' and IC satisfying an energy and entropy inequality (EEI) such as

$$\xi_n \ge 0, \quad \xi_0^n \to \xi_0 \text{ in } L^1(\Omega'), \quad \xi_0^n \mathbf{u}_0^n \to \xi_0 \mathbf{u}_0 \text{ in } L^1(\Omega').$$

Then, up to a subsequence,

- ξ_n converges strongly in $\mathcal{C}^0(0,T;L^{3/2}(\Omega'))$,
- $\sqrt{\xi_n} \mathbf{u}_n$ converges strongly in $L^2(0,T;(L^{3/2}(\Omega'))^2)$,
- $\xi_n u_n$ converges strongly in $L^1(0,T;(L^1(\Omega'))^2)$ for all T>0,
- $(\xi_n, \sqrt{\xi_n} \mathbf{u}_n, \sqrt{\xi_n} w_n)$ converges to a weak solution of the IM',
- $(\xi_n, \mathbf{u}_n, w_n)$ satisfies the EEI and converges to a weak solution of the IM' with BC'.

The entropy inequality :

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int_{\Omega'} \left(\xi |\mathbf{u} + 2\bar{\nu}_1 \nabla_x \ln \xi|^2 + 2(\xi \log \xi - \xi + 1) \right) \, dx dz \\ + \int_{\Omega'} 2\bar{\nu}_1 \xi |\partial_z w|^2 + 2\bar{\nu}_1 \xi |A_x(u)|^2 + \bar{\nu}_2 \xi |\partial_z \mathbf{u}|^2 \, dx dz + \int_{\Omega'} r\xi |\mathbf{u}|^3 + 2\bar{\nu}_1 r |\mathbf{u}| \mathbf{u} \nabla_x \xi \, dx dz \\ + \int_{\Omega'} 8\bar{\nu}_1 |\nabla_x \sqrt{\xi}|^2 \, dx dz = 0. \end{split}$$

To prove the stability result on IM', we proceed as follows :

• we obtain suitable *a priori* bounds on (ξ, \mathbf{u}, w) ,

- we get estimates from the energy inequality,
- **9** we get estimates from the BD-entropy inequality, i.e. : a kind of energy with the muliplier $\mathbf{u} + 2\bar{\nu}_1 \nabla_x \xi$.
- **②** we show the compactness of sequences $(\xi_n, \mathbf{u}_n, w_n)$ in appropriate space function,
 - we show the convergence of the sequence $\sqrt{\xi_n}$,
 - **2** we seek bounds of $\sqrt{\xi_n} \mathbf{u}_n$ and $\sqrt{\xi_n} w_n$,
 - **(a)** we prove the convergence of $\xi_n \underline{\mathbf{u}}_n$,
 - **(**) we prove the convergence of $\sqrt{\xi_n} \mathbf{u}_n$.
- we prove that we can pass to the limit in all terms of the IM',
- We "transport" this result with the reverse change of variable to the 3D-CPEs. □

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

- Prove the existence of weak solutions of the 3D-CPEs
- Generalize to any anisotropic pair of viscosities
- **(3)** Deal with the case of $p = k\rho^{\gamma}$, $\gamma \neq 1$, k = cte (also the case k = k(t, x, y))

OUTLINE

I INTRODUCTION

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes
- 2 MATHEMATICAL RESULTS ON CPES
 - An intermediate model
 - Toward an existence result for the 2D-CPEs
 - Toward a stability result for the 3D-CPEs
 - Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives
- Formal derivation of a SVEs like model
 - A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
 - Hydrodynamic limit, toward a "mixed model"
 - A Viscous Saint-Venant-Exner like model
 - Perspective

The PFS Equation are :

$$\begin{cases} \partial_t(A) + \partial_x(Q) &= 0\\ \\ \partial_t(Q) + \partial_x \left(\frac{Q^2}{A} + p(x, A, E)\right) &= -g A \frac{d}{dx} Z(x) \\ &+ Pr(x, A, E) \\ &- G(x, A, E) \\ &- g K(x, \mathbf{S}) \frac{Q|Q|}{A} \end{cases}$$

with
$$A = \begin{cases} A_{fs} & \text{if FS} \\ A_p & \text{if P} \end{cases}$$

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

PFS equations under vectorial form :

 $\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$

PFS equations under vectorial form :

$$\begin{array}{l} \partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x) \\ \text{with } \mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx \text{ and } \mathcal{S}(t,x) \text{ constant per mesh,} \end{array}$$

PFS equations under vectorial form :

$$\begin{array}{l} \partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x) \\ \text{with } \mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx \text{ and } \mathcal{S}(t,x) \text{ constant per mesh,} \end{array}$$

Cell-centered numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\mathcal{F}_{i+1/2} - \mathcal{F}_{i-1/2} \right) + \Delta t^{n} \mathcal{S}(\mathbf{U}_{i}^{n})$$

where

$$\Delta t^n \mathcal{S}_i^n \approx \int_{t_n}^{t_{n+1}} \int_{m_i} \mathcal{S}(t, x) \, dx \, dt$$

UPWINDED NUMERICAL SCHEME

PFS equations under vectorial form :

$$\begin{array}{l} \partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x) \\ \text{with } \mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx \text{ and } \mathcal{S}(t,x) \text{ constant per mesh,} \end{array}$$

Upwinded numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2} - \widetilde{\mathcal{F}}_{i-1/2} \right)$$

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mbox{Our goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

${\sf Positivity} \ {\sf of} \ A$

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mbox{Our goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mathbf{Our}\ \mathbf{goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

VFRoe solver[BEGVF]

C. Bourdarias, M. Ersoy and S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. International Journal On Finite Volumes, Vol 6(2) 1–47, 2009.

C. Bourdarias, M. Ersoy and S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms. To appear in J. Sci. Comp., 2010.

OUTLINE

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

• Finite Volume method

• Kinetic Formulation and numerical scheme

- Numerical results
- Perspectives

Formal derivation of a SVEs like model

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

PRINCIPLE DENSITY FUNCTION

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

Principle

GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

then we define the Gibbs equilibrium by

.

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$
$$b(t, x) = \sqrt{\frac{p(t, x)}{A(t, x)}}$$

with

Principle

MICRO-MACROSCOPIC RELATIONS

Since

$$\chi(\omega) = \chi(-\omega) \ge 0 \ , \ \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 \ ,$$

 and

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$

then

$$A = \int_{\mathbb{R}} \mathcal{M}(t, x, \xi) d\xi$$
$$Q = \int_{\mathbb{R}} \xi \mathcal{M}(t, x, \xi) d\xi$$
$$\frac{Q^{2}}{A} + \underbrace{A b^{2}}_{p} = \int_{\mathbb{R}} \xi^{2} \mathcal{M}(t, x, \xi) d\xi$$

PRINCIPLE [P02]

The kinetic formulation

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t, x, \xi)$ is a collision kernel satisfying a.e. (t, x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

B. Perthame.

Kinetic formulation of conservation laws. Oxford University Press. Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.

PRINCIPE

The kinetic formulation

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t, x, \xi)$ is a collision kernel satisfying a.e. (t, x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 \ , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

General form of the source terms :

$$\Phi = \underbrace{\frac{d}{dx}Z}_{\text{conservative}} + \underbrace{\mathbf{B} \cdot \frac{d}{dx}\mathbf{W}}_{\text{conservative}} + \underbrace{K\frac{Q|Q|}{A^2}}_{\text{conservative}}$$

with $\mathbf{W} = (Z, S, \cos \theta)$

DISCRETIZATION OF SOURCE TERMS

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

DISCRETIZATION OF SOURCE TERMS

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$ $\Phi(t,x) = 0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$
SIMPLIFICATION OF THE TRANSPORT EQUATION

- $\bullet~\mbox{Recalling that}~A,Q~\mbox{and}~Z,S,\cos\theta~\mbox{constant}$ per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i} \Phi(t,x)=0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} = \mathcal{K}(t, x, \xi)$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$ $\Phi(t,x)=0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0\\ f(t_n, x, \xi) &= \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \frac{A(t_n, x, \xi)}{b(t_n, x, \xi)} \chi\left(\frac{\xi - u(t_n, x, \xi)}{b(t_n, x, \xi)}\right) \end{cases}$$

by neglecting the collision kernel

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_{i}^{n+1}(\xi) = \mathcal{M}_{i}^{n}(\xi) + \xi \frac{\Delta t^{n}}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^{-}(\xi) - \mathcal{M}_{i-\frac{1}{2}}^{+}(\xi) \right)$$

where

$$\mathbf{U}_{i}^{n+1} = \left(\begin{array}{c} A_{i}^{n+1} \\ Q_{i}^{n+1} \end{array}\right) \stackrel{def}{\mathrel{\mathop:}=} \int_{\mathbb{R}} \left(\begin{array}{c} 1 \\ \xi \end{array}\right) \, f_{i}^{n+1}(\xi) \, d\xi$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

or

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2}^{-} - \widetilde{\mathcal{F}}_{i-1/2}^{+} \right)$$

with

$$\widetilde{\mathcal{F}}_{i\pm\frac{1}{2}}^{\pm} = \int_{\mathbb{R}} \xi \begin{pmatrix} 1 \\ \xi \end{pmatrix} \mathcal{M}_{i\pm\frac{1}{2}}^{\pm}(\xi) \, d\xi.$$

INTERPRETATION : POTENTIAL BAREER

positive transmission $\mathcal{M}_{i+1/2}^{-}(\xi) = \qquad \overbrace{\mathbb{1}_{\{\xi > 0\}}}^{-} \widetilde{\mathcal{M}_{i}^{n}(\xi)}$ $+ \mathbb{1}_{\{\xi < 0, \xi^2 - 2g\Delta\Phi_{i+1/2}^n > 0\}} \mathcal{M}_{i+1}^n \left(-\sqrt{\xi^2 - 2g\Delta\Phi_{i+1/2}^n} \right)$ negative transmission $\mathcal{M}_{i+1/2}^{-} \begin{bmatrix} z \\ \mathcal{M}_{i+1/2}^{+} \end{bmatrix}$ Z_{i+1} $\Delta \Phi^n_{i+1/2}$ barrière de potentiel x $x_{i+1/2}$ $x_{i-1/2}$ $x_{i+3/2}$ $\mathcal{M}^n_{i\perp 1}$ \mathcal{M}^n_i

INTERPRETATION : POTENTIAL BAREER

INTERPRETATION : POTENTIAL BAREER

 $\Delta \Phi_{i+1/2}^n$ may be interpreted as a time-dependant slope!

INTERPRETATION : PENTE DYNAMIQUE \implies décentrement de la friction

5 october 2010 37 / 59

UPWINDING OF THE SOURCE TERMS

• conservative $\partial_x W$:

$$\mathbf{W}_{i+1} - \mathbf{W}_i$$

• non-conservative $\mathbf{B}\partial_x \mathbf{W}$:

$$\overline{\mathbf{B}}(\mathbf{W}_{i+1} - \mathbf{W}_i)$$

where

$$\overline{\mathbf{B}} = \int_0^1 \mathbf{B}(s, \phi(s, \mathbf{W}_i, \mathbf{W}_{i+1})) \; ds$$

for the « straight lines paths », i.e.

$$\phi(s, \mathbf{W}_i, \mathbf{W}_{i+1}) = s\mathbf{W}_{i+1} + (1-s)\mathbf{W}_i, \, s \in [0, 1]$$

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products. J. Math. Pures Appl., Vol 74(6) 483-548, 1995.

NUMERICAL PROPERTIES

With [ABP00]

$$\chi(\omega) = \frac{1}{2\sqrt{3}}\mathbbm{1}_{[-\sqrt{3},\sqrt{3}]}(\omega)$$

we have :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Natural treatment of drying and flooding area.

for example

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

NUMERICAL PROPERTIES

With [ABP00]

$$\chi(\omega) = \frac{1}{2\sqrt{3}}\mathbbm{1}_{[-\sqrt{3},\sqrt{3}]}(\omega)$$

we have :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Natural treatment of drying and flooding area.
- \longrightarrow non well-balanced scheme with such a χ
- \longrightarrow but easy computation of the numerical fluxes

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

UPWINDING OF THE FRICTION

Décentré $K_s = 1/100$

Décentré $K_s = 1/10$

THE « DOUBLE DAM BREAK »

- horizontal pipe : L = 100 m, R = 1 m.
- initial state : $Q = 0 \ m^3/s$, $y = 1.8 \ m$.
- Symmetric boundary conditions :

QUALITATIVE ANALYSIS OF CONVERGENCE

 $\bullet\,$ upstream piezometric head $104\;m$

• downstream piezometric head :

CONVERGENCE

During unsteady flows $t = 100 \ s$

Erreur L2 : Ligne piezometrique au temps t = 100 s

CONVERGENCE

Stationary $t = 500 \ s$

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

- ${\small \bigcirc}$ Study of the convergence with respect to the χ function
- Study of the convergence with respect to the paths used to define the non-conservative product

INTRODUCTION

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

3 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

A SAINT-VENANT-EXNER MODEL Saint-Venant equations for the hydrodynamic part :

۲

$$\begin{cases} \partial_t h + \operatorname{div}(q) = 0, \\ \partial_t q + \operatorname{div}\left(\frac{q \otimes q}{h}\right) + \nabla\left(g\frac{h^2}{2}\right) = -gh\nabla t \\ + \end{cases}$$

a bedload transport equation for the morphodynamic part :

$$\partial_t \mathbf{b} + \xi \mathsf{div}(q_{\mathbf{b}}(h,q)) = 0$$

A SAINT-VENANT-EXNER MODEL Saint-Venant equations for the hydrodynamic part :

$$\begin{cases} \partial_t h + \operatorname{div}(q) = 0, \\ \partial_t q + \operatorname{div}\left(\frac{q \otimes q}{h}\right) + \nabla\left(g\frac{h^2}{2}\right) = -gh\nabla t \\ + \end{cases}$$

a bedload transport equation for the morphodynamic part :

$$\partial_t \mathbf{b} + \xi \operatorname{div}(q_{\mathbf{b}}(h,q)) = 0$$

with

- h : water height,
- q = hu : water discharge,

4

- q_b : sediment discharge (empirical law : [MPM48], [G81]),
- $\xi = 1/(1-\psi)$: porosity coefficient.

E. Meyer-Peter and R. Müller,

A. I. Grass

Formula for bed-load transport, Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., 39–64, 1948.

Sediment transport by waves and currents, SERC London Cent. Mar. Technol. Report No. FL29, 1981. A SAINT-VENANT-EXNER MODEL Saint-Venant equations for the hydrodynamic part :

$$\begin{cases} \partial_t h + \operatorname{div}(q) = 0, \\ \partial_t q + \operatorname{div}\left(\frac{q \otimes q}{h}\right) + \nabla\left(g\frac{h^2}{2}\right) = -gh\nabla t \\ + \end{cases}$$

a bedload transport equation for the morphodynamic part :

$$\partial_t \mathbf{b} + \xi \operatorname{div}(q_{\mathbf{b}}(h,q)) = 0$$

with

- h : water height,
- q = hu : water discharge,

4

- q_b : sediment discharge (empirical law : [MPM48], [G81]),
- $\xi = 1/(1 \psi)$: porosity coefficient.

Our goal : derive formally this type of equation from a non classical way

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

THE MORPHODYNAMIC PART

is governed by the Vlasov equation :

$$\partial_t f + {\rm div}_x(vf) + {\rm div}_v((F+\vec{g})f) = r\Delta_v f$$

where :

- f(t, x, v) density function of particles
- $\vec{g} = (0, 0, -g)^t$,

•
$$F = \frac{6\pi\mu a}{M}(u-v)$$
 Stokes drag force with

- a radius of a particle (assumed constant)
- $M = \rho_p \frac{4}{3} \pi a^3$ mass of a particle (assumed constant) with ρ_p density of a particle (assumed constant)
- \bullet *u* fluid velocity
- μ characteristic viscosity of the fluid (assumed constant)
- $r\Delta_v f$ brownian motion of particles where r is the velocity diffusivity

THE HYDRODYNAMIC PART

is governed by the Compressible Navier-Stokes equations

$$\begin{cases} \partial_t \rho_w + \operatorname{div}(\rho_w u) = 0,, \\ \partial_t(\rho_w u) + \operatorname{div}(\rho_w u \otimes u) = \operatorname{div}\sigma(\rho_w, u) + \mathfrak{F}, \\ p = p(t, x) \end{cases}$$

where $\sigma(\rho_w, u)$ is the anisotropic total stress tensor :

$$-pI_3 + 2\Sigma(\rho_w).D(u) + \lambda(\rho_w)\operatorname{div}(u)I_3$$

The matrix $\Sigma(\rho_w)$ is anisotropic

$$\left(egin{array}{cccc} \mu_1(
ho_w) & \mu_1(
ho_w) & \mu_2(
ho_w) \ \mu_1(
ho_w) & \mu_1(
ho_w) & \mu_2(
ho_w) \ \mu_3(
ho_w) & \mu_3(
ho_w) & \mu_3(
ho_w) \end{array}
ight)$$

with $\mu_i \neq \mu_j$ for $i \neq j$ and i, j = 1, 2, 3.

(1)

THE COUPLING

As the medium may be heterogeneous, we propose the following inhomogeneous pressure law as :

$$p(t,x) = k(t,x_1,x_2)\rho(t,x)^2$$
 with $k(t,x_1,x_2) = \frac{gh(t,x_1,x_2)}{4\rho_f}$

where $\rho := \rho_w + \rho_s$ is called mixed density We set ρ_s , the macroscopic density of sediments :

$$\rho_s = \int_{\mathbb{R}^3} f \, dv$$

The last term \mathfrak{F} on the right hand side of CNEs is the effect of the particles motion on the fluid obtained by summing the contribution of all particles :

$$\mathfrak{F} = -\int_{\mathbb{R}^3} Ffdv + \rho_w \vec{g} = \frac{9\mu}{2a^2\rho_p} \int_{\mathbb{R}^3} (v-u)fdv + \rho_w \vec{g}.$$

BOUNDARY CONDITIONS

- For the hydrodynamic part :
 - on the free surface : a normal stress continuity condition
 - at the movable bottom : a wall-law condition and continuity of the velocity at the interface $x_3 = b(t, \mathbf{x})$

BOUNDARY CONDITIONS

- For the hydrodynamic part :
 - on the free surface : a normal stress continuity condition
 - ▶ at the movable bottom : a wall-law condition and continuity of the velocity at the interface $x_3 = b(t, \mathbf{x})$
- For the morphodynamic part :
 - kinetic boundary conditions? (work in progress) replaced by the equation :

$$S = \partial_t b + \sqrt{1 + |\nabla_{\mathbf{x}} b|^2} u_{|x_3 = b} \cdot n_b$$

and $S-\sqrt{1+|\nabla_{\bf x}b|^2}u_{|x_3=b}\cdot n_b$ takes into account incoming and outgoing particles.

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

Rescaling for both models, "set $\varepsilon = 0$ "

Let

- $\sqrt{\theta}$ be the fluctuation of kinetic velocity,
- $\bullet \ \mathfrak{U}$ be a characteristic vertical velocity of the fluid,
- \mathfrak{T} be a characteristic time,
- $\bullet \ \tau$ be a relaxation time,
- \mathfrak{L} be a characteristic vertical height,

and

$$B = \frac{\sqrt{\theta}}{\mathfrak{U}}, \quad C = \frac{\mathfrak{T}}{\tau}, \quad F = \frac{g\mathfrak{T}}{\sqrt{\theta}}, \quad E = \frac{2}{9} \left(\frac{a}{\mathfrak{L}}\right)^2 \frac{\rho_p}{\rho_f} C$$

with the following asymptotic regime :

$$B = O(1), \quad C = \frac{1}{\varepsilon}, \quad F = O(1), \quad E = O(1).$$

T. Goudon and P-E. Jabin and A. Vasseur,

Hydrodynamic limit for the Vlasov-Navier-Stokes Equations. I. Light particles regime, Indiana Univ. Math. J., 53(6) :1495–1515,2004.

THE "MIXED" MODEL :

Formally, $\varepsilon \to 0$, we obtain :

• Takes the two first moments of the the hydrodynamic limit of Vlasov equation +

• Rescaled Navier Stokes Equation

$$\begin{split} &\partial_t \rho + \operatorname{div}(\rho u) = 0, \\ &\partial_t(\rho \mathbf{u}) + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u} \otimes \mathbf{u}) + \partial_{x_3}(\rho \mathbf{u}v) + \nabla_{\mathbf{x}} P \\ &= \operatorname{div}_{\mathbf{x}}(\mu_1(\rho) D_{\mathbf{x}}(\mathbf{u})) + \partial_{x_3} \left(\mu_2(\rho)(\partial_{x_3}\mathbf{u} + \nabla_{\mathbf{x}} u_3) \right) \\ &+ \nabla_x(\lambda(\rho) \operatorname{div}(u)) \\ &\partial_t(\rho u_3) + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u} u_3) + \partial_{x_3}(\rho u_3^2) + \partial_{x_3} P \\ &= \operatorname{div}_{\mathbf{x}} \left(\mu_2(\rho)(\partial_{x_3}\mathbf{u} + \nabla_{\mathbf{x}} u_3) \right) + \partial_{x_3}(\mu_3(\rho) \partial_{x_3} u_3) \\ &+ \partial_{x_3}(\lambda(\rho) \operatorname{div}(u)) \end{split}$$

where

$$\boldsymbol{P} = \boldsymbol{p} + \theta \rho_s$$

and

$$\rho = \rho_w + \rho_s.$$

M. Ersoy (BCAM)

PhD Works

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective

Applying an asymptotic analysis to the mixed model : we finally obtain :

$$\begin{split} \partial_t(h\bar{u}) + \operatorname{div}(h\bar{u}\otimes\bar{u}) + \frac{1}{3}F_r^2 \nabla h^2 &= -\frac{h}{F_r^2}\nabla b + \operatorname{div}(hD(\bar{u})) - \left(\begin{array}{c} \mathfrak{K}_1(u)\\ \mathfrak{K}_2(u) \end{array}\right)\\ S &= \partial_t b + \sqrt{1 + |\nabla_{\mathbf{x}}b|^2} u_{|x_3=b} \cdot n_b \end{split}$$

- Atmosphere dynamic
- Sedimentation
- Unsteady mixed flows in closed water pipes

2 MATHEMATICAL RESULTS ON CPES

- An intermediate model
- Toward an existence result for the 2D-CPEs
- Toward a stability result for the 3D-CPEs
- Perspectives

8 An upwinded kinetic scheme for the PFS equations

- Finite Volume method
- Kinetic Formulation and numerical scheme
- Numerical results
- Perspectives

- A nice coupling : Vlasov and Anisotropic Navier-Stokes equations
- Hydrodynamic limit, toward a "mixed model"
- A Viscous Saint-Venant-Exner like model
- Perspective
- find appropriate kinematic boundary condition
- generalize this procedure to a real mixed model
- justify such a formal derivation mathematically

Thank you for

attention