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Hydrostatic approximation and averaged
equations

Navier Stokes equations (NSEs) or Euler equations (EEs) on
Ω = {(x, y) ∈ R3;H � L} ”thin layer domain”

↓ [Ped]

Hydrostatic approximation (asymptotic analysis with ε = H/L = W/V � 1 and
rescaling x̃ = x/L, ỹ = y/H, ũ = u/U w̃ = w/W )−→ Primitive equations (PEs)

↓ [GP]

Averaged PEs with respect to depth or altitude y −→ Saint-Venant Equations
(SVEs)

J. Pedlowski

Geophysical Fluid Dynamics.
2nd Edition, Springer-Verlag, New-York, 1987.

J.-F Gerbeau and B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1), 2001.
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Atmosphere dynamic

Dynamic :
I Compressible fluid
I Small vertical extension with respect to horizontal
I Principally horizontal movements
I Density highly stratified

Modeling : Compressible Navier-Stokes equations

Hydrostatic approximation −→ compressible primitive equations (CPEs)

∂tρ+ divx(ρu) + ∂y(ρv) = 0
∂t(ρu) + divx(ρu⊗ u) + ∂y(ρuv) +∇xp = divx(σx) + f

∂t(ρv) + divx(ρuv) + ∂y(ρv2) +

∂yp = − ρg

+ divy(σy)

p = c2 ρ
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Sedimentation
Sediment : produced by erosion process

Dynamic :
I Incompressible fluid
I Small vertical extension with respect to horizontal
I Principally horizontal movements

I variable bottom, example : bed river
Modeling : Saint-Venant-Exner equations

I hydrodynamic part −→ Saint-Venant equations (averaged IPEs)


∂th+ div(q) = 0,

∂tq + div
(q ⊗ q

h

)
+∇

(
g
h2

2

)
= −gh∇b

I morphodynamic part −→ Exner equations

∂tb+ ξdiv(qb(h, q)) = 0

I
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Unsteady mixed flows in closed water pipes
mixed : Free surface and pressurized flows

I Free Surface area (FS)
Section non filled and incompressible flow. . .

I Pressurized area (P)
Section completely filled and compressible flow. . .

Dynamic :
I Incompressible or compressible fluid following the area
I Small vertical extension with respect to horizontal
I Principally horizontal movements : unidirectional
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Unsteady mixed flows in closed water pipes
Dynamic :

I Incompressible or compressible fluid following the area
I Small vertical extension with respect to horizontal
I Principally horizontal movements : unidirectional

Modeling : A nice coupling of Saint-Venant like equations
I free surface part −→ usual Saint-Venant equations


∂tAfs + ∂xQfs = 0,

∂tQfs + ∂x

(
Q2

fs

Afs
+ pfs(x,Afs)

)
=−gAfs

d Z

dx
+ Prfs(x,Afs)−G(x,Afs)

−K(x,Afs)
Qfs|Qfs|
Afs

I pressurized part −→ Saint-Venant like equations


∂tAp + ∂xQp = 0,

∂tQp + ∂x

(
Q2

p

Ap
+ pp(x,Ap)

)
= −gAp

d Z

dx
+ Prp(x,Ap)−G(x,Ap)

−K(x,Ap)
Qp|Qp|
Ap
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Unsteady mixed flows in closed water pipes
Dynamic :

I Incompressible or compressible fluid following the area
I Small vertical extension with respect to horizontal
I Principally horizontal movements : unidirectional

Modeling : A nice coupling : The PFS model
I from the coupling :

A =

{
Afs if FS
Ap if P

: the mixed variable

Q = Au : the discharge

↓

∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ p(x,A,E)

)
= −g A d

dx
Z(x)

+Pr(x,A,E)
−G(x,A,E)

−g K(x,S)
Q|Q|
A

where E is a state indicator and appropriate p and Pr
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Energy estimates ?
CPEs :

∂tρ+ divx (ρu) + ∂y (ρv) = 0,
∂t (ρu) + divx (ρu⊗ u) + ∂y (ρ vu) +∇xp(ρ) = 2divx (ν1Dx(u)) + ∂y (ν2∂yu) ,
∂yp(ρ) = −gρ
p(ρ) = c2ρ

Problem : How to obtain energy estimates since : the sign of∫
Ω

ρgv dxdy

d

dt

∫
Ω

ρ|u|2+ρ ln ρ−ρ+1 dxdy+

∫
Ω

2ν1|Dx(u)|2+ν2|∂2
yu| dxdy+

∫
Ω

ρgv dxdy = 0

is unknown !

Consequently standard techniques
fails
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The key point : the hydrostatic equation

Using the hydrostatic equation, we obviously have :

ρ(t, x, y) = ξ(t, x)e−g/c
2y

for some function ξ(t, x) : ρ is stratified

Problem : find equations satisfied by ξ
An intermediate model :

∂tξ + divx(ξu) + ξ∂zw = 0,
∂t(ξu) + divx (ξ u⊗ u) + ∂z (ξ wu) + c2∇x(ξ) = 2divx (ν1Dx(u)) + ∂z (ν2∂zu) ,
∂zξ = 0

d

dt

∫
Ω

ξ|u|2 + ξ ln ξ − ξ + 1 dxdz +

∫
Ω

2ν1|Dx(u)|2 + ν2|∂2
zu| dxdz = 0
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ξe−g/c

2y u
)
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ξe−g/c

2yv
)
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∂t

(
ξe−g/c

2y u
)

+ divx
(
ξe−g/c

2y u⊗ u
)
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2y vu
)
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The 2D-CPEs

We set {
ν1(t, x, y) = ν0e

−g/c2y for some given positive constant ν0,

ν2(t, x, y) = ν1e
g/c2y for some given positive constant ν1.

the boundary conditions (BC)
u|x=0 = u|x=l = 0,
v|y=0 = v|y=h = 0,
∂yu|y=0 = ∂yu|y=h = 0

and the initial conditions (IC) :{
u|t=0 = u0(x, y),

ρ|t=0 = ξ0(x)e−g/c
2y

where ξ0 :
0 < m 6 ξ0 6M <∞.
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Theorem ([EN2010])
Suppose that initial data (ξ0, u0) have the properties :

(ξ0, u0) ∈W 1,2(Ω), u0|x=0 = u0|x=l = 0.

Then ρ(t, x, y) is a bounded strictly positive function and the 2D-CPEs with BC has a
weak solution in the following sense : a weak solution of 2D-CPEs with BC is a collection
(ρ, u, v) of functions such that ρ > 0 and

ρ ∈ L∞(0, T ;W 1,2(Ω)), ∂tρ ∈ L2(0, T ;L2(Ω)),

u ∈ L2(0, T ;W 2,2(Ω)) ∩W 1,2(0, T ;L2(Ω)), v ∈ L2(0, T ;L2(Ω))

which satisfies the 2D-CPEs in the distribution sense ; in particular, the integral identity
holds for all φ|t=T = 0 with compact support :∫ T

0

∫
Ω

ρu∂tφ+ ρu2∂xφ+ ρuv∂zφ+ ρ∂xφ+ ρvφ dxdydt

= −
∫ T

0

∫
Ω

ν1∂xu∂xφ+ ν2∂yu∂yφdxdydt+

∫
Ω

u0ρ0φ|t=0 dxdy

M. Ersoy and T. Ngom

Existence of a global weak solution to one model of Compressible Primitive Equations.
submitted to Applied Mathematics Letters, 2010.
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the proof
The intermediate model (IM) is exactly the model studied by Gatapov et al
[GK05], derived from Equations 2D-CPEs by neglecting some terms, for which
they provide the following global existence result :

Theorem (B. Gatapov and A.V. Kazhikhov 2005)

Suppose that initial data (ξ0, u0) have the properties :

(ξ0, u0) ∈W 1,2(Ω), u0|x=0 = u0|x=1 = 0.

Then ξ(t, x) is a bounded strictly positive function and the IM has a weak solution
in the following sense : a weak solution of the IM satisfying the BC is a collection
(ξ, u, w) of functions such that ξ > 0 and

ξ ∈ L∞(0, T ;W 1,2(0, 1)), ∂tξ ∈ L2(0, T ;L2(0, 1)),

u ∈ L2(0, T ;W 2,2(Ω)) ∩W 1,2(0, T ;L2(Ω)), w ∈ L2(0, T ;L2(Ω))

which satisfy the IM in the distribution sense.

Finally, all estimates on u remain true. �

B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics.
Sibirsk. Mat. Zh., pages 1011 :1020–722, 2005.
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the proof
By the simple change of variables z = 1− e−y in the integrals, we get :

‖ ρ ‖L2(Ω)= α ‖ ξ ‖L2(Ω),
‖ ∇xρ ‖L2(Ω)= α ‖ ∇xξ ‖L2(Ω),
‖ ∂yρ ‖L2(Ω)= α ‖ ξ ‖L2(Ω)

where α =

∫ 1−e−1

0

(1− z) dz < +∞. We deduce then,

‖ ρ ‖W 1,2(Ω)= α ‖ ξ ‖W 1,2(Ω)

which provides

ρ ∈ L∞(0, T ;W 1,2(Ω)) and ∂tρ ∈ L2(0, T ;L2(Ω)).

v ∈ L2(0, T ;L2(Ω)) since the inequality holds :

‖ v ‖L2(Ω) =

∫ 1

0

∫ 1

0

|v(t, x, y)|2 dy dx

=

∫ 1

0

∫ 1−e−1

0

(
1

1− z

)3

|w(t, x, z)|2 dz dx

< e3 ‖ w ‖L2(Ω) .

Finally, all estimates on u remain true. �

B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics.
Sibirsk. Mat. Zh., pages 1011 :1020–722, 2005.
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The 3D-CPEs

We set
ν1(t, x, y) = ν̄1ρ(t, x, y) and ν2 = ν̄2ρ(t, x, y)e2y.

for some positive constant ν̄1 and ν̄2.
We consider the IC and BC’ where we prescribe periodic conditions on the spatiale
domain with respect to x.
We define the set of function ρ ∈ PE(u, v; y, ρ0) such that

ρ ∈ L∞(0, T ;L3(Ω)),
√
ρ ∈ L∞(0, T ;H1(Ω)),√

ρu ∈ L2(0, T ; (L2(Ω))2),
√
ρv ∈ L∞(0, T ;L2(Ω)),√

ρDx(u) ∈ L2(0, T ; (L2(Ω))2×2),
√
ρ∂yv ∈ L2(0, T ;L2(Ω)),

∇√ρ ∈ L2(0, T ; (L2(Ω))3)

with ρ > 0 and where (ρ,
√
ρu,
√
ρv) satisfies :{

∂tρ+ divx(
√
ρ
√
ρu) + ∂y(

√
ρ
√
ρv) = 0,

ρt=0 = ρ0.
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The 3D-CPEs
We define, for any smooth test function ϕ with compact support such as
ϕ(T, x, y) = 0 and ϕ0 = ϕt=0, the operators :

A(ρ,u, v;ϕ, dy) = −
∫ T

0

∫
Ω

ρu∂tϕdxdydt

+

∫ T

0

∫
Ω

(2ν1(t, x, y)ρDx(u)− ρu⊗ u) : ∇xϕdxdydt

+

∫ T

0

∫
Ω

rρ|u|uϕdxdydt−
∫ T

0

∫
Ω

ρdiv(ϕ) dxdydt

−
∫ T

0

∫
Ω

u∂y(ν2(t, x, y)∂yϕ) dxdydt

−
∫ T

0

∫
Ω

ρvu∂yϕdxdydt

B(ρ,u, v;ϕ, dy) =

∫ T

0

∫
Ω

ρvϕ dxdydt

and

C(ρ,u;ϕ, dy) =

∫
Ω

ρ|t=0u|t=0ϕ0 dxdy
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A weak solution

Definition

A weak solution of System 3D-CPEs on [0, T ]×Ω, with BC and IC, is a collection
of functions (ρ,u, v) such as ρ ∈ PE(u, v; y, ρ0) and the following equality holds
for all smooth test function ϕ with compact support such as ϕ(T, x, y) = 0 and
ϕ0 = ϕt=0 :

A(ρ,u, v;ϕ, dy) + B(ρ,u, v;ϕ, dy) = C(ρ,u;ϕ, dy) .

M. Ersoy, T. Ngom, M. Sy

Compressible primitive equations : formal derivation and stability of weak solutions.
submitted to NonLinearity, 2010.
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A weak solution

Theorem ([ENS2010])
Let (ρn,un, vn) be a sequence of weak solutions of System 3D-CPEs, with BC
and IC, satisfying an entropy and energy inequality (EEI) such as

ρn > 0, ρn0 → ρ0 in L1(Ω), ρn0u
n
0 → ρ0u0 in L1(Ω).

Then, up to a subsequence,

ρn converges strongly in C0(0, T ;L3/2(Ω)),
√
ρnun converges strongly in L2(0, T ; (L3/2(Ω))2),

ρnun converges strongly in L1(0, T ; (L1(Ω))2) for all T > 0,

(ρn,
√
ρnun,

√
ρnvn) converges to a weak solution of System 3D-CPEs,

(ρn,un, vn) satisfies the EEI and converges to a weak solution of
3D-CPEs-BC.

M. Ersoy, T. Ngom, M. Sy

Compressible primitive equations : formal derivation and stability of weak solutions.
submitted to NonLinearity, 2010.
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Sketch of the proof-step 1

Prove first the stability for the IM’ with IC and BC’,
∂tξ + divx (ξ u) + ∂z (ξ w) = 0,
∂t (ξ u) + divx (ξ u⊗ u) + ∂z (ξ uw) +∇xξ + rξ|u|u =

2ν̄1divx (ξDx(u)) + ν̄2∂z(ξ∂zu),
∂zξ = 0

and by the reverse change of variables “transport” the result to the 3D-CPEs.

So,

Definition

A weak solution of System IM’ on [0, T ]× Ω
′
, with BC’ and IC, is a collection of

functions (ξ,u, w), if ξ ∈ PE(u, w; z, ξ0) and the following equality holds for all
smooth test function ϕ with compact support such as ϕ(T, x, y) = 0 and
ϕ0 = ϕt=0 :

A(ξ,u, w;ϕ, dz) = C(ξ,u;ϕ, dz).

Difficulty : show that under suitable sequence of weak solutions, we can pass to the
limit in the non-linear term ξ u⊗ u : typically

√
ξu requires strong convergence.
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Theorem
Let (ξn, un, wn) be a sequence of weak solutions of the IM’ with BC’ and IC satisfying
an energy and entropy inequality (EEI) such as

ξn > 0, ξn0 → ξ0 in L1(Ω
′
), ξn0 u

n
0 → ξ0u0 in L1(Ω

′
).

Then, up to a subsequence,

ξn converges strongly in C0(0, T ;L3/2(Ω
′
)),√

ξnun converges strongly in L2(0, T ; (L3/2(Ω
′
))2),

ξnun converges strongly in L1(0, T ; (L1(Ω
′
))2) for all T > 0,

(ξn,
√
ξnun,

√
ξnwn) converges to a weak solution of the IM’,

(ξn, un, wn) satisfies the EEI and converges to a weak solution of the IM’ with BC’.

The energy inequality :

d

dt

∫
Ω
′

(
ξ
u2

2
+ (ξ ln ξ − ξ + 1)

)
dxdz +

∫
Ω
′
ξ(2ν̄1|Dx(u)|2 + ν̄2|∂zu|2) dxdz

+r

∫
Ω
′
ξ|u|3 dxdz 6 0
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Theorem
Let (ξn, un, wn) be a sequence of weak solutions of the IM’ with BC’ and IC satisfying
an energy and entropy inequality (EEI) such as

ξn > 0, ξn0 → ξ0 in L1(Ω
′
), ξn0 u

n
0 → ξ0u0 in L1(Ω

′
).

Then, up to a subsequence,

ξn converges strongly in C0(0, T ;L3/2(Ω
′
)),√

ξnun converges strongly in L2(0, T ; (L3/2(Ω
′
))2),

ξnun converges strongly in L1(0, T ; (L1(Ω
′
))2) for all T > 0,

(ξn,
√
ξnun,

√
ξnwn) converges to a weak solution of the IM’,

(ξn, un, wn) satisfies the EEI and converges to a weak solution of the IM’ with BC’.

The entropy inequality :

1

2

d

dt

∫
Ω
′

(
ξ|u + 2ν̄1∇x ln ξ|2 + 2(ξ log ξ − ξ + 1)

)
dxdz

+

∫
Ω
′

2ν̄1ξ|∂zw|2 + 2ν̄1ξ|Ax(u)|2 + ν̄2ξ|∂zu|2 dxdz +

∫
Ω
′
rξ|u|3 + 2ν̄1r|u|u∇xξ dxdz

+

∫
Ω
′

8ν̄1|∇x

√
ξ|2 dxdz = 0.

M. Ersoy (BCAM) PhD Works 15 october 2010 23 / 59



Sketch of the proof-step 2

To prove the stability result on IM’, we proceed as follows :
1 we obtain suitable a priori bounds on (ξ,u, w),

1 we get estimates from the energy inequality,
2 we get estimates from the BD-entropy inequality, i.e. : a kind of energy with

the muliplier u + 2ν̄1∇xξ.

2 we show the compactness of sequences (ξn,un, wn) in appropriate space
function,

1 we show the convergence of the sequence
√
ξn,

2 we seek bounds of
√
ξnun and

√
ξnwn,

3 we prove the convergence of ξnun,
4 we prove the convergence of

√
ξnun.

3 we prove that we can pass to the limit in all terms of the IM’,

4 We “transport” this result with the reverse change of variable to the
3D-CPEs. �
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1 Prove the existence of weak solutions of the 3D-CPEs

2 Generalize to any anisotropic pair of viscosities

3 Deal with the case of p = kργ , γ 6= 1, k = cte (also the case k = k(t, x, y))
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The PFS Equation are :

∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ p(x,A,E)

)
= −g A d

dx
Z(x)

+Pr(x,A,E)
−G(x,A,E)

−g K(x,S)
Q|Q|
A

with A =

{
Afs if FS
Ap if P
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Finite Volume (VF) numerical scheme of order 1

Cell-centered numerical scheme

PFS equations under vectorial form :

∂tU(t, x) + ∂xF (x,U) = S(t, x)
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Finite Volume (VF) numerical scheme of order 1

Cell-centered numerical scheme

PFS equations under vectorial form :

∂tU(t, x) + ∂xF (x,U) = S(t, x)

with Uni
cte per mesh
≈ 1

∆x

∫
mi

U(tn, x) dx and S(t, x) constant per mesh,
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Finite Volume (VF) numerical scheme of order 1

Cell-centered numerical scheme

PFS equations under vectorial form :

∂tU(t, x) + ∂xF (x,U) = S(t, x)

with Uni
cte per mesh
≈ 1

∆x

∫
mi

U(tn, x) dx and S(t, x) constant per mesh,

Cell-centered numerical scheme :

Un+1
i = Uni −

∆tn

∆x

(
Fi+1/2 −Fi−1/2

)
+ ∆tnS(Uni )

where

∆tnSni ≈
∫ tn+1

tn

∫
mi

S(t, x) dx dt
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Finite Volume (VF) numerical scheme of order 1

Upwinded numerical scheme

PFS equations under vectorial form :

∂tU(t, x) + ∂xF (x,U) = S(t, x)

with Uni
cte per mesh
≈ 1

∆x

∫
mi

U(tn, x) dx and S(t, x) constant per mesh,

Upwinded numerical scheme :

Un+1
i = Uni −

∆tn

∆x

(
F̃i+1/2 − F̃i−1/2

)
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Choice of the numerical fluxes

Our goal : define Fi+1/2 in order to preserve continuous properties of the
PFS-model

Positivity of A ,

conservativity of A, discrete equilibrium, discrete entropy inequality

Our choice

VFRoe solver[BEGVF]

Kinetic solver[BEG10]

C. Bourdarias, M. Ersoy and S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme.
International Journal On Finite Volumes , Vol 6(2) 1–47, 2009.

C. Bourdarias, M. Ersoy and S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms.
To appear in J. Sci. Comp., 2010.
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Principle
Density function

We introduce

χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,
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Principle
Gibbs Equilibrium or Maxwellian

We introduce

χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,

then we define the Gibbs equilibrium by

M(t, x, ξ) =
A(t, x)

b(t, x)
χ

(
ξ − u(t, x)

b(t, x)

)
with

b(t, x) =

√
p(t, x)

A(t, x)
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Principle
micro-macroscopic relations

Since

χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,

and

M(t, x, ξ) =
A(t, x)

b(t, x)
χ

(
ξ − u(t, x)

b(t, x)

)
then

A =

∫
R
M(t, x, ξ) dξ

Q =

∫
R
ξM(t, x, ξ) dξ

Q2

A
+Ab2︸︷︷︸

p

=

∫
R
ξ2M(t, x, ξ) dξ
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Principle [P02]
The kinetic formulation

(A,Q) is solution of the PFS system if and only if M satisfy the transport
equation :

∂tM+ ξ · ∂xM− gΦ ∂ξM = K(t, x, ξ)

where K(t, x, ξ) is a collision kernel satisfying a.e. (t, x)∫
R
K dξ = 0 ,

∫
R
ξKd ξ = 0

and Φ are the source terms.

B. Perthame.

Kinetic formulation of conservation laws.
Oxford University Press.
Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.
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Principe
The kinetic formulation

(A,Q) is solution of the PFS system if and only if M satisfy the transport
equation :

∂tM+ ξ · ∂xM− gΦ ∂ξM = K(t, x, ξ)

where K(t, x, ξ) is a collision kernel satisfying a.e. (t, x)∫
R
K dξ = 0 ,

∫
R
ξKd ξ = 0

and Φ are the source terms.

General form of the source terms :

Φ =

conservative︷ ︸︸ ︷
d

dx
Z +

non conservative︷ ︸︸ ︷
B · d

dx
W +

friction︷ ︸︸ ︷
K
Q|Q|
A2

with W = (Z, S, cos θ)
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Discretization of source terms

Recalling that A,Q and Z, S, cos θ constant per mesh

forgetting the friction : « splitting ». . .

Then ∀(t, x) ∈ [tn, tn+1[× ◦
mi

Φ(t, x) = 0

since

Φ =
d

dx
Z + B · d

dx
W

M. Ersoy (BCAM) PhD Works 15 october 2010 35 / 59



Discretization of source terms

Recalling that A,Q and Z, S, cos θ constant per mesh

forgetting the friction : « splitting ». . .

Then ∀(t, x) ∈ [tn, tn+1[× ◦
mi

Φ(t, x) = 0

since

Φ =
d

dx
Z + B · d

dx
W

M. Ersoy (BCAM) PhD Works 15 october 2010 35 / 59



Simplification of the transport equation

Recalling that A,Q and Z, S, cos θ constant per mesh

forgetting the friction : « splitting ». . .
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mi
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dx
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Simplification of the transport equation

Recalling that A,Q and Z, S, cos θ constant per mesh

forgetting the friction : « splitting ». . .

Then ∀(t, x) ∈ [tn, tn+1[× ◦
mi

Φ(t, x) = 0

since

Φ =
d

dx
Z + B · d

dx
W

=⇒  ∂tf + ξ · ∂xf = 0

f(tn, x, ξ) = M(tn, x, ξ)
def
:=
A(tn, x, ξ)

b(tn, x, ξ)
χ

(
ξ − u(tn, x, ξ)

b(tn, x, ξ)

)
by neglecting the collision kernel
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Discretization of source terms

On [tn, tn+1[×mi, we have :{
∂tf + ξ · ∂xf = 0
f(tn, x, ξ) = Mn

i (ξ)

i.e.

fn+1
i (ξ) =Mn

i (ξ) + ξ
∆tn

∆x

(
M−

i+ 1
2

(ξ)−M+
i− 1

2

(ξ)
)

or

Un+1
i = Uni −

∆tn

∆x

(
F̃−i+1/2 − F̃

+
i−1/2

)

with

F̃±
i± 1

2

=

∫
R
ξ

(
1
ξ

)
M±

i± 1
2

(ξ) dξ.
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i (ξ) + ξ
∆tn
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2
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where

Un+1
i =

(
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i

Qn+1
i
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∫
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1
ξ

)
fn+1
i (ξ) dξ

with

F̃±
i± 1

2

=

∫
R
ξ

(
1
ξ

)
M±

i± 1
2

(ξ) dξ.

M. Ersoy (BCAM) PhD Works 15 october 2010 36 / 59



Discretization of source terms

On [tn, tn+1[×mi, we have :{
∂tf + ξ · ∂xf = 0
f(tn, x, ξ) = Mn

i (ξ)

i.e.

fn+1
i (ξ) =Mn

i (ξ) + ξ
∆tn

∆x

(
M−

i+ 1
2

(ξ)−M+
i− 1

2

(ξ)
)

or

Un+1
i = Uni −

∆tn

∆x

(
F̃−i+1/2 − F̃

+
i−1/2

)
with

F̃±
i± 1

2

=

∫
R
ξ

(
1
ξ

)
M±

i± 1
2

(ξ) dξ.

M. Ersoy (BCAM) PhD Works 15 october 2010 36 / 59



The microscopic fluxes
Interpretation : potential bareer

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ)

+

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}Mn

i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}Mn
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φni+1/2 may be interpreted as a time-dependant slope !

M. Ersoy (BCAM) PhD Works 15 october 2010 37 / 59



The microscopic fluxes
Interpretation : potential bareer

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ) +

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}Mn

i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}Mn
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φni+1/2 may be interpreted as a time-dependant slope !

M. Ersoy (BCAM) PhD Works 15 october 2010 37 / 59



The microscopic fluxes
Interpretation : potential bareer

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ) +

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}Mn

i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}Mn
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φni+1/2 may be interpreted as a time-dependant slope !

M. Ersoy (BCAM) PhD Works 15 october 2010 37 / 59



The microscopic fluxes
Interpretation : pente dynamique =⇒ décentrement de la friction

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ) +

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}Mn

i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}Mn
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φni+1/2 may be interpreted as a time-dependant slope !

. . . we reintegrate the friction . . .
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Upwinding of the source terms

conservative ∂xW :
Wi+1 −Wi

non-conservative B∂xW :
B(Wi+1 −Wi)

where

B =

∫ 1

0

B(s, φ(s,Wi,Wi+1)) ds

for the « straight lines paths », i.e.

φ(s,Wi,Wi+1) = sWi+1 + (1− s)Wi, s ∈ [0, 1]

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products.
J. Math. Pures Appl. , Vol 74(6) 483–548, 1995.
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Numerical properties

With [ABP00]

χ(ω) =
1

2
√

3
1[−
√

3,
√

3](ω)

we have :

Positivity of A (under a CFL condition),

Conservativity of A,

Natural treatment of drying and flooding area.
for example

−→ non well-balanced scheme with such a χ

−→ but easy computation of the numerical fluxes

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids.
INRIA Report RR3989, 2000.
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Upwinding of the friction
the « double dam break »

• horizontal pipe : L = 100 m, R = 1 m.
• initial state : Q = 0 m3/s, y = 1.8 m.
• Symmetric boundary conditions :
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Qualitative analysis of convergence
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Convergence
During unsteady flows t = 100 s
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Erreur L2 : Ligne piezometrique  au temps t = 100 s

Ordre VFRoe (polyfit) = 0.91301
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Ordre FKA (polyfit) = 0.88039
FKA (sans polyfit)
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Convergence
Stationary t = 500 s
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1 Study of the convergence with respect to the χ function

2 Study of the convergence with respect to the paths used to define the
non-conservative product
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A Saint-Venant-Exner model
Saint-Venant equations for the hydrodynamic part :

∂th+ div(q) = 0,

∂tq + div

(
q ⊗ q
h

)
+∇

(
g
h2

2

)
= −gh∇b

+

a bedload transport equation for the morphodynamic part :

∂tb+ ξdiv(qb(h, q)) = 0
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A Saint-Venant-Exner model
Saint-Venant equations for the hydrodynamic part :

∂th+ div(q) = 0,

∂tq + div

(
q ⊗ q
h

)
+∇

(
g
h2

2

)
= −gh∇b

+

a bedload transport equation for the morphodynamic part :

∂tb+ ξdiv(qb(h, q)) = 0

with

h : water height,

q = hu : water discharge,

qb : sediment discharge (empirical law : [MPM48], [G81]),

ξ = 1/(1− ψ) : porosity coefficient.

E. Meyer-Peter and R. Müller,

Formula for bed-load transport,
Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., 39–64, 1948.

A.J. Grass,

Sediment transport by waves and currents,
SERC London Cent. Mar. Technol. Report No. FL29 , 1981.

M. Ersoy (BCAM) PhD Works 15 october 2010 46 / 59



A Saint-Venant-Exner model
Saint-Venant equations for the hydrodynamic part :

∂th+ div(q) = 0,

∂tq + div

(
q ⊗ q
h

)
+∇

(
g
h2

2

)
= −gh∇b

+

a bedload transport equation for the morphodynamic part :

∂tb+ ξdiv(qb(h, q)) = 0

with

h : water height,

q = hu : water discharge,

qb : sediment discharge (empirical law : [MPM48], [G81]),

ξ = 1/(1− ψ) : porosity coefficient.

Our goal : derive formally this type of equation from a non classical way
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The morphodynamic part

is governed by the Vlasov equation :

∂tf + divx(vf) + divv((F + ~g)f) = r∆vf

where :

f(t, x, v) density function of particles

~g = (0, 0,−g)t,

F =
6πµa

M
(u− v) Stokes drag force with

I a radius of a particle (assumed constant)

I M = ρp
4

3
πa3 mass of a particle (assumed constant) with ρp density of a

particle (assumed constant)

u fluid velocity

µ characteristic viscosity of the fluid (assumed constant)

r∆vf brownian motion of particles where r is the velocity diffusivity
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The hydrodynamic part

is governed by the Compressible Navier-Stokes equations
∂tρw + div(ρwu) = 0, ,

∂t(ρwu) + div(ρwu⊗ u) = divσ(ρw, u) + F,

p = p(t, x) (1)

where σ(ρw, u) is the anisotropic total stress tensor :

−pI3 + 2Σ(ρw).D(u) + λ(ρw)div(u) I3

The matrix Σ(ρw) is anisotropic µ1(ρw) µ1(ρw) µ2(ρw)
µ1(ρw) µ1(ρw) µ2(ρw)
µ3(ρw) µ3(ρw) µ3(ρw)


with µi 6= µj for i 6= j and i, j = 1, 2, 3.
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The coupling

As the medium may be heterogeneous, we propose the following inhomogeneous
pressure law as :

p(t, x) = k(t, x1, x2)ρ(t, x)2 with k(t, x1, x2) =
gh(t, x1, x2)

4ρf

where ρ := ρw + ρs is called mixed density
We set ρs, the macroscopic density of sediments :

ρs =

∫
R3

f dv

The last term F on the right hand side of CNEs is the effect of the particles
motion on the fluid obtained by summing the contribution of all particles :

F = −
∫
R3

Ffdv + ρw~g =
9µ

2a2ρp

∫
R3

(v − u)fdv + ρw~g.
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Boundary conditions

For the hydrodynamic part :

I on the free surface : a normal stress continuity condition
I at the movable bottom : a wall-law condition and continuity of the velocity at

the interface x3 = b(t, x)

For the morphodynamic part :

I kinetic boundary conditions ? (work in progress) replaced by the equation :

S = ∂tb+
√

1 + |∇xb|2u|x3=b · nb

and S −
√

1 + |∇xb|2u|x3=b · nb takes into account incoming and outgoing
particles.
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Rescaling for both models, “set ε = 0”

Let √
θ be the fluctuation of kinetic velocity,

U be a characteristic vertical velocity of the fluid,

T be a characteristic time,

τ be a relaxation time,

L be a characteristic vertical height,

and

B =

√
θ

U
, C =

T

τ
, F =

gT√
θ
, E =

2

9

( a
L

)2 ρp
ρf

C

with the following asymptotic regime :

B = O(1), C =
1

ε
, F = O(1), E = O(1).

T. Goudon and P-E. Jabin and A. Vasseur,

Hydrodynamic limit for the Vlasov-Navier-Stokes Equations. I. Light particles regime,
Indiana Univ. Math. J., 53(6) :1495–1515,2004.
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the “mixed” model :
Formally, ε→ 0, we obtain :

Takes the two first moments of the the hydrodynamic limit of Vlasov equation
+

Rescaled Navier Stokes Equation
=

∂tρ+ div(ρu) = 0,
∂t(ρu) + divx(ρu⊗ u) + ∂x3

(ρuv) +∇xP

= divx (µ1(ρ)Dx(u)) + ∂x3

(
µ2(ρ)(∂x3

u +∇xu3)
)

+∇x(λ(ρ)div(u))

∂t(ρu3) + divx(ρuu3) + ∂x3(ρu2
3) + ∂x3P

= divx
(
µ2(ρ)(∂x3u +∇xu3)

)
+ ∂x3(µ3(ρ)∂x3u3)

+∂x3
(λ(ρ)div(u))

where
P = p+ θρs

and
ρ = ρw + ρs.
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Applying an asymptotic analysis to the mixed model :
we finally obtain :

∂t(hū) + div(hū⊗ ū) +
1

3F 2
r

∇h2 = − h

F 2
r

∇b+ div(hD(ū))−
(

K1(u)
K2(u)

)
S = ∂tb+

√
1 + |∇xb|2u|x3=b · nb
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find appropriate kinematic boundary condition

generalize this procedure to a real mixed model

justify such a formal derivation mathematically
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