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Unsteady mixed flows in closed water pipes ?

Free surface area (SL)
sections are not completely filled and the flow is incompressible. . .

Pressurized area (CH)
sections are non completely filled and the flow is compressible. . .

Transition point
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Unsteady mixed flows in closed water pipes ?

Free surface area (SL)
sections are not completely filled and the flow is incompressible. . .

Pressurized area (CH)
sections are non completely filled and the flow is compressible. . .

Transition point

M. Ersoy (BCAM) PFS-model and VFRoe solver LMB, Besançon, the 10 February 2011 4 / 40
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Examples of pipes

Orange-Fish tunnel Sewers . . . in Paris

Forced pipe problems . . . at Minnesota
http://www.sewerhistory.org/grfx/

misc/disaster.htm

M. Ersoy (BCAM) PFS-model and VFRoe solver LMB, Besançon, the 10 February 2011 5 / 40
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Previous works
For free surface flows :

Generally
Saint-Venant equations :

∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(A)

)
= 0

with

A(t, x) : wet area
Q(t, x) : discharge
I1(A) : hydrostatic pressure
g : gravity

Advantage
Conservative formulation −→ Easy numerical implementation

Hamam and McCorquodale (82), Trieu Dong (91), Musandji Fuamba (02), Vasconcelos et al (06)
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Previous works
For pressurized flows :

Generally
Allievi equations :  ∂tp+

c2

gS
∂xQ = 0,

∂tQ+ gS∂xp = 0

with

p(t, x) : pressure
Q(t, x) : discharge
c(t, x) : sound speed
S(x) : section

Advantage
Compressibility of water is taking into account =⇒ Sub-atmospheric flows
and over-pressurized flows are well computed

Drawback
Non conservative formulation =⇒ Cannot be, at least easily, coupled to
Saint-Venant equations

Winckler (93), Blommaert (00)
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Previous works
For mixed flows :

Generally
Saint-Venant with Preissmann slot artifact :


∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(A)

)
= 0

Advantage
Only one model for two types of flows.

Drawbacks
Incompressible Fluid =⇒ Water hammer not well computed
Pressurized sound speed '

√
S/Tfente =⇒ adjustment of Tfente

Depression =⇒ seen as a free surface state

Preissmann (61), Cunge et al. (65), Baines et al. (92), Garcia-Navarro et al. (94), Capart et al. (97), Tseng (99)
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Our goal :

Use Saint-Venant equations for free surface flows
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Our goal :

Use Saint-Venant equations for free surface flows

Write a pressurized model
I which takes into account the compressibility of water
I which takes into account the depression
I similar to Saint-Venant equations

Get one model for mixed flows

To be able to simulate, for instance :

C. Bourdarias and S. Gerbi

A finite volume scheme for a model coupling free surface and pressurized flows in pipes.
J. Comp. Appl. Math., 209(1) :109–131, 2007.
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Derivation of the free surface model
3D Incompressible Euler equations

ρ0div(U) = 0
ρ0(∂tU + U · ∇U) +∇p = ρ0F

Method :
1 Write Euler equations in curvilinear coordinates.

2 Write equations in non-dimensional form using the small parameter ε = H/L
and takes ε = 0.

3 Section averaging U2 ≈ U U and U V ≈ U V .

4 Introduce Asl(t, x) : wet area, Qsl(t, x) discharge given by :

Asl(t, x) =

∫
Ω(t,x)

dydz, Qsl(t, x) = Asl(t, x)u(t, x)

u(t, x) =
1

Asl(t, x)

∫
Ω(t,x)

U(t, x) dydz
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∫
Ω(t,x)
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J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant System for Laminar Shallow Water ; Numerical Validation.
Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.

F. Marche

Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects.
European Journal of Mechanic B/Fluid, 26 (2007), 49–63.
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The free surface model



∂tAsl + ∂xQsl = 0,

∂tQsl + ∂x

(
Q2

sl

Asl
+ psl(x,Asl)

)
= −gAsl

dZ

dx
+ Prsl(x,Asl)−G(x,Asl)

− gK(x,Asl)
Qsl|Qsl|
Asl︸ ︷︷ ︸

friction added after the derivation

with
psl = gI1(x,Asl) cos θ : hydrostatic pressure law

Prsl = gI2(x,Asl) cos θ : pressure source term

G = gAslz
d

dx
cos θ : curvature source term

K =
1

K2
sRh(Asl)4/3

: Manning-Strickler law
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Derivation of the pressurized model
3D isentropic compressible equations

∂tρ+ div(ρU) = 0
∂t(ρU) + div(ρU⊗U) +∇p = ρF

with
p = pa +

ρ− ρ0

c2
with c sound speed

Method :

1 Write Euler equations in curvilinear coordinates.

2 Write equations in non-dimensional form using the small parameter ε = H/L
and takes ε = 0.

3 Section averaging ρU ≈ ρU and ρU2 ≈ ρU U .

4 Introduce Ach(t, x) : equivalent wet area, Qch(t, x) discharge given by :

Ach(t, x) =
ρ

ρ0
S(x), Qch(t, x) = Ach(t, x)u(t, x)

u(t, x) =
1

S(x)

∫
Ω(x)

U(t, x) dydz
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The pressurized model



∂tAch + ∂xQch = 0,

∂tQch + ∂x

(
Q2

ch

Ach
+ pch(x,Ach)

)
= −gAch

dZ

dx
+ Prch(x,Ach)−G(x,Ach)

− gK(x, S)
Qch|Qch|
Ach︸ ︷︷ ︸

friction added after the derivation

with

pch = c2(Ach − S) : acoustic type pressure law

Prch = c2
(
Ach

S
− 1

)
dS

dx
: pressure source term

G = gAchz
d

dx
cos θ : curvature source term

K =
1

K2
sRh(S)4/3

: Manning-Strickler law
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the PFS model
Models are formally close . . .



∂tAsl + ∂xQsl = 0,

∂tQsl + ∂x

(
Q2

sl

Asl
+ psl (x,Asl)

)
= −g Asl

dZ

dx
+ Prsl (x,Asl)

−G(x, Asl )

−gK(x, Asl )
Qsl|Qsl|
Asl



∂tAch + ∂xQch = 0,

∂tQch + ∂x

(
Q2

ch

Ach
+ pch (x,Ach)

)
= −g Ach

dZ

dx
+ Prch (x,Ach)

−G(x, Ach )

−gK(x, S )
Qch|Qch|
Ach
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∂tQch + ∂x

(
Q2

ch

Ach
+ pch (x,Ach)

)
= −g Ach

dZ

dx
+ Prch (x,Ach)

−G(x, Ach )

−gK(x, S )
Qch|Qch|
Ach

Continuity criterion
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Models are formally close . . .

∂tAsl + ∂xQsl = 0,

∂tQsl + ∂x

(
Q2

sl
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)
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dZ
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(
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= −g Ach

dZ

dx
+ Prch (x,Ach)
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−gK(x, S )
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The PFS model
The « mixed »variable
We introduce a state indicator

E =

{
1 if the flow is pressurized (CH),
0 if the flow is free surface (SL)

and the physical section of water S by :

S = S(Asl, E) =

{
S if E = 1,
Asl if E = 0.

We set

A =
ρ̄

ρ0
S =

{
S(Asl, 0) = Asl if SL
ρ̄

ρ0
S(Asl, 1) = Ach if CH

: the « mixed »variable

Q = Au : the discharge

Continuity of S at transition point
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The PFS model
The « mixed »variable
We introduce a state indicator

E =

{
1 if the flow is pressurized (CH),
0 if the flow is free surface (SL)

and the physical section of water S by :

S = S(Asl, E) =

{
S if E = 1,
Asl if E = 0.

We set

A =
ρ̄

ρ0
S =

{
S(Asl, 0) = Asl if SL
ρ̄

ρ0
S(Asl, 1) = Ach if CH

: the « mixed »variable

Q = Au : the discharge

Continuity of S at transition point

M. Ersoy (BCAM) PFS-model and VFRoe solver LMB, Besançon, the 10 February 2011 18 / 40
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The PFS model
Construction of the « mixed »pressure

Continuity of S =⇒ continuity of p at transition point
−→

p(x,A,E) = c2(A− S) + gI1(x,S) cos θ

Similar construction for the pressure source term :

Pr(x,A,E) = c2
(
A

S
− 1

)
dS

dx
+ gI2(x,S) cos θ
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The PFS model



∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ p(x,A,E)

)
= −g A d

dx
Z(x)

+Pr(x,A,E)

−G(x,A,E)

−g K(x,S)
Q|Q|
A

C. Bourdarias, M. Ersoy and S. Gerbi

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme.
Int. J. On Finite Volumes, 6(2) :1–47, 2009.
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The PFS model

Mathematical properties

The PFS system is strictly hyperbolic for A(t, x) > 0.

For regular solutions, the mean speed u = Q/A verifies

∂tu+ ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + g Z

)
= −g K(x,S)u |u|

and for u = 0, we have :

c2 ln(A/S) + gH(S) cos θ + g Z = cte

where H(S) is the physical water height.

There exists a mathematical entropy

E(A,Q, S) =
Q2

2A
+ c2A ln(A/S) + c2S + gz(x,S) cos θ + gAZ

which satisfies

∂tE + ∂x (E u+ p(x,A,E)u) = −g AK(x,S)u2 |u| 6 0
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The mesh and the unknowns

Geometric terms and unknowns are piecewise constant approximations on the cell
mi at time tn :

Geometric terms
I Zi, Si, cos θi

unknowns

I (An
i , Q

n
i ), un

i =
Qn

i

An
i

Notation : “unknown” vector
I Wn

i = (Zi, cos θi, Si, A
n
i , Q

n
i )t
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Outline
Outline

1 Unsteady mixed flows : PFS equations (Pressurized
and Free Surface)

Previous works
Formal derivation of the free surface and pressurized model
A coupling : the PFS-model

2 Finite Volume discretization
Discretization of the space domain
Explicit first order VFRoe scheme
1. The Case of a non transition point
2. The Case of a transition point
3. Update of the cell state
4. Approximation of the convection matrix

3 Numerical experiments

4 Conclusion and perspectives

M. Ersoy (BCAM) PFS-model and VFRoe solver LMB, Besançon, the 10 February 2011 25 / 40



Non-conservative formulation

Adding the equations ∂tZ = 0, ∂t cos θ = 0 and ∂tS = 0, the PFS-model under a
non conservative form reads :

∂tW +D(W)∂xW = TS(W) (1)

where W = (Z, cos θ, S,A,Q)t

TS(W) =

(
0, 0, 0, 0,−g K(x,S)

Q|Q|
A

)

D(W) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
gA gAH(S) Ψ(W) c2(W)− u2 2u


where Ψ(W) = gS∂SH(S) cos θ − c2(W)

A

S
and

c(W) =


c for pressurised flow√

g
A

T (A)
cos θ for free surface flow
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The Finite Volume scheme

Integrating conservative PFS-System over ]xi−1/2, xi+ 1
2
[×[tn, tn+1[, we can write

a Finite Volume scheme as follows :

Wn+1
i = Wn

i −
∆tn

hi

(
F(W∗

i+1/2(0−,Wn
i ,W

n
i+1))− F(W∗

i−1/2(0+,Wn
i−1,W

n
i ))
)

+TS(Wn
i )

(1)
W∗

i+1/2(ξ = x/t,Wi,Wi+1) is the exact or an approximate solution to the
Riemann problem at interface xi+1/2.
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Interface quantities AM,QM,AP,QP depend on two types of interfaces

W ∗(0+,Wi,Wi+1) = (Zi+1, cos θi+1, Si+1, AP,QP )t and
W ∗(0−,Wi,Wi+1) = (Zi+1, cos θi+1, Si+1, AM,QM)t depend on two types of
interfaces :

a non transition point : the flow on both sides of the interface is of the same
type

a transition point : the flow changes of type through the interface
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The linearized Riemann problem

approximating the convection matrix D(W) by D̃,

to compute (AM,QM), (AP,QP ), we solve the linearized Riemann problem : ∂tW + D̃ ∂xW = 0

W =

{
Wl = (Zl, cos θl, Sl, Al, Ql)

t if x < 0
Wr = (Zr, cos θr, Sr, Ar, Qr)t if x > 0

(1)

with (Wl,Wr) = (Wi,Wi+1) and D̃ = D̃(Wl,Wr) = D(W̃) where W̃ is some
approximate state of the left Wl and the right Wr state.
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The convection matrix

The eigenvalues of D̃ are λi = 0, i = 1, 2, 3, λ4 = ũ− c(W̃), λ5 = ũ+ c(W̃)

where c(W) =


c for pressurised flow√

g
A

T (A)
cos θ for free surface flow

AM
QM

AM
QM

AM
QM

AP
QP

AP
QP

AP
QP

W W W W Wl r l r l r

(1),(2),(3) (1),(2),(3) (1),(2),(3)

(4)

(4)

(4)
(5)

(5) (5)

W
u < − c~ − c < u < cu > c~ ~ ~ ~ ~ ~
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AM , QM , AP , QP are given by

We obtain, for instance in the sub-critical case (when −c(W̃) < ũ < c(W̃)), we
have :

AM = Al +
g Ã

2 c(W̃) (c(W̃)− ũ)
ψr
l +

ũ+ c(W̃)

2 c(W̃)
(Ar −Al)−

1

2 c(W̃)
(Qr −Ql)

QM = QP = Ql −
g Ã

2 c(W̃)
ψr
l +

ũ2 − c(W̃)2

2 c(W̃)
(Ar −Al)−

ũ− c(W̃)

2 c(W̃)
(Qr −Ql)

AP = AM +
g Ã

ũ2 − c(W̃)2
ψr
l

where ψr
l is the upwinded source term

Zr − Zl +H(S̃)(cos θr − cos θl) + Ψ(W̃)(Sr − Sl).
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Two Riemann problems

Assumption the propagation of the interface (pressurized-free surface or free
surface-pressurized) has a constant speed w during a time step.

Consequently the half line x = w t is the discontinuity line of D̃(Wl,Wr).

Setting w =
Q+ − Q−

A+ −A− with U− = (A−, Q−) and U+ = (A+, Q+) the

(unknown) states resp. on the left and on the right hand side of the line
x = w t click .

Remark Both states Ul and U− (resp. Ur and U+) correspond to the same
type of flow

Thus it makes sense to define the averaged matrices in each zone as follows :
I for x < w t, we set D̃l = D̃(Wl,Wr) = D(W̃l) for some approximation W̃l

which connects the state Wl and W−.
I for x > w t, we set D̃r = D̃(Wl,Wr) = D(W̃r) for some approximation W̃l

which connects the state W+ and Wr.
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four cases

Then we formally solve two Riemann problems and use the Rankine-Hugoniot
jump conditions through the line x = w t which writes :

Q+ −Q− = w (A+ −A−) (1)

F5(A+, Q+)− F5(A−, Q−) = w (Q+ −Q−) (2)

with F5(A,Q) =
Q2

A
+ p(x,A). According to (U−, UM) and (U+, UP )

(unknowns) at the interface xi+1/2 and the sign of the speed w, we have to deal
with four cases :

pressure state propagating downstream click ,

pressure state propagating upstream,

free surface state propagating downstream,

free surface state propagating upstream.
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four cases

Then we formally solve two Riemann problems and use the Rankine-Hugoniot
jump conditions through the line x = w t which writes :

Q+ −Q− = w (A+ −A−) (1)

F5(A+, Q+)− F5(A−, Q−) = w (Q+ −Q−) (2)

with F5(A,Q) =
Q2

A
+ p(x,A). According to (U−, UM) and (U+, UP )

(unknowns) at the interface xi+1/2 and the sign of the speed w, we have to deal
with four cases :

pressure state propagating downstream click ,

pressure state propagating upstream,

free surface state propagating downstream,

free surface state propagating upstream.

M. Ersoy (BCAM) PFS-model and VFRoe solver LMB, Besançon, the 10 February 2011 31 / 40
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State update

Given n, ∀i, An
i and En

i are known. Then

if En
i = 0 then

if An+1
i < Si then En+1

i = 0
else En+1

i = 1

if En
i = 1 then

if An+1
i > Si then En+1

i = 1
else En+1

i = En
i−1E

n
i+1
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The classical choice

The classical approximation D(W̃) of the Roe matrix

DRoe(Wl,Wr) =

∫ 1

0

D(Wr + (1− s)(Wl −Wr)) ds defined by

D̃ = D(W̃) = D

(
Wl + Wr

2

)
preserve the still water steady state only for

constant section pipe and Z = 0.
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Construction of an exactly well-balanced scheme

Let us start with the consideration : the still water steady state is perfectly
maintained : there exists n such that for every i, if Qn

i = 0 and ∀i,

A1 : c2 ln

(
An

i+1

Si+1

)
+ gH(Sn

i+1) cos θ + gZi+1 =

c2 ln

(
An

i

Si

)
+ gH(Sn

i ) cos θ + gZi,

A2 : AMn
i+1/2 = APn

i−1/2,

A3 : Qn
i+1/2 = Qn

i−1/2,

then, for all l > n the conditions A1, A2 and A3 holds.
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Defining

(Ãn
i−1/2, Ã

n
i+1/2) as the solution of the non-linear system :

0 = ∆An
i+1/2 +

g

2

(
Ãn

i+1/2ψ
i+1
i

c̃2i+1/2

+
Ãn

i−1/2ψ
i
i−1

c̃2i−1/2

)

0 =
g

2

{
Ãn

i−1/2 ψ
i
i−1

c̃i−1/2
−
Ãn

i+1/2 ψ
i+1
i

c̃i+1/2

}
+

∆An
i+1/2

2

(
c̃i−1/2 − c̃i+1/2

)
(3)

the numerical scheme is exactly well-balanced.
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For small ∆x, we show that

Ãn
i+1/2 ≈

An
i +An

i+1

2
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Outline
Outline

1 Unsteady mixed flows : PFS equations (Pressurized
and Free Surface)

Previous works
Formal derivation of the free surface and pressurized model
A coupling : the PFS-model

2 Finite Volume discretization
Discretization of the space domain
Explicit first order VFRoe scheme
1. The Case of a non transition point
2. The Case of a transition point
3. Update of the cell state
4. Approximation of the convection matrix

3 Numerical experiments

4 Conclusion and perspectives

M. Ersoy (BCAM) PFS-model and VFRoe solver LMB, Besançon, the 10 February 2011 36 / 40



Well-balanced scheme and the averaged approximation for P
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Conclusion

and perspectives

Conservative and simple formulation (easy implementation even if source
terms are complex)

Well-balanced numerical scheme

Very good agreement for uniform case

Compressibility of water for pressurized flows

Water hammer
Depression

Perspectives : cavitation

condensation

evaporation
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