(bcam)

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme

M. Ersoy¹, Christian Bourdarias² and Stéphane Gerbi³

LMB, Besançon, the 10 February 2011

- 1. BCAM, Spain, mersoy@bcamath.org
- 2. LAMA-Savoie, France, christian.bourdarias@univ-savoie.fr
- 3. LAMA-Savoie, France, stephane.gerbi@univ-savoie.fr

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

ONCLUSION AND PERSPECTIVES

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

- Discretization of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

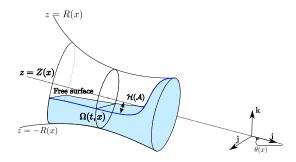
3 NUMERICAL EXPERIMENTS

Conclusion and perspectives

UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

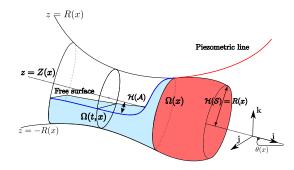


UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

• Pressurized area (CH) sections are non completely filled and the flow is compressible...

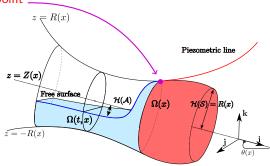


UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

- Pressurized area (CH) sections are non completely filled and the flow is compressible...
- Transition point _



EXAMPLES OF PIPES

Orange-Fish tunnel

Forced pipe

Sewers ... in Paris

problems ...at Minnesota http://www.sewerhistory.org/grfx/ misc/disaster.htm

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

Previous works

- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

- Discretization of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

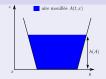
ONCLUSION AND PERSPECTIVES

PREVIOUS WORKS

For free surface flows :

GENERALLY Saint-Venant equations :

$$\begin{cases} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + gI_1(A)\right) = 0 \end{cases}$$



with	A(t,x)	:	wet area
	Q(t, x)	:	discharge
	$I_1(A)$:	hydrostatic pressure
	g	:	gravity

Advantage

 $\bullet\,$ Conservative formulation \longrightarrow Easy numerical implementation

Hamam and McCorquodale (82), Trieu Dong (91), Musandji Fuamba (02), Vasconcelos et al (06)

PREVIOUS WORKS

For pressurized flows :

GENERALLY Allievi equations :

$$\partial_t p + \frac{c^2}{gS} \partial_x Q = 0,$$

$$\partial_t Q + gS \partial_x p = 0$$

with	p(t,x)	:	pressure
	Q(t, x)	:	discharge
	c(t, x)	:	sound speed
	S(x)	:	section

Advantage

• Compressibility of water is taking into account \Longrightarrow Sub-atmospheric flows and over-pressurized flows are well computed

Drawback

 \bullet Non conservative formulation \Longrightarrow Cannot be, at least easily, coupled to Saint-Venant equations

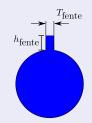
Winckler (93), Blommaert (00)

PREVIOUS WORKS

For **mixed** flows :

GENERALLY Saint-Venant with Preissmann slot artifact :

 $\left\{ \begin{array}{l} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + g I_1(A) \right) = 0 \end{array} \right.$



Advantage

• Only one model for two types of flows.

Drawbacks

- \bullet Incompressible Fluid \Longrightarrow Water hammer not well computed
- Pressurized sound speed $\simeq \sqrt{S/T_{\text{fente}}} \Longrightarrow$ adjustment of T_{fente}
- Depression \implies seen as a free surface state

Preissmann (61), Cunge et al. (65), Baines et al. (92), Garcia-Navarro et al. (94), Capart et al. (97), Tseng (99)

OUR GOAL :

• Use Saint-Venant equations for free surface flows

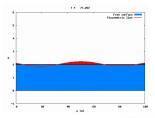
OUR GOAL :

- Use Saint-Venant equations for free surface flows
- Write a pressurized model
 - which takes into account the compressibility of water
 - which takes into account the depression
 - similar to Saint-Venant equations

OUR GOAL :

- Use Saint-Venant equations for free surface flows
- Write a pressurized model
 - which takes into account the compressibility of water
 - which takes into account the depression
 - similar to Saint-Venant equations
- Get one model for mixed flows

To be able to simulate, for instance :



. Bourdarias and S. Gerbi

A finite volume scheme for a model coupling free surface and pressurized flows in pipes.

J. Comp. Appl. Math., 209(1) :109-131, 2007

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

Previous works

• Formal derivation of the free surface and pressurized model

A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

- Discretization of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

ONCLUSION AND PERSPECTIVES

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) \ dydz$$

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

Method :

- Write Euler equations in curvilinear coordinates.
- Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) \, dy dz$$

J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. *Discrete and Continuous Dynamical Systems*, Ser. B, Vol. 1, Num. 1, 89–102, 2001.

F. Marche

Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B/Fluid, 26 (2007), 49–63.

M. Ersoy (BCAM)

PFS-model and VFRoe solver

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) \ dydz$$

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

THE FREE SURFACE MODEL

$$\begin{aligned} \partial_t A_{sl} &+ \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} &+ \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl}(x, A_{sl}) - G(x, A_{sl}) \end{aligned}$$

with

$$p_{sl} = gI_1(x, A_{sl})\cos\theta$$
 : hydrostatic pressure law

$$Pr_{sl} = gI_2(x, A_{sl})\cos\theta$$

: pressure source term

$$G \qquad = \quad gA_{sl}\overline{z}\frac{d}{dx}\cos\theta$$

: curvature source term

THE FREE SURFACE MODEL

$$\begin{array}{ll} \partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl}(x, A_{sl}) - G(x, A_{sl}) \\ &- \underbrace{g K(x, A_{sl}) \frac{Q_{sl} |Q_{sl}|}{A_{sl}}}_{\text{friction added after the derivation}} \end{array}$$

with

$$p_{sl} = gI_1(x, A_{sl})\cos\theta$$

$$Pr_{sl} = gI_2(x, A_{sl})\cos\theta$$

- : hydrostatic pressure law
- : pressure source term

$$G \qquad = \quad gA_{sl}\overline{z}\frac{d}{dx}\cos\theta$$

$$K = \frac{1}{K_s^2 R_h (A_{sl})^{4/3}}$$

- : curvature source term
- : Manning-Strickler law

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- ⁽²⁾ Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \, dy dz$$

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \, dy dz$$

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \, dy dz$$

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

Method :

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- $\label{eq:section} \textbf{ Section averaging } \overline{\rho U} \approx \overline{\rho} \overline{U} \text{ and } \overline{\rho U^2} \approx \overline{\rho} \overline{U} \, \overline{U}.$

• Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = rac{1}{S(x)} \int_{\Omega(x)} U(t,x) \, dy dz$$

THE PRESSURIZED MODEL

$$\partial_t A_{ch} + \partial_x Q_{ch} = 0, \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) - G(x, A_{ch})$$

with

$$p_{ch} = c^{2}(A_{ch} - S) : a \cos \theta$$

$$Pr_{ch} = c^{2}\left(\frac{A_{ch}}{S} - 1\right)\frac{dS}{dx} : pres$$

$$G = gA_{ch}\overline{z}\frac{d}{dx}\cos\theta : curv$$

- : acoustic type pressure law
- : pressure source term
- : curvature source term

THE PRESSURIZED MODEL

$$\begin{aligned}
\int \partial_t A_{ch} + \partial_x Q_{ch} &= 0, \\
\partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) &= -gA_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) - G(x, A_{ch}) \\
&- \underbrace{gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}}}_{\text{friction added after the derivation}}
\end{aligned}$$

with

$$p_{ch} = c^{2}(A_{ch} - S) \qquad : \text{ acoustic type pressure law}$$

$$Pr_{ch} = c^{2}\left(\frac{A_{ch}}{S} - 1\right)\frac{dS}{dx} \qquad : \text{ pressure source term}$$

$$G = gA_{ch}\overline{z}\frac{d}{dx}\cos\theta \qquad : \text{ curvature source term}$$

$$K = \frac{1}{K_{s}^{2}R_{h}(S)^{4/3}} \qquad : \text{ Manning-Strickler law}$$

law

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

- Discretization of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

ONCLUSION AND PERSPECTIVES

Models are formally close ...

$$\begin{pmatrix} \partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\ -G(x, A_{sl}) &- gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$

$$\partial_t A_{ch} + \partial_x Q_{ch} = 0, \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch} (x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch} (x, A_{ch}) -G(x, A_{ch}) -gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}}$$

Models are formally close ...

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} = 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) = -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\ -G(x, A_{sl}) \\ -gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$
$$= 0, \\ \partial_t A_{ch} + \partial_x Q_{ch} = 0, \\ \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch} (x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch} (x, A_{ch}) \\ -G(x, A_{ch}) \\ -G(x, A_{ch}) \\ -gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

Continuity criterion

Models are formally close ...

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} = 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) = -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\ -G(x, A_{sl}) \\ -gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$
$$= 0, \\ \partial_t A_{ch} + \partial_x Q_{ch} = 0, \\ \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch} (x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch} (x, A_{ch}) \\ -G(x, A_{ch}) \\ -G(x, A_{ch}) \\ -gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

« mixed »condition

Models are formally close ...

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl}(x, A_{sl}) \\ -G(x, A_{sl}) - gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \\ \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) &= -g A_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) \\ -G(x, A_{ch}) - G(x, A_{ch}) - G(x, A_{ch}) - G(x, A_{ch}) \\ -G(x, A_{ch}) - gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

To be coupled

The **PFS** model

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

The **PFS** model

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if } E = 1, \\ A_{sl} & \text{if } E = 0. \end{cases}$$

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if } E = 1, \\ A_{sl} & \text{if } E = 0. \end{cases}$$

We set

$$A = \frac{\bar{\rho}}{\rho_0} \mathbf{S} = \begin{cases} \mathbf{S}(A_{sl}, 0) = A_{sl} & \text{if SL} \\ \frac{\bar{\rho}}{\rho_0} \mathbf{S}(A_{sl}, 1) = A_{ch} & \text{if CH} \end{cases} :$$
$$Q = Au :$$

the « mixed »variable

the discharge

The **PFS** model

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if } E = 1, \\ A_{sl} & \text{if } E = 0. \end{cases}$$

We set

$$A = \frac{\bar{\rho}}{\rho_0} \mathbf{S} = \begin{cases} \mathbf{S}(A_{sl}, 0) = A_{sl} & \text{if SL} \\ \frac{\bar{\rho}}{\rho_0} \mathbf{S}(A_{sl}, 1) = A_{ch} & \text{if CH} \end{cases} : \text{ the "mixed "variable} \\ Q = Au & \text{: the discharge} \end{cases}$$

Continuity of **S** at transition point

The **PFS** model

CONSTRUCTION OF THE « MIXED »PRESSURE

• Continuity of $\mathbf{S} \Longrightarrow$ continuity of p at transition point \longrightarrow $p(x, A, E) = c^2(A - \mathbf{S}) + gI_1(x, \mathbf{S}) \cos \theta$

The **PFS** model

CONSTRUCTION OF THE « MIXED »PRESSURE

• Continuity of $\mathbf{S} \Longrightarrow$ continuity of p at transition point \longrightarrow $p(x, A, E) = c^2(A - \mathbf{S}) + qI_1(x, \mathbf{S}) \cos \theta$

• Similar construction for the pressure source term :

$$Pr(x, A, E) = c^2 \left(\frac{A}{\mathbf{S}} - 1\right) \frac{dS}{dx} + gI_2(x, \mathbf{S})\cos\theta$$

THE **PFS** MODEL

$$\begin{aligned} \zeta \ \partial_t(A) + \partial_x(Q) &= 0 \\ \partial_t(Q) + \partial_x \left(\frac{Q^2}{A} + p(x, A, E) \right) &= -g A \frac{d}{dx} Z(x) \\ &+ Pr(x, A, E) \\ &- G(x, A, E) \\ -g \, \mathbf{K}(x, \mathbf{S}) \frac{Q|Q|}{A} \end{aligned}$$

С. Во

C. Bourdarias, M. Ersoy and S. Gerbi

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. Int. J. On Finite Volumes, 6(2):1-47, 2009.

The **PFS** model

MATHEMATICAL PROPERTIES

- The **PFS** system is strictly hyperbolic for A(t, x) > 0.
- $\bullet\,$ For regular solutions, the mean speed u=Q/A verifies

$$\partial_t u + \partial_x \left(\frac{u^2}{2} + c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z \right) = -g K(x, \mathbf{S}) u |u|$$

and for u = 0, we have :

$$c^2 \ln(A/\mathbf{S}) + g \mathcal{H}(\mathbf{S}) \cos \theta + g Z = cte$$

where $\mathcal{H}(\mathbf{S})$ is the physical water height.

• There exists a mathematical entropy

$$E(A,Q,S) = \frac{Q^2}{2A} + c^2 A \ln(A/\mathbf{S}) + c^2 S + g\overline{z}(x,\mathbf{S})\cos\theta + gAZ$$

which satisfies

$$\partial_t E + \partial_x \left(E \, u + p(x, A, E) \, u \right) = -g \, A \, K(x, \mathbf{S}) \, u^2 \, |u| \leqslant 0$$

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

Conclusion and perspectives

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

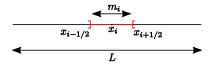
2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

THE MESH AND THE UNKNOWNS



Geometric terms and unknowns are piecewise constant approximations on the cell m_i at time t_n :

• Geometric terms

$$\blacktriangleright Z_i, S_i, \cos \theta_i$$

unknowns

$$\blacktriangleright (A_i^n, Q_i^n), \ u_i^n = \frac{Q_i^n}{A_i^n}$$

Notation : "unknown" vector

•
$$\mathbf{W}_i^n = (Z_i, \cos \theta_i, S_i, A_i^n, Q_i^n)^t$$

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

NON-CONSERVATIVE FORMULATION

Adding the equations $\partial_t Z = 0$, $\partial_t \cos \theta = 0$ and $\partial_t S = 0$, the PFS-model under a non conservative form reads :

$$\partial_t \mathbf{W} + \mathbf{D}(\mathbf{W}) \partial_x \mathbf{W} = TS(\mathbf{W}) \tag{1}$$

Integrating conservative PFS-System over $]x_{i-1/2},x_{i+\frac{1}{2}}[\times[t_n,t_{n+1}[$, we can write a Finite Volume scheme as follows :

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t^{n}}{h_{i}} \left(\mathbf{F}(\mathbf{W}_{i+1/2}^{*}(0^{-}, \mathbf{W}_{i}^{n}, \mathbf{W}_{i+1}^{n})) - \mathbf{F}(\mathbf{W}_{i-1/2}^{*}(0^{+}, \mathbf{W}_{i-1}^{n}, \mathbf{W}_{i}^{n})) + TS(\mathbf{W}_{i}^{n}) \right)$$

 $\mathbf{W}_{i+1/2}^*(\xi = x/t, \mathbf{W}_i, \mathbf{W}_{i+1})$ is the exact or an approximate solution to the Riemann problem at interface $x_{i+1/2}$.

(1)

- $W^*(0+, \mathbf{W}_i, \mathbf{W}_{i+1}) = (Z_{i+1}, \cos \theta_{i+1}, S_{i+1}, AP, QP)^t$ and $W^*(0-, \mathbf{W}_i, \mathbf{W}_{i+1}) = (Z_{i+1}, \cos \theta_{i+1}, S_{i+1}, AM, QM)^t$ depend on two types of interfaces :
 - a non transition point : the flow on both sides of the interface is of the same type
 - a transition point : the flow changes of type through the interface

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

- Discretization of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

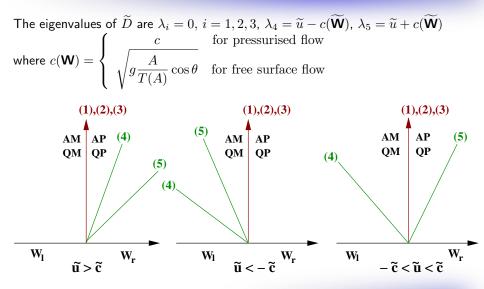
• approximating the convection matrix $D(\mathbf{W})$ by $\widetilde{D}\text{,}$

to compute (AM,QM), (AP,QP), we solve the linearized Riemann problem :

$$\begin{cases} \partial_t \mathbf{W} + \tilde{D} \ \partial_x \mathbf{W} &= 0 \\ \mathbf{W} &= \begin{cases} \mathbf{W}_l = (Z_l, \cos \theta_l, S_l, A_l, Q_l)^t & \text{if } x < 0 \\ \mathbf{W}_r = (Z_r, \cos \theta_r, S_r, A_r, Q_r)^t & \text{if } x > 0 \end{cases}$$
(1)

with $(\mathbf{W}_l, \mathbf{W}_r) = (\mathbf{W}_i, \mathbf{W}_{i+1})$ and $\widetilde{D} = \widetilde{D}(\mathbf{W}_l, \mathbf{W}_r) = D(\widetilde{\mathbf{W}})$ where $\widetilde{\mathbf{W}}$ is some approximate state of the left \mathbf{W}_l and the right \mathbf{W}_r state.

THE CONVECTION MATRIX



AM, QM, AP, QP are given by

We obtain, for instance in the sub-critical case (when $-c(\widetilde{\mathbf{W}}) < \widetilde{u} < c(\widetilde{\mathbf{W}})$), we have :

$$\begin{split} AM &= A_l + \frac{g\widetilde{A}}{2\,c(\widetilde{\mathbf{W}})\,(c(\widetilde{\mathbf{W}}) - \widetilde{u})}\,\psi_l^r + \frac{\widetilde{u} + c(\widetilde{\mathbf{W}})}{2\,c(\widetilde{\mathbf{W}})}\,(A_r - A_l) - \frac{1}{2\,c(\widetilde{\mathbf{W}})}\,(Q_r - Q_l)\\ QM &= QP = Q_l - \frac{g\widetilde{A}}{2\,c(\widetilde{\mathbf{W}})}\,\psi_l^r + \frac{\widetilde{u}^2 - c(\widetilde{\mathbf{W}})^2}{2\,c(\widetilde{\mathbf{W}})}\,(A_r - A_l) - \frac{\widetilde{u} - c(\widetilde{\mathbf{W}})}{2\,c(\widetilde{\mathbf{W}})}\,(Q_r - Q_l)\\ AP &= AM + \frac{g\widetilde{A}}{\widetilde{u}^2 - c(\widetilde{\mathbf{W}})^2}\,\psi_l^r \end{split}$$

where ψ_l^r is the upwinded source term $Z_r - Z_l + \mathcal{H}(\widetilde{\mathbf{S}})(\cos \theta_r - \cos \theta_l) + \Psi(\widetilde{\mathbf{W}})(S_r - S_l).$

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

TWO RIEMANN PROBLEMS

- Assumption the propagation of the interface (pressurized-free surface or free surface-pressurized) has a constant speed w during a time step.
- Consequently the half line x = wt is the discontinuity line of $\widetilde{D}(W_l, W_r)$.
- Setting $w = \frac{Q^+ Q^-}{A^+ A^-}$ with $\mathbf{U}^- = (A^-, Q^-)$ and $\mathbf{U}^+ = (A^+, Q^+)$ the (unknown) states resp. on the left and on the right hand side of the line x = w t (dick).
- Remark Both states U_l and U^- (resp. U_r and U^+) correspond to the same type of flow
- Thus it makes sense to define the averaged matrices in each zone as follows :
 - for x < w t, we set $\widetilde{D}_l = \widetilde{D}(\mathbf{W}_l, \mathbf{W}_r) = D(\widetilde{\mathbf{W}}_l)$ for some approximation $\widetilde{\mathbf{W}}_l$ which connects the state \mathbf{W}_l and \mathbf{W}^- .
 - For x > wt, we set D̃_r = D̃(W_l, W_r) = D(W̃_r) for some approximation W̃_l which connects the state W⁺ and W_r.

Then we formally solve two Riemann problems and use the Rankine-Hugoniot jump conditions through the line x = w t which writes :

$$Q^{+} - Q^{-} = w (A^{+} - A^{-})$$
(1)

$$F_5(A^+, Q^+) - F_5(A^-, Q^-) = w(Q^+ - Q^-)$$
(2)

with $F_5(A,Q) = \frac{Q^2}{A} + p(x,A)$. According to (U⁻, UM) and (U⁺, UP) (unknowns) at the interface $x_{i+1/2}$ and the sign of the speed w, we have to deal with four cases :

• pressure state propagating downstream **click**,

Then we formally solve two Riemann problems and use the Rankine-Hugoniot jump conditions through the line x = w t which writes :

$$Q^{+} - Q^{-} = w (A^{+} - A^{-})$$
(1)

$$F_5(A^+, Q^+) - F_5(A^-, Q^-) = w(Q^+ - Q^-)$$
(2)

with $F_5(A,Q) = \frac{Q^2}{A} + p(x,A)$. According to (U⁻, UM) and (U⁺, UP) (unknowns) at the interface $x_{i+1/2}$ and the sign of the speed w, we have to deal with four cases :

- pressure state propagating downstream **click**,
- pressure state propagating upstream,
- free surface state propagating downstream,
- free surface state propagating upstream.

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

Given n, $\forall i$, A_i^n and E_i^n are known. Then • if $E_i^n = 0$ then if $A_i^{n+1} < S_i$ then $E_i^{n+1} = 0$ else $E_i^{n+1} = 1$ • if $E_i^n = 1$ then if $A_i^{n+1} \ge S_i$ then $E_i^{n+1} = 1$ else $E_i^{n+1} = E_{i-1}^n E_{i+1}^n$

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

The classical approximation $D(\widetilde{\mathbf{W}})$ of the Roe matrix $D_{Roe}(\mathbf{W}_l, \mathbf{W}_r) = \int_0^1 D(\mathbf{W}_r + (1-s)(\mathbf{W}_l - \mathbf{W}_r)) \, ds$ defined by $\widetilde{D} = D(\widetilde{\mathbf{W}}) = D\left(\frac{\mathbf{W}_l + \mathbf{W}_r}{2}\right)$ preserve the still water steady state only for constant section pipe and Z = 0.

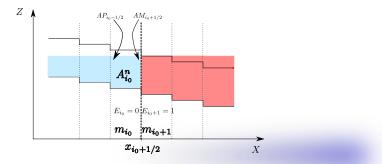
CONSTRUCTION OF AN EXACTLY WELL-BALANCED SCHEME

Let us start with the consideration : the still water steady state is perfectly maintained : there exists n such that for every i, if $Q_i^n = 0$ and $\forall i$,

A1 :
$$c^{2} \ln \left(\frac{A_{i+1}^{n}}{S_{i+1}}\right) + g\mathcal{H}(\mathbf{S}_{i+1}^{n}) \cos \theta + gZ_{i+1} =$$

 $c^{2} \ln \left(\frac{A_{i}^{n}}{S_{i}}\right) + g\mathcal{H}(\mathbf{S}_{i}^{n}) \cos \theta + gZ_{i},$
A2 : $AM_{i+1/2}^{n} = AP_{i-1/2}^{n},$
A3 : $Q_{i+1/2}^{n} = Q_{i-1/2}^{n},$

then, for all l > n the conditions A1, A2 and A3 holds.



M. Ersoy (BCAM)

Defining

 $(\widetilde{A}^n_{i-1/2},\widetilde{A}^n_{i+1/2})$ as the solution of the non-linear system :

$$\begin{cases} 0 = \Delta A_{i+1/2}^{n} + \frac{g}{2} \left(\frac{\widetilde{A}_{i+1/2}^{n} \psi_{i}^{i+1}}{\widetilde{c}_{i+1/2}^{2}} + \frac{\widetilde{A}_{i-1/2}^{n} \psi_{i-1}^{i}}{\widetilde{c}_{i-1/2}^{2}} \right) \\ 0 = \frac{g}{2} \left\{ \frac{\widetilde{A}_{i-1/2}^{n} \psi_{i-1}^{i}}{\widetilde{c}_{i-1/2}} - \frac{\widetilde{A}_{i+1/2}^{n} \psi_{i}^{i+1}}{\widetilde{c}_{i+1/2}} \right\} + \frac{\Delta A_{i+1/2}^{n}}{2} \left(\widetilde{c}_{i-1/2} - \widetilde{c}_{i+1/2} \right) \end{cases}$$
(3)

the numerical scheme is exactly well-balanced.

For small Δx , we show that

$$\widetilde{A}_{i+1/2}^n \approx \frac{A_i^n + A_{i+1}^n}{2}$$

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

• Well-balanced scheme and the averaged approximation for P

• Well-balanced scheme and the averaged approximation for FS

• Depression for a contracting pipe

• Depression for an uniform pipe

• Depression for an expanding pipe

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 FINITE VOLUME DISCRETIZATION

• Discretization of the space domain

• Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 NUMERICAL EXPERIMENTS

4 Conclusion and perspectives

CONCLUSION

Conservative and simple formulation (easy implementation even if source terms are complex)

Well-balanced numerical scheme

Very good agreement for uniform case

Compressibility of water for pressurized flows

Water hammer Depression

CONCLUSION AND PERSPECTIVES

Conservative and simple formulation (easy implementation even if source terms are complex)

Well-balanced numerical scheme Very good agreement for uniform case Compressibility of water for pressurized flows Water hammer Depression Perspectives : cavitation ondensation evaporation

Thank you

attention

NORL