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Definition of the mixed flow

Free surface (FS) area : only a part of the section is filled.

Pressurized (P) area : the section is completely filled.
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PFS-model [BEG09a]



∂t (A) + ∂x (Q) = 0

∂t (Q) + ∂x

(
Q2

A
+ p(x ,A,S)

)
= −g A

d
dx

Z (x)

+Pr(x ,A,S)
−G(x ,A,S)
−g A K (x ,S) u |u|

.

A =
ρ

ρ0
S : wet equivalent area,

Q = A u : discharge,
S the physical wet area.

The pressure is p(x ,A,S) = c2 (A− S) + g I1(x ,S) cos θ.
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Source terms

The pressure source term:

Pr(x ,A,S) =
(

c2 (A/S − 1)
) d

dx
S + g I2(x ,S) cos θ,

the z−coordinate of the center of mass term:

G(x ,A,S) = g A Z (x ,S)
d
dx

cos θ,

the friction term:

K (x ,S) =
1

K 2
s Rh(S)4/3

.

Ks > 0 is the Strickler coefficient,
Rh(S) is the hydraulic radius.

[BEG09a] C. Bourdarias and M. Ersoy and S. Gerbi. A model for unsteady mixed flows in non uniform closed water
pipes and a well-balanced finite volume scheme. Submitted. Available on arXiv
http://arxiv.org/abs/0812.0057, 2009.
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Summarize of notations

I1(x ,S) =

∫ H(S)

−R
(H(S)− z)σ dz: the pressure and

I2(x ,S) =

∫ H(S)

−R
(H(S)− z)∂xσ dz: the pressure source

term with:
R(x) the radius,
σ(x , z) the width of the cross-section,
H(S) the z−coordinate of the free surface.

c =
1√
βρ0

: the sound of speed in the P zones with:

ρ0 the density at atmospheric pressure p0,
β the water compressibility coefficient.

Z (x ,S) = (H(S)− I1(x ,S)/S): the z−coordinate of the
center of the mass.
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Some Properties

The PFS system is strictly hyperbolic for A(t , x) > 0.
For smooth solutions, the mean velocity u = Q/A satisfies

∂tu + ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + g Z

)
= −g K (x ,S) u |u|

.

and u = 0 reads: c2 ln(A/S) + gH(S) cos θ + g Z = 0.
It admits a mathematical entropy

E(A,Q,S) =
Q2

2A
+c2A ln(A/S)+c2S+gZ (x ,S) cos θ+gAZ

which satisfies the entropy inequality

∂tE + ∂x (E u + p(x ,A,S) u) = −g A K (x ,S) u2 |u| 6 0
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

With

χ(ω) = χ(−ω) ≥ 0 ,
∫

R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

With

χ(ω) = χ(−ω) ≥ 0 ,
∫

R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,

we define the Gibbs equilibrium

M(t , x , ξ) =
A

c(A)
χ

(
ξ − u(t , x)

c(A)

)
with

c(A) =

√
g

I1(x ,A)

A
cos θ in the FS zones and,

c(S) =

√
g

I1(x ,S)

S
cos θ + c2 in the P zones.
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

We have the macroscopic-microscopic relations:

A =

∫
R
M(t , x , ξ) dξ

Q =

∫
R
ξM(t , x , ξ) dξ

Q2

A
+ Ac(A)2 =

∫
R
ξ2M(t , x , ξ) dξ
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

The Kinetic Formulation
(A,Q) is a strong solution of PFS-System if and only ifM
satisfies the kinetic transport equation:

∂tM+ ξ · ∂xM− gΦ(x ,A,S) ∂ξM = K (t , x , ξ)

for some collision term K (t , x , ξ) which satisfies for a.e. (t , x)∫
R

K dξ = 0 ,
∫

R
ξ Kd ξ = 0, and Φ which take into account all

the source terms.

[P02] B. Perthame. Kinetic formulation of conservation laws. Oxford University Press. Oxford Lecture Series in
Mathematics and its Applications, Vol 21, 2002.
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The Kinetic Formulation

If , Φ reads:
Conservative︷ ︸︸ ︷

d
dx

Z − c2

g
d
dx

ln(S) +

Non conservative product︷ ︸︸ ︷
Z (x ,S)

d
dx

cos θ

+
d
dx

∫
x

K (x ,S)u|u|dx

If , Φ reads:
Conservative︷ ︸︸ ︷

d
dx

Z +

Non conservative product︷ ︸︸ ︷
γ(x ,A) cos θ

A
d
dx

ln(A) + Z (x ,A)
d
dx

cos θ

+
d
dx

∫
x

K (x ,S)u|u|dx

Back
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The kinetic scheme

Geometric terms and unknowns are piecewise constant appro-
ximations on the cell mi at time tn:

Geometric terms
Si , cos θi

Macroscopic unknowns

Wn
i = (An

i ,Q
n
i ), un

i =
Qn

i
An

i

Microscopic unknown

Mn
i (ξ) =

An
i

cn
i
χ

(
ξ − un

i
cn

i

)
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The kinetic scheme

Consequently Φn
i is null on mi .

Indeed, we have:
d
dx

(1mi Z ) = 0,

d
dx

(ln(1mi S)) = 0,

d
dx

(1mi cos θ) = 0,

and we forget the friction term temporarly (friction splitting).
Go

[PS01] B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source term. Calcolo, Vol
38(4) 201–231, 2001
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The kinetic scheme

Discretisation of the kinetic transport equation

Neglecting the collision term, the transport equation reads on
[tn, tn+1[×mi :

∂

∂t
f + ξ · ∂

∂x
f = 0

with f (tn, x , ξ) =Mn
i (ξ) for x ∈ mi and thus it is discretised on

mi as:

f n+1
i (ξ) =Mn

i (ξ) +
∆tn

∆x
ξ

(
M−

i+ 1
2
(ξ)−M+

i− 1
2
(ξ)

)
,
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The kinetic scheme

Although f n+1
i is not a Gibbs equilibrium, we have :

Wn+1
i =

(
An+1

i
Qn+1

i

)
def
:=

∫
R

(
1
ξ

)
f n+1
i (ξ) dξ

−→Mn+1
i defined without using the collision kernel : it is a way

to perform all collisions at once
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The kinetic scheme

Finally the kinetic scheme reads:

Wn+1
i = Wn

i +
∆tn

∆x
(F−

i+ 1
2
− F +

i− 1
2
)

with the interface fluxes

F±
i+ 1

2
=

∫
R
ξ

(
1
ξ

)
M±

i+ 1
2
(ξ) dξ

where the microscopic fluxes are defined following e.g.
[BEG09b, PS01]:
[BEG09b] C. Bourdarias and M. Ersoy and S. Gerbi. A kinetic scheme for pressurised flows in non uniform closed

water pipes. Monografias de la Real Academia de Ciencias de Zaragoza, Vol 31 1–20, 2009.
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The kinetic scheme

The microscopic fluxes and physical interpretation

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1ξ>0Mn

i (ξ) +

reflection︷ ︸︸ ︷
1ξ<0, ξ2−2g∆Φn

i+1/2<0Mn
i (−ξ)

+1ξ<0, ξ2−2g∆Φn
i+1/2>0Mn

i+1

(
−
√
ξ2 − 2g∆Φn

i+1/2

)
︸ ︷︷ ︸

negative transmission

. . .

∆Φn
i±1/2 is the jump condition for a particle with the kinetic

speed ξ.
So, ∆Φn can also seen as a space and time dependent slope.
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A way to upwind the source terms

Geometric source terms

The friction term.∫ xi+1/2

xi

1
K 2

s

{
Q|Q|

A2Rh(S)4/3

}
dx +

∫ xi+1

xi+1/2

1
K 2

s

{
Q|Q|

A2Rh(S)4/3

}
dx

≈ 1
2∆xK 2

s

{
Qi+1|Qi+1|

A2
i+1Rh(Si+1)4/3

+
Qi |Qi |

A2
i Rh(Si)4/3

}
:= FRi+1/2.

Geometric terms.
∂xZ and ∂x ln(S) are easily upwinded

Zi+1 − Zi([PS01]) and ln
(

Si+1

Si

)
.
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A way to upwind the source terms

Non conservative products

I2 and Z may define non conservative products: using the
“straight lines” paths:

φ(s,Wi ,Wi+1) = sWi+1 + (1− s)Wi , s ∈ [0,1]

(see e.g. [G01, LT99, DLM95]) with Wi , Wi+1 the left and right
state at the discontinuity xi+1/2 permits us to approach any non
conservative product f (x ,W )∂xW as f (Wi+1 −Wi) with the
notation

f =

∫ 1

0
f (s, φ(s,Wi ,Wi+1)) ds .

[G01] L. Gosse. A well-balanced scheme using non-conservative products designed for hyperbolic systems of
conservation laws with source terms. Math. Models Methods Appl. Sci., Vol 11(2) 339–365, 2001.

[LT99] P. G. Lefloch and A.E. Tzavaras. Representation of weak limits and definition of nonconservative products.
SIAM J. Math. Anal., Vol 30(6) 1309–1342, 1999.

[DLM95] G. Dal Maso and P. G. Lefloch and F. Murat. Definition and weak stability of nonconservative products. J.
Math. Pures Appl. , Vol 74(6) 483–548, 1995.
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A way to upwind the source terms

∆Φn
i+1/2 =



(Zi+1 − Zi)−
c2

g
ln
(

Si+1

Si

)
+ FRi+1/2 If

(Zi+1 − Zi)−
γ(xi+1/2,S) cos θ

A
ln
(

Ai+1

Ai

)

+Z (xi+1/2,S) (cos θi+1 − cos θi) + FRi+1/2 If

where we make use of the notation V =
Vi + Vi+1

2
for any

quantity V (except Z ).



Modelisation Kinetic approach Tests Conclusion

A way to upwind the source terms

Properties of the numerical scheme

We choose [ABP00]:

χ(ω) =
1

2
√

3
1[−
√

3,
√

3](ω)

We assume a CFL condition. Then

the kinetic scheme keeps the wetted area An
i positive,

the kinetic scheme preserves the still water steady state,
Drying and flooding are treated.

[ABP00] E. Audusse and M-0. Bristeau and B. Perthame. Kinetic schemes for Saint-Venant equations with source
terms on unstructured grids. INRIA Report RR3989, 2000.



Modelisation Kinetic approach Tests Conclusion

Table of contents

1 Modelisation: the pressurised and free surface flows model

2 The kinetic approach
The Kinetic Formulation
The kinetic scheme
A way to upwind the source terms

3 Numerical Tests

4 Conclusion and perspectives



Modelisation Kinetic approach Tests Conclusion

Comparison with the VFROE method [BEG09a]

Rupstream = 0.5, Rdownstream = 0.4.
Horizontal circular pipe : L = 1000 m.
Inital steady state: Q = 0 m3/s and y = 1 m.
Upstream piezometric level is increasing in 5 s at y = 4 m
At downstream : Q = 0 m3/s
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The “double dam break of CB”

Horizontal circular pipe : L = 100 m R = 1 m.
Inital state: Q = 0 m3/s and y = 1.8 m.
Upstream and downstream piezometric level is increasing in
30 s at y = 2.1 m
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Conclusion
Easy implementation of source terms
Very good agreement for uniform case
Drying and flooding area are computed

Perspective
Air entrainment treated as a bilayer fluid flow
Diphasic approach to take into account air entrapment,
evaporation/condensation and cavitation.
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Thank you for your attention
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