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Modelisation

Definition of the mixed flow

@ Free surface (FS) area : only a part of the section is filled.
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Modelisation

Definition of the mixed flow

@ Free surface (FS) area : only a part of the section is filled.
@ Pressurized (P) area : the section is completely filled.

Piezometric line
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Modelisation

PFS-model [BEG093]

O (A) + 8x(Q) -0

Q? d
(Q) + Ox <A+ > —_gAaZ(X)
+

—gAK(x,S)ulu|

o A= "5":wet equivalent area,
PO

@ Q = Au: discharge,
@ S the physical wet area.
The pressure is = c?(A—S)+gh(x,S) cosd.
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Modelisation

Source terms

@ The pressure source term:

= <02 (A/S— 1)) ;iSJrg/g(x, S) cos b,

@ the z—coordinate of the center of mass term:

=gAZ(x, S)Cz( cos 4,

@ the friction term:
1

B NG

@ K; > 0 is the Strickler coefficient,
e Rp(S) is the hydraulic radius.

LA
[BEGO09a] C. Bourdarias and M. Ersoy and S. Gerbi. A model for unsteady mixed flows in non uniform closed water
pipes and a well-balanced finite volume scheme. Submitted. Available on arXiv
http.//arxiv.org/abs/0812.0057, 2009.




Modelisation

Summarize of notations

H(S)
° i(x,8) = /R (H(S) — z)o dz: the pressure and

H(S)
b(x,S) = /R (H(S) — z)0Oxo dz: the pressure source

term with:

e R(x) the radius,
e o(x, z) the width of the cross-section,
e H(S) the z—coordinate of the free surface.

’
vV Bpo

@ po the density at atmospheric pressure py,
e [ the water compressibility coefficient.

@ Z(x,S) = (H(S) — l1(x, S)/S): the z—coordinate of the paren
center of the mass. ”

e Cc= : the sound of speed in the P zones with:




Modelisation

Some Properties

@ The PFS system is strictly hyperbolic for A(t, x) > 0.
@ For smooth solutions, the mean velocity u = Q/A satisfies

2
Ot + Oy (L; +¢c?In(A/S) + gH(S) cos b +gZ)
=—gK(x,S)ulul

and u = 0 reads: ¢® In(A/S) + gH(S) cosd +gZ = 0.
@ It admits a mathematical entropy

2
E(AQ,S) = gq+02AIn(A/S)+CQS+gZ(x, S) cos §+gAZ

which satisfies the entropy inequality

Fanan

HE +0x (Eu+p(x,A S)u)=—-gAK(x,S)u?|u] <0 W’,{
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

With
=x(-w w)dw = w?x(w)dw =
x(@) = x( )zo,/Rx( )d u/R (@) =1,

we define the Gibbs equilibrium

A
mteox) = o x (o

with

c(A) = \/g h ();{ A cos 6 in the FS zones and,

c(S) = \/g h (); S) cos @ + ¢2 in the P zones. M‘
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

We have the macroscopic- relations:

A:/R de
Q:/R o

Q? o
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The Kinetic Formulation

The Kinetic Formulation (KF) [P02]

The Kinetic Formulation

(A, Q) is a strong solution of PFS-System if and only if M
satisfies the kinetic transport equation:

OM + & - OxM — g®(x, A, S) 0: M = K(t, X, €)

for some collision term K(t, x, £) which satisfies for a.e. (¢, x)
/ Kd¢=0, / £ Kd ¢ =0, and ¢ which take into account all
R R

the source terms.

[PO2]  B. Perthame. Kinetic formulation of conservation laws. Oxford University Press. Oxford Lecture Series in
Mathematics and its Applications, Vol 21, 2002. anan




Kinetic approach
oe

The Kinetic Formulation

If ‘ ¢ reads:

COHST’atiVC Non conservative product
d
—7- +
dx
d
+— | K(x,S)ulu| dx
ax J,
If G ¢ reads:
Conservative Non conservative product
A A
97 + +
dx

d I
+& /X K(x, S)u|u| dx panen




Kinetic approach
@0000

The kinetic scheme

m;

Z4

J 15
Ti—1/2 Tit1/2

A
\

L

Geometric terms and unknowns are piecewise constant appro-
ximations on the cell m; at time ,:
@ Geometric terms
e S;, cosd;
@ Macroscopic unknowns

n
Py Wn (An Qn) %

1

@ Microscopic unknown

° M (é—) An (guln> Lania

c" c/




Kinetic approach
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The kinetic scheme

Consequently ¢ is null on m.

Indeed, we have:

d

° a(]1,,7,.2) =0,

° i(In(]l S)=0
ax M=)y =
d

a(]lm, cosf) =0,

@ and we forget the friction term temporarly (friction splitting).

[PS01] B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source term. Calcolo, Vol
38(4) 201-231, 2001
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The kinetic scheme

Discretisation of the kinetic transport equation

Neglecting the collision term, the transport equation reads on

[tn, tn+1 [Xm,‘: 5 5
9 R
ot tE& ax =0

with f(fn, x, &) = M} () for x € m; and thus it is discretised on
m; as:

(€)= MP(E) + itx 3 (M. (&) =M, (5)) ,
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The kinetic scheme

Although £ is not a Gibbs equilibrium, we have :

n A e n
Wi = ( aQrt )‘;“/R( 2 ) () de

— M7 defined without using the collision kernel : it is a way
to perform all collisions at once
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Kinetic approach
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The kinetic scheme

Finally the kinetic scheme reads:

W”+1—W’-’+A—tn(F‘ -F')
P Ax Y iy i

with the interface fluxes

1
Fey = Lo (1) Mt 00

where the microscopic fluxes are defined following e.g.
[BEGO09b, PSO01]:

[BEGO9b] C. Bourdarias and M. Ersoy and S. Gerbi. A kinetic scheme for pressurised flows in non uniform closed
water pipes. Monografias de la Real Academia de Ciencias de Zaragoza, Vol 31 1-20, 2009.
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The kinetic scheme

The microscopic fluxes and physical interpretation

positive transmission reflection
Mi10(8) = LesoMP(E) + ]15<0,52729A¢7+1/2<0M?(—§)
+1¢cg 2_ogaen . oM (—\/52 - 29A¢,”+1/2>

i+1/2

negative transmission

Reflection &

Acbj’ﬂ/z is the jump condition for a particle with the kinetic

speed &.
So, Ad" can also seen as a space and time dependent slope.
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A way to upwind the source terms

Geometric source terms

@ The friction term.

/x«'+1/21{ Q’Q’ }dx+/X/+1 1{ Q‘Q‘ }dx
x K2 L A2Ry(S)4/3 xiv1e K& L AZRp(S)*/3

o ] Qi 11Qit1] n Qi Qi —rR
20,K2 | A2 Rn(Si1 )% ARRy(S)AR [ T TR

@ Geometric terms.
0xZ and 0y In(S) are easily upwinded

Zii1 — Z([PS01]) and In <s§1>
1
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A way to upwind the source terms

Non conservative products

I, and Z may define non conservative products: using the
“straight lines” paths:

(s, Wi, Wip1) = sWips + (1 — s)W;, s € [0,1]

(see e.g. [GO1, LT99, DLM95]) with W;, W, 4 the left and right
state at the discontinuity x; 1,2 permits us to approach any non
conservative product f(x, W)W as f(W, 1 — W;) with the
notation

1
= / f(s, 6(s. Wy, Wis 1)) ds
0

[GO1] L. Gosse. A well-balanced scheme using non-conservative products designed for hyperbolic systems of
conservation laws with source terms. Math. Models Methods Appl. Sci., Vol 11(2) 339-365, 2001.

[LT99] P G. Lefloch and A.E. Tzavaras. Representation of weak limits and definition of nonconservative products. Lania
SIAM J. Math. Anal., Vol 30(6) 1309-1342, 1999.

[DLM95] G. Dal Maso and P. G. Lefloch and F. Murat. Definition and weak stability of nonconservative products. J.
Math. Pures Appl. , Vol 74(6) 483-548, 1995.
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A way to upwind the source terms

. @
(zmz,-)gln( ’“>+FR,-+1/2 !

Si

A% =4 (Z - 2Z) -

V(Xit1/2, S)c08 0 [ Ay
A A

\ +W/Z,S)(cos Oir1 —cosb;) + FRi 12 IfG

Vi+ Vigq
7 2
quantity V(except Z). parin

where we make use of the notation V = for any
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A way to upwind the source terms

Properties of the numerical scheme

We choose [ABPO0O]:

1
x(w) = ﬁﬂ[_\/i\@](w)

We assume a CFL condition. Then

@ the kinetic scheme keeps the wetted area A7 positive,
@ the kinetic scheme preserves the still water steady state,
@ Drying and flooding are treated.

[ABP00] E. Audusse and M-0. Bristeau and B. Perthame. Kinetic schemes for Saint-Venant equations with source
terms on unstructured grids. INRIA Report RR3989, 2000.
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Comparison with the VFROE method [BEG09a]

Rupstream = 0.5, Rdownstream =04.

Horizontal circular pipe : L = 1000 m.

Inital steady state: Q =0 m®/sand y =1 m.

Upstream piezometric level is increasingin 5 sat y =4 m
At downstream : Q = 0m3/s

Piezometric head (m)

12

8
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
pppppppppppp

10 ‘ 6
| & 4
8 | P |
| E |
| g 2
6 | 8 |
| é Py E— L
4 = SR
2
2 . -4
,,,,,,,,,,,,, \/
0 -6
0 10 20 30 40 0 10 20 30 40
time (s) time (s)

(a) Piezometric level at x = 500 m

(b) Discharge at x = 500 m
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The “double dam break of CB”

Horizontal circular pipe : L=100m R =1 m.

Inital state: Q=0 m®/sand y = 1.8 m.

Upstream and downstream piezometric level is increasing in
30saty=21m

nded” K cit” K

nded” K,
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Conclusion

@ Easy implementation of source terms

@ Very good agreement for uniform case
@ Drying and flooding area are computed

Perspective

@ Air entrainment treated as a bilayer fluid flow

@ Diphasic approach to take into account air entrapment,
evaporation/condensation and cavitation.

LA




Conclusion

Thank you for your attention
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