

A Well Balanced Finite Volume Kinetic (FVK) scheme for unsteady mixed flows in non uniform closed water pipes.

Mehmet Ersoy¹, Christian Bourdarias² and Stéphane Gerbi³

Laboratoire de Mathématiques, Clermont Ferrand, March 31, 2011

^{1.} BCAM, Spain, mersoy@bcamath.org

^{2.} LAMA-Savoie, France, christian.bourdarias@univ-savoie.fr

^{3.} LAMA-Savoie, France, stephane.gerbi@univ-savoie.fr

OUTLINE OF THE TALK

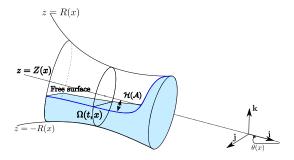
OUTLINE OF THE TALK

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

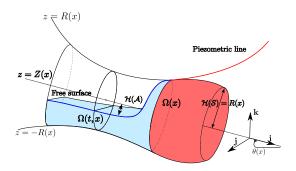
UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

Free surface area (SL)
 sections are not completely filled and the flow is incompressible...



Unsteady mixed flows in closed water pipes?

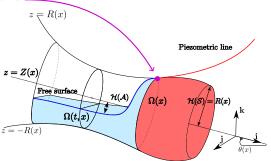
- Free surface area (SL) sections are not completely filled and the flow is incompressible. . .
- Pressurized area (CH) sections are non completely filled and the flow is compressible...



Unsteady mixed flows in closed water pipes?

- Free surface area (SL) sections are not completely filled and the flow is incompressible...
- Pressurized area (CH) sections are non completely filled and the flow is compressible...

Transition point _



EXAMPLES OF PIPES

Orange-Fish tunnel

Forced pipe

Sewers ... in Paris

problems ... at Minnesota http://www.sewerhistory.org/grfx/ misc/disaster.htm

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2 An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

Previous works

FOR FREE SURFACE FLOWS:

GENERALLY

Saint-Venant equations:

$$\begin{cases} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + gI_1(A) \right) = 0 \end{cases}$$

 $\begin{array}{ccccc} & A(t,x) & : & \text{wet area} \\ & Q(t,x) & : & \text{discharge} \\ & I_1(A) & : & \text{hydrostatic pressure} \end{array}$

: gravity

Advantage

Conservative formulation → Easy numerical implementation

Hamam and McCorquodale (82), Trieu Dong (91), Musandji Fuamba (02), Vasconcelos et al (06)

Previous works

FOR PRESSURIZED FLOWS:

GENERALLY

Allievi equations:

$$\begin{cases} \partial_t p + \frac{c^2}{gS} \partial_x Q = 0, \\ \partial_t Q + gS \partial_x p = 0 \end{cases}$$

 $\begin{array}{cccc} & p(t,x) & : & \mathsf{pressure} \\ & Q(t,x) & : & \mathsf{discharge} \\ & c(t,x) & : & \mathsf{sound speed} \end{array}$

S(x) : section

Advantage

 Compressibility of water is taking into account ⇒ Sub-atmospheric flows and over-pressurized flows are well computed

Drawback

 Non conservative formulation ⇒ Cannot be, at least easily, coupled to Saint-Venant equations

Winckler (93), Blommaert (00)

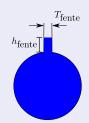
Previous works

FOR MIXED FLOWS:

GENERALLY

Saint-Venant with Preissmann slot artifact :

$$\begin{cases} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + gI_1(A) \right) = 0 \end{cases}$$



Advantage

Only one model for two types of flows.

Drawbacks

- ullet Incompressible Fluid \Longrightarrow Water hammer not well computed
- Pressurized sound speed $\simeq \sqrt{S/T_{\rm fente}} \Longrightarrow$ adjustment of $T_{\rm fente}$
- Depression ⇒ seen as a free surface state

Preissmann (61), Cunge et al. (65), Baines et al. (92), Garcia-Navarro et al. (94), Capart et al. (97), Tseng (99)

OUR GOAL:

• Use Saint-Venant equations for free surface flows

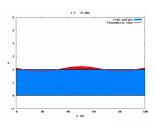
OUR GOAL:

- Use Saint-Venant equations for free surface flows
- Write a pressurized model
 - which takes into account the compressibility of water
 - which takes into account the depression
 - similar to Saint-Venant equations

OUR GOAL:

- Use Saint-Venant equations for free surface flows
- Write a pressurized model
 - which takes into account the compressibility of water
 - which takes into account the depression
 - ► similar to Saint-Venant equations
- Get one model for mixed flows

To be able to simulate, for instance :



C. Bourdarias and S. Gerbi

A finite volume scheme for a model coupling free surface and pressurized flows in pipes.

J. Comp. Appl. Math., 209(1):109–131, 2007.

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

3D Incompressible Euler equations

$$\begin{array}{lcl} \rho_0 \mathrm{div}(\mathbf{U}) & = & 0 \\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p & = & \rho_0 F \end{array}$$

- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- $\mbox{Section averaging } \overline{U^2} \approx \overline{U} \, \overline{U} \mbox{ and } \overline{U} \, \overline{V} \approx \overline{U} \, \overline{V}.$
- Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by:

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$
$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) dy dz$$

3D Incompressible Euler equations

$$\begin{array}{lcl} \rho_0 \mathrm{div}(\mathbf{U}) & = & 0 \\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p & = & \rho_0 F \end{array}$$

Method:

- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- $\mbox{\bf 3 Section averaging } \overline{U^2} \approx \overline{U} \, \overline{U} \mbox{ and } \overline{U} \, \overline{V} \approx \overline{U} \, \overline{V}.$
- lacktriangled Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation.

Discrete and Continuous Dynamical Systems, Ser. B. Vol. 1, Num. 1, 89–102, 2001.

F. Marche

Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B / Fluid. 26 (2007), 49–63.

3D Incompressible Euler equations

$$\begin{array}{lcl} \rho_0 \mathrm{div}(\mathbf{U}) & = & 0 \\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p & = & \rho_0 F \end{array}$$

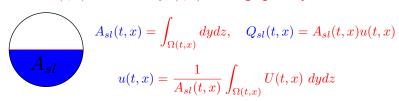
- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- $\begin{tabular}{l} {\bf Section averaging} \ \overline{U^2} \approx \overline{U} \, \overline{U} \ \ {\rm and} \ \ \overline{U} \, \overline{V} \approx \overline{U} \, \overline{V}. \\ \end{tabular}$
- Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by:

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$
$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) dy dz$$

3D Incompressible Euler equations

$$\begin{array}{lcl} \rho_0 \mathrm{div}(\mathbf{U}) & = & 0 \\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p & = & \rho_0 F \end{array}$$

- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- $\label{eq:continuous} \mbox{\bf Section averaging } \overline{U^2} \approx \overline{U}\,\overline{U} \mbox{ and } \overline{U\,V} \approx \overline{U}\,\overline{V}.$
- Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by:



THE FREE SURFACE MODEL

THE FREE SURFACE MODEL
$$\begin{cases}
\partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\
\partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + P r_{sl}(x, A_{sl}) - G(x, A_{sl})
\end{cases}$$

with

$$p_{sl} = gI_1(x, A_{sl})\cos\theta$$
: hydrostatic pressure law

$$Pr_{sl} = gI_2(x, A_{sl})\cos\theta$$
 : pressure source term

$$G = gA_{sl}\overline{z}\frac{d}{dx}\cos\theta$$
 : curvature source term

THE FREE SURFACE MODEL

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl}(x, A_{sl}) - G(x, A_{sl}) \\ &- \underbrace{gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}}}_{\text{friction added after the derivation} \end{cases}$$

with

$$p_{sl} = gI_1(x, A_{sl})\cos\theta$$
: hydrostatic pressure law

$$Pr_{sl} = gI_2(x, A_{sl})\cos\theta$$
 : pressure source term

$$G = gA_{sl}\overline{z}\frac{d}{dx}\cos\theta$$
 : curvature source term

$$K = \frac{1}{K_c^2 R_b (A_{cl})^{4/3}}$$
: Manning-Strickler law

3D ISENTROPIC COMPRESSIBLE EQUATIONS

$$\begin{aligned} &\partial_t \rho + \operatorname{div}(\rho \mathbf{U}) = 0 \\ &\partial_t (\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p = \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- $\ \, \ \, \ \,$ Write equations in non-dimensional form using the small parameter $\epsilon=H/L$ and takes $\epsilon=0.$
- $\mbox{Section averaging } \overline{\rho U} \approx \overline{\rho} \overline{U} \mbox{ and } \overline{\rho U^2} \approx \overline{\rho} \overline{U} \, \overline{U}.$
- lacktriangled Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x) u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \ dy dz$$

3D ISENTROPIC COMPRESSIBLE EQUATIONS

$$\begin{split} &\partial_t \rho + \operatorname{div}(\rho \mathbf{U}) = 0 \\ &\partial_t (\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p = \rho \mathbf{F} \end{split}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by:

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x) u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \ dydz$$

3D ISENTROPIC COMPRESSIBLE EQUATIONS

$$\begin{aligned} &\partial_t \rho + \operatorname{div}(\rho \mathbf{U}) = 0 \\ &\partial_t (\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p = \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by:

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \ Q_{ch}(t,x) = A_{ch}(t,x) u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \ dy dz$$

3D isentropic compressible equations

$$\begin{aligned} &\partial_t \rho + \operatorname{div}(\rho \mathbf{U}) = 0 \\ &\partial_t (\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p = \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- ② Write equations in non-dimensional form using the small parameter $\epsilon=H/L$ and takes $\epsilon=0$.
- $\mbox{Section averaging } \overline{\rho U} \approx \overline{\rho} \overline{U} \mbox{ and } \overline{\rho U^2} \approx \overline{\rho} \overline{U} \, \overline{U}.$
- $\ \, \bullet \,$ Introduce $\underline{A_{ch}(t,x)}$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \ Q_{ch}(t,x) = A_{ch}(t,x) u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \ dydz$$

THE PRESSURIZED MODEL

THE PRESSURIZED MODEL
$$\begin{cases}
\partial_t A_{ch} + \partial_x Q_{ch} &= 0, \\
\partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) &= -g A_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) - G(x, A_{ch})
\end{cases}$$

with

$$p_{ch} = c^2(A_{ch} - S)$$
 : acoustic type pressure law

$$Pr_{ch} = c^2 \left(\frac{A_{ch}}{S} - 1 \right) \frac{dS}{dx}$$
 : pressure source term

$$G \qquad = \quad g A_{ch} \overline{z} \frac{d}{dx} \cos \theta \qquad \quad : \text{curvature source term}$$

THE PRESSURIZED MODEL

$$\begin{cases} \partial_t A_{ch} + \partial_x Q_{ch} &= 0, \\ \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) &= -g A_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) - G(x, A_{ch}) \\ &- \underbrace{g\mathbf{K}(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}}}_{\text{friction added after the derivation} \end{cases}$$

with

$$p_{ch} = c^2(A_{ch} - S)$$
 : acoustic type pressure law $Pr_{ch} = c^2\left(\frac{A_{ch}}{S} - 1\right)\frac{dS}{dx}$: pressure source term
$$G = gA_{ch}\overline{z}\frac{d}{dx}\cos\theta$$
 : curvature source term

$$\frac{K}{K_s^2 R_h(S)^{4/3}} \hspace{1cm} : \text{Manning-Strickler law}$$

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2 An alternative toward a Well-Balanced scheme
 - Numerical results
- Conclusion and perspectives

Models are formally close . . .

$$\begin{cases}
\partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\
\partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\
-G(x, A_{sl}) \\
-gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}}
\end{cases}$$

$$\begin{cases}
\partial_t A_{ch} + \partial_x Q_{ch} &= 0, \\
\partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch} (x, A_{ch}) \right) &= -g A_{ch} \frac{dZ}{dx} + Pr_{ch} (x, A_{ch}) \\
-G(x, A_{ch}) &-gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}}
\end{cases}$$

17 / 49

Models are formally close . . .

$$\begin{cases} \partial_{t}A_{sl} + \partial_{x}Q_{sl} &= 0, \\ \partial_{t}Q_{sl} + \partial_{x}\left(\frac{Q_{sl}^{2}}{A_{sl}} + p_{sl}\left(x, A_{sl}\right)\right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl}\left(x, A_{sl}\right) \\ -G(x, A_{sl}) &= -gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$

$$\begin{cases} \partial_{t}A_{ch} + \partial_{x}Q_{ch} &= 0, \\ \partial_{t}Q_{ch} + \partial_{x}\left(\frac{Q_{ch}^{2}}{A_{ch}} + p_{ch}\left(x, A_{ch}\right)\right) &= -g A_{ch} \frac{dZ}{dx} + Pr_{ch}\left(x, A_{ch}\right) \\ -G(x, A_{ch}) &= -G(x, A_{ch}) \end{cases}$$

Continuity criterion

Models are formally close . . .

$$\begin{cases} \partial_{t}A_{sl} + \partial_{x}Q_{sl} &= 0, \\ \partial_{t}Q_{sl} + \partial_{x}\left(\frac{Q_{sl}^{2}}{A_{sl}} + p_{sl}\left(x, A_{sl}\right)\right) &= -g\left(A_{sl}\right)\frac{dZ}{dx} + Pr_{sl}\left(x, A_{sl}\right) \\ &-G(x, A_{sl}) \\ &-gK\left(x, A_{sl}\right)\frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$

$$\begin{cases} \partial_{t}A_{ch} + \partial_{x}Q_{ch} &= 0, \\ \partial_{t}Q_{ch} + \partial_{x}\left(\frac{Q_{ch}^{2}}{A_{ch}} + p_{ch}\left(x, A_{ch}\right)\right) &= -g\left(A_{ch}\right)\frac{dZ}{dx} + Pr_{ch}\left(x, A_{ch}\right) \\ &-G(x, A_{ch}) \\ &-G(x, A_{ch}) \\ &-gK(x, S)\frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

« mixed »condition

Models are formally close . . .

$$\begin{cases} \partial_{t}A_{sl} + \partial_{x}Q_{sl} &= 0, \\ \partial_{t}Q_{sl} + \partial_{x}\left(\frac{Q_{sl}^{2}}{A_{sl}} + p_{sl}\left(x, A_{sl}\right)\right) &= -g A_{sl} \frac{dZ}{dx} - Pr_{sl}\left(x, A_{sl}\right) \\ -G(x, A_{sl}) &= -gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$

$$\begin{cases} \partial_{t}A_{ch} + \partial_{x}Q_{ch} &= 0, \\ \partial_{t}Q_{ch} + \partial_{x}\left(\frac{Q_{ch}^{2}}{A_{ch}} + p_{ch}\left(x, A_{ch}\right)\right) &= -g A_{ch} \frac{dZ}{dx} + Pr_{ch}\left(x, A_{ch}\right) \\ -G(x, A_{ch}) &= -G(x, A_{ch}) \\ -gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

To be coupled

17 / 49

THE « MIXED » VARIABLE

We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

The « Mixed »Variable

We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water S by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \left\{ \begin{array}{ll} S & \text{if} & E = 1, \\ A_{sl} & \text{if} & E = 0. \end{array} \right.$$

The « Mixed »Variable

We introduce a state indicator

$$E = \left\{ \begin{array}{ll} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{array} \right.$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \left\{ \begin{array}{ll} S & \text{if} & E = 1, \\ A_{sl} & \text{if} & E = 0. \end{array} \right.$$

We set

$$A = \frac{\bar{\rho}}{\rho_0} \mathbf{S} = \begin{cases} \mathbf{S}(A_{sl}, 0) = A_{sl} & \text{if SL} \\ \frac{\bar{\rho}}{\rho_0} \mathbf{S}(A_{sl}, 1) = A_{ch} & \text{if CH} \end{cases} : \text{the "mixed" variable}$$

$$Q = Au : \text{the discharge}$$

The « Mixed » variable

We introduce a state indicator

$$E = \left\{ \begin{array}{ll} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{array} \right.$$

and the physical section of water S by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if} \quad E = 1, \\ A_{sl} & \text{if} \quad E = 0. \end{cases}$$

We set

$$A = \frac{\bar{\rho}}{\rho_0} \mathbf{S} = \begin{cases} \mathbf{S}(A_{sl}, 0) = A_{sl} & \text{if SL} \\ \frac{\bar{\rho}}{\rho_0} \mathbf{S}(A_{sl}, 1) = A_{ch} & \text{if CH} \end{cases} : \text{the "mixed" variable}$$

$$Q = Au : \text{the discharge}$$

Continuity of **S** at transition point

Construction of the « mixed »pressure

 \bullet Continuity of $\mathbf{S} \Longrightarrow$ continuity of p at transition point

$$p(x, A, E) = c^{2}(A - \mathbf{S}) + gI_{1}(x, \mathbf{S})\cos\theta$$

Construction of the « mixed »pressure

 \bullet Continuity of $\mathbf{S} \Longrightarrow$ continuity of p at transition point

$$p(x, A, E) = c^{2}(A - \mathbf{S}) + gI_{1}(x, \mathbf{S})\cos\theta$$

• Similar construction for the pressure source term :

$$Pr(x, A, E) = c^2 \left(\frac{A}{S} - 1\right) \frac{dS}{dx} + gI_2(x, S) \cos \theta$$

$$\begin{cases} \partial_t(A) + \partial_x(Q) &= 0 \\ \partial_t(Q) + \partial_x \left(\frac{Q^2}{A} + p(x, A, E)\right) &= -g A \frac{d}{dx} Z(x) \\ &+ Pr(x, A, E) \\ &- G(x, A, E) \\ &- g \mathbf{K}(x, \mathbf{S}) \frac{Q|Q|}{A} \end{cases}$$

C. Bourdarias, M. Ersoy and S. Gerbi

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. Int. J. On Finite Volumes, 6(2):1–47, 2009.

MATHEMATICAL PROPERTIES

- The **PFS** system is strictly hyperbolic for A(t,x) > 0.
- ullet For regular solutions, the mean speed u=Q/A verifies

$$\partial_t u + \partial_x \left(\frac{u^2}{2} + c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z \right) = -g K(x, \mathbf{S}) u |u|$$

and for u = 0, we have :

$$c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z = cte$$

where $\mathcal{H}(\mathbf{S})$ is the physical water height.

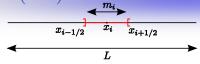
There exists a mathematical entropy

$$E(A,Q,S) = \frac{Q^2}{2A} + c^2 A \ln(A/\mathbf{S}) + c^2 S + g\overline{z}(x,\mathbf{S}) \cos\theta + gAZ$$

which satisfies

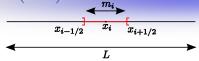
$$\partial_t E + \partial_x \left(E u + p(x, A, E) u \right) = -g A K(x, \mathbf{S}) u^2 |u| \leqslant 0$$

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
 - Numerical results
- **3** Conclusion and perspectives



PFS equations under vectorial form:

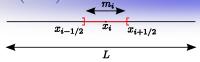
$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$



PFS equations under vectorial form:

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$

with $\mathbf{U}_i^n \overset{\mathrm{cte\ per\ mesh}}{pprox} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x)\,dx$ and $\mathcal{S}(t,x)$ constant per mesh,



PFS equations under vectorial form:

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$

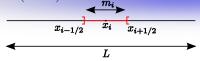
with $\mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n, x) \, dx$ and $\mathcal{S}(t, x)$ constant per mesh,

Cell-centered numerical scheme :

$$\mathbf{U}_i^{n+1} = \mathbf{U}_i^n - \frac{\Delta t^n}{\Delta x} \left(\mathcal{F}_{i+1/2} - \mathcal{F}_{i-1/2} \right) + \frac{\Delta t^n \mathcal{S}(\mathbf{U}_i^n)}{\Delta t^n}$$

where

$$\Delta t^n \mathcal{S}_i^n \approx \int_{t_n}^{t_{n+1}} \int_{m_i} \mathcal{S}(t, x) \, dx \, dt$$



PFS equations under vectorial form:

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$

with $\mathbf{U}_i^n \overset{\mathrm{cte\ per\ mesh}}{pprox} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x)\,dx$ and $\mathcal{S}(t,x)$ constant per mesh,

Upwinded numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2} - \widetilde{\mathcal{F}}_{i-1/2} \right)$$

 ${\mathcal F}$ and $\widetilde{{\mathcal F}}$ are consistent.

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of A,

conservativity of A, discrete equilibrium, discrete entropy inequality

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of A

conservativity of A, discrete equilibrium, discrete entropy inequality

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of A ,

conservativity of A, discrete equilibrium, discrete entropy inequality

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of A,

conservativity of A, discrete equilibrium, discrete entropy inequality

VFRoe solver[BEGVF]

Kinetic solver[BEG10]

C. Bourdarias, M. Ersoy and S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. International Journal On Finite Volumes, Vol 6(2) 1–47, 2009.

C. Bourdarias, M. Ersoy and S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source terms. J. Sci. Comp.,pp 1-16, 10.1007/s10915-010-9456-0, 2011.

• Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

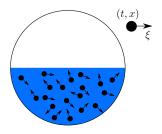
- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2 An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

PHILOSOPHY

As in kinetic theory of gases,

Describe the macroscopic behavior from particle motions, here, assumed fictitious

by introducing $\left\{\begin{array}{c} \text{a }\chi \text{ density function and} \\ \text{a }\mathcal{M}(t,x,\xi;\chi) \text{ maxwellian function (or a Gibbs equilibrium)} \end{array}\right.$

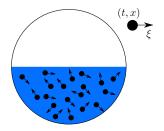


PHILOSOPHY

As in kinetic theory of gases,

Describe the macroscopic behavior from particle motions, here, assumed fictitious

by introducing $\left\{\begin{array}{l} \text{a }\chi \text{ density function and} \\ \text{a }\mathcal{M}(t,x,\xi;\chi) \text{ maxwellian function (or a Gibbs equilibrium)} \end{array}\right.$



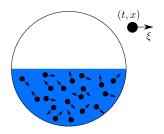
i.e., transform the nonlinear system into a kinetic transport equation on \mathcal{M} .

PHILOSOPHY

As in kinetic theory of gases,

Describe the macroscopic behavior from particle motions, here, assumed fictitious

by introducing $\left\{\begin{array}{c} \text{a }\chi\text{ density function and}\\ \text{a }\mathcal{M}(t,x,\xi;\chi)\text{ maxwellian function (or a Gibbs equilibrium)} \end{array}\right.$



i.e., transform the nonlinear system into a kinetic transport equation on \mathcal{M} . Thus, to be able to define the numerical *macroscopic fluxes* from the microscopic one.

...Faire d'une pierre deux coups...

PRINCIPLE

DENSITY FUNCTION

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0 , \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 ,$$

PRINCIPLE

GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0 , \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 ,$$

then we define the Gibbs equilibrium by

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$

with

$$b(t,x) = \sqrt{\frac{p(t,x)}{A(t,x)}}$$

PRINCIPLE

Since

$$\chi(\omega) = \chi(-\omega) \ge 0 , \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 ,$$

and

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$

then

MICRO-MACROSCOPIC RELATIONS

$$A = \int_{\mathbb{R}} \mathcal{M}(t, x, \xi) d\xi$$

$$Q = \int_{\mathbb{R}} \xi \mathcal{M}(t, x, \xi) d\xi$$

$$\frac{Q^{2}}{A} + \underbrace{Ab^{2}}_{p} = \int_{\mathbb{R}} \xi^{2} \mathcal{M}(t, x, \xi) d\xi$$

Principle [P02]

THE KINETIC FORMULATION

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$$

where $\mathcal{K}(t,x,\xi)$ is a collision kernel satisfying a.e. (t,x)

$$\int_{\mathbb{R}} \mathcal{K} \, d\xi = 0 \; , \; \int_{\mathbb{R}} \xi \, \mathcal{K} d \, \xi = 0$$

and Φ are the source terms.

R Perthame

Kinetic formulation of conservation laws.

Oxford University Press.

Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.

Principe

THE KINETIC FORMULATION

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$$

where $\mathcal{K}(t,x,\xi)$ is a collision kernel satisfying a.e. (t,x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 , \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

General form of the source terms:

$$\Phi = \overbrace{\frac{d}{dx}Z}^{\text{conservative}} + \overbrace{\mathbf{B} \cdot \frac{d}{dx}\mathbf{W}}^{\text{non conservative}} + K\frac{Q|Q|}{A^2}$$

with $\mathbf{W} = (Z, S, \cos \theta)$

- \bullet Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

- Recalling that A, Q and $Z, S, \cos \theta$ constant per mesh
- forgetting the friction : « splitting »...

Then
$$\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}$$

$$\Phi(t,x) = 0$$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- Recalling that A, Q and $Z, S, \cos \theta$ constant per mesh
- forgetting the friction : « splitting »...

Then
$$\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}$$

$$\Phi(t,x) = 0$$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} = \mathcal{K}(t, x, \xi)$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then
$$\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}$$

$$\Phi(t,x) = 0$$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

 \Longrightarrow

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0 \\ f(t_n, x, \xi) &= \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \frac{A(t_n, x, \xi)}{b(t_n, x, \xi)} \chi \left(\frac{\xi - u(t_n, x, \xi)}{b(t_n, x, \xi)} \right) \end{cases}$$

by neglecting the collision kernel.

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0 \\ f(t_n, x, \xi) &= \mathcal{M}_i^n(\xi) \end{cases}$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0 \\ f(t_n, x, \xi) &= \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0 \\ f(t_n, x, \xi) &= \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

where

$$\mathbf{U}_i^{n+1} = \left(\begin{array}{c} A_i^{n+1} \\ Q_i^{n+1} \end{array}\right) \overset{def}{:=} \int_{\mathbb{R}} \left(\begin{array}{c} 1 \\ \xi \end{array}\right) \, f_i^{n+1}(\xi) \, d\xi$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0 \\ f(t_n, x, \xi) &= \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

or

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2}^{-} - \widetilde{\mathcal{F}}_{i-1/2}^{+} \right)$$

with

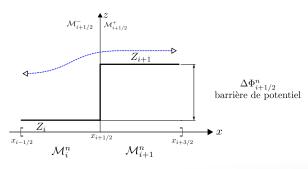
$$\widetilde{\mathcal{F}}_{i\pm\frac{1}{2}}^{\pm} = \int_{\mathbb{R}} \xi \begin{pmatrix} 1 \\ \xi \end{pmatrix} \mathcal{M}_{i\pm\frac{1}{2}}^{\pm}(\xi) d\xi.$$

Interpretation: Potential Bareer

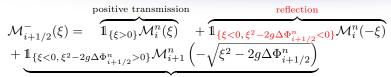
positive transmission

$$\mathcal{M}_{i+1/2}^{-}(\xi) = \underbrace{\mathbb{1}_{\{\xi>0\}} \mathcal{M}_{i}^{n}(\xi)}_{\{\xi<0, \xi^{2}-2g\Delta\Phi_{i+1/2}^{n}>0\}} \mathcal{M}_{i+1}^{n} \left(-\sqrt{\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}}\right)$$

negative transmission



Interpretation: Potential Bareer



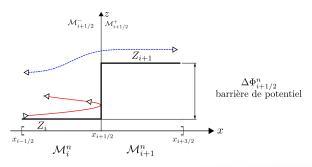
negative transmission



Interpretation: Potential Bareer

$$\mathcal{M}_{i+1/2}^{-}(\xi) = \underbrace{\mathbbm{1}_{\{\xi>0\}}\mathcal{M}_{i}^{n}(\xi)}_{\{\xi<0,\,\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}<0\}} + \underbrace{\mathbbm{1}_{\{\xi<0,\,\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}<0\}}\mathcal{M}_{i}^{n}(-\xi)}_{\{\xi<0,\,\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}>0\}} \mathcal{M}_{i+1}^{n}\left(-\sqrt{\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}}\right)$$

negative transmission

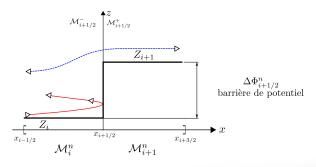


 $\Delta\Phi_{i+1/2}^n$ may be interpreted as a time-dependent slope!

Interpretation: Dynamic slope \Longrightarrow Upwinding of the friction

$$\mathcal{M}_{i+1/2}^{-}(\xi) = \underbrace{\mathbbm{1}_{\{\xi>0\}}\mathcal{M}_{i}^{n}(\xi)}_{\{\xi<0,\,\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}<0\}} + \underbrace{\mathbbm{1}_{\{\xi<0,\,\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}<0\}}\mathcal{M}_{i}^{n}(-\xi)}_{\{\xi<0,\,\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}>0\}} \mathcal{M}_{i+1}^{n}\left(-\sqrt{\xi^{2}-2g\Delta\Phi_{i+1/2}^{n}}\right)$$

negative transmission



 $\Delta\Phi^{\mathbf{n}}_{i+1/2}$ may be interpreted as a time-dependent slope!

... we reintegrate the friction ...

Upwinding of the source terms : $\Delta\Phi_{i+1/2}$

ullet conservative $\partial_x {f W}$:

$$\mathbf{W}_{i+1} - \mathbf{W}_i$$

• non-conservative $\mathbf{B}\partial_x\mathbf{W}$:

$$\overline{\mathbf{B}}(\mathbf{W}_{i+1} - \mathbf{W}_i)$$

where

$$\overline{\mathbf{B}} = \int_0^1 \mathbf{B}(s, \phi(s, \mathbf{W}_i, \mathbf{W}_{i+1})) \ ds$$

for the « straight lines paths », i.e.

$$\phi(s, \mathbf{W}_i, \mathbf{W}_{i+1}) = s\mathbf{W}_{i+1} + (1-s)\mathbf{W}_i, \ s \in [0, 1]$$

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products. J. Math. Pures Appl., Vol 74(6) 483–548, 1995.

• Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

- Kinetic Formulation and numerical scheme
- ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2 An alternative toward a Well-Balanced scheme
- Numerical results
- CONCLUSION AND PERSPECTIVES

$\chi = ???$ IN PRACTICE ???

Let us recall that we have to define a χ function such that :

$$\chi(\omega) = \chi(-\omega) \ge 0 \; , \; \int_{\mathbb{R}} \chi(\omega) d\omega = 1 , \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 \; ,$$

and $\mathcal{M} = \frac{A}{b}\chi\left(\frac{\xi - u}{b}\right)$ satisfies the equation :

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0$$

and

 $\chi \longrightarrow$ definition of the macroscopic fluxes.

Properties related to χ

We always have

- Conservativity of A holds for every χ .
- Positivity of A holds for every χ but for numerical purpose iff $\mathrm{supp}\chi$ is compact to get a CFL condition.

Properties related to χ

We always have

- Conservativity of A holds for every χ .
- Positivity of A holds for every χ but for numerical purpose iff $\mathrm{supp}\chi$ is compact to get a CFL condition.

while

- discrete equilibrium,
- discrete entropy inequalities

strongly depend on the choice of the χ function.

Properties related to χ

We always have

- Conservativity of A holds for every χ .
- Positivity of A holds for every χ but for numerical purpose iff $\mathrm{supp}\chi$ is compact to get a CFL condition.

while

- discrete equilibrium,
- discrete entropy inequalities

strongly depend on the choice of the χ function.

In the following, we only focus on discrete equilibrium.

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free surface flows, the following procedure fails for complex source terms:

Following [PS01], choose χ such that $\mathcal{M}(t,x,\xi;\chi)$ is the steady state solution at rest, u=0 :

$$\xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0.$$

provides

$$\frac{3\,T\,I_1 - A^2}{2\,I_1} w \chi(w) + \left\{ \frac{A^2}{I_1} - w^2 \frac{A^2 - I_1\,T}{2\,I_1} \right\} \chi'(w) = 0 \text{ where } w = \frac{\xi}{b} \,.$$

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term. Calcolo, 38(4):201–231, 2001.

STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free surface flows, the following procedure fails for complex source terms : Following [PS01], choose χ such that $\mathcal{M}(t,x,\xi;\chi)$ is the steady state solution at rest, u=0:

$$\xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0.$$

provides

$$\underbrace{\frac{3TI_1 - A^2}{2I_1}}_{\alpha} w\chi(w) + \left\{\underbrace{\frac{A^2}{I_1}}_{\beta} - w^2 \underbrace{\frac{A^2 - I_1 T}{2I_1}}_{\gamma}\right\} \chi'(w) = 0.$$

Then, this equation is solvable as an ODE iff the coefficients (α, β, γ) are constants.

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term. Calcolo, 38(4):201-231, 2001.

STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free surface flows, the following procedure fails for complex source terms : Following [PS01], choose χ such that $\mathcal{M}(t,x,\xi;\chi)$ is the steady state solution at rest, u=0:

$$\xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0.$$

provides

$$\underbrace{\frac{3TI_1 - A^2}{2I_1}}_{\alpha} w\chi(w) + \left\{\underbrace{\frac{A^2}{I_1}}_{\beta} - w^2 \underbrace{\frac{A^2 - I_1 T}{2I_1}}_{\gamma}\right\} \chi'(w) = 0.$$

Then, this equation is solvable as an ODE iff the coefficients (α, β, γ) are constants.

For a rectangular pipe with uniform sections, we have $(\alpha,\beta,\gamma)=\left(\frac{T}{2},2T,\frac{T}{2}\right)$ with T=cst the base of the pipe.

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term. Calcolo, 38(4):201-231, 2001.

In these settings

With
$$(\alpha, \beta, \gamma) = \left(\frac{T}{2}, 2T, \frac{T}{2}\right)$$
 and

THEOREM

we get
$$\chi(w)=\frac{1}{\pi}\left(1-\frac{w^2}{4}\right)_+^{1/2}$$
 and the numerical scheme satisfies the following properties :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Discrete equilibrium,
- Discrete entropy inequalities.
- This results holds only for conservative terms $\partial_x Z(x)$.
- A similar result for pressurized flows, unusable in practice (see [PhDErsoy] Chap. 2).

M. Erso

Modeling, mathematical and numerical analysis of various compressible or incompressible flows in thin layer [Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince].

Université de Savoie, Chambéry, September 10, 2010.

If (α, β, γ) ARE NOT CONSTANTS ...

Then, the equation to solve is:

$$\xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0.$$

Complicate to solve \longrightarrow find an easy way to maintain, at least, discrete steady states.

- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - ullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
 - Numerical results
- 3 CONCLUSION AND PERSPECTIVES

CORRECTION OF THE MACROSCOPIC FLUXES

The steady state is perfectly maintained iff

$$\widetilde{\mathcal{F}}_{i+1/2}^-(\mathbf{U}_i,\mathbf{U}_{i+1},\mathbf{Z}_i,\mathbf{Z}_{i+1}) - \widetilde{\mathcal{F}}_{i-1/2}^+(\mathbf{U}_{i-1},\mathbf{U}_i,\mathbf{Z}_{i-1},\mathbf{Z}_i) = \mathbf{0}$$

with $\mathbf{U} = (A, Q), \mathbf{Z} = \text{"source terms"}$

Notations : $F_{i\pm 1/2}$ the numerical flux of the homogeneous system, $\widetilde{F_{i\pm 1/2}}$ the numerical flux with source term and F the flux of the PFS-model.

CORRECTION OF THE MACROSCOPIC FLUXES

The steady state is perfectly maintained iff

$$\widetilde{\mathcal{F}}_{i+1/2}^-(\mathbf{U}_i,\mathbf{U}_{i+1},\mathbf{Z}_i,\mathbf{Z}_{i+1}) - \widetilde{\mathcal{F}}_{i-1/2}^+(\mathbf{U}_{i-1},\mathbf{U}_i,\mathbf{Z}_{i-1},\mathbf{Z}_i) = 0$$

with $\mathbf{U} = (A, Q)$, $\mathbf{Z} =$ "source terms"

Let us recall that without sources, whenever the numerical flux is consistent, i.e.

$$\forall \mathbf{U} = (A, Q) \in \mathbb{R}^2, F_{i \pm 1/2}(\mathbf{U}, \mathbf{U}) = F(\mathbf{U}),$$

we automatically have, whenever steady states occurs :

$$F_{i+1/2}^-(\mathbf{U}_i,\mathbf{U}_{i+1}) - F_{i-1/2}^+(\mathbf{U}_{i-1},\mathbf{U}_i) = 0,$$

i.e.,

$$\mathbf{U}_i^{n+1} = \mathbf{U}_i^n.$$

Notations : $F_{i\pm1/2}$ the numerical flux of the homogeneous system, $\widehat{F_{i\pm1/2}}$ the numerical flux with source term and F the flux of the PFS-model.

CORRECTION OF THE MACROSCOPIC FLUXES

The steady state is perfectly maintained iff

$$\widetilde{\mathcal{F}}_{i+1/2}^-(\mathbf{U}_i,\mathbf{U}_{i+1},\mathbf{Z}_i,\mathbf{Z}_{i+1}) - \widetilde{\mathcal{F}}_{i-1/2}^+(\mathbf{U}_{i-1},\mathbf{U}_i,\mathbf{Z}_{i-1},\mathbf{Z}_i) = 0$$

with $\mathbf{U} = (A, Q)$, $\mathbf{Z} =$ "source terms"

Let us recall that without sources, whenever the numerical flux is consistent, i.e.

$$\forall \mathbf{U} = (A, Q) \in \mathbb{R}^2, F_{i \pm 1/2}(\mathbf{U}, \mathbf{U}) = F(\mathbf{U}),$$

we automatically have, whenever steady states occurs :

$$F_{i+1/2}^{-}(\mathbf{U}_{i},\mathbf{U}_{i+1}) - F_{i-1/2}^{+}(\mathbf{U}_{i-1},\mathbf{U}_{i}) = 0,$$

i.e.,

$$\mathbf{U}_i^{n+1} = \mathbf{U}_i^n.$$

Correction of the numerical flux → toward a well balanced scheme

Notations : $F_{i\pm1/2}$ the numerical flux of the homogeneous system, $\widehat{F_{i\pm1/2}}$ the numerical flux with source term and F the flux of the PFS-model.

IDEAS: replace

- ullet dynamic quantities $oldsymbol{\mathsf{U}}_{i-1}$ and $oldsymbol{\mathsf{U}}_{i+1}$ by stationary profiles $oldsymbol{\mathsf{U}}_{i-1}^+$ and $oldsymbol{\mathsf{U}}_{i+1}^-$
- ullet sources terms ${f Z}_{i-1}$ and ${f Z}_{i+1}$ by stationary profiles ${f Z}_{i-1}^+$ and ${f Z}_{i+1}^-$

IDEAS: replace

- ullet dynamic quantities $oldsymbol{\mathsf{U}}_{i-1}$ and $oldsymbol{\mathsf{U}}_{i+1}$ by stationary profiles $oldsymbol{\mathsf{U}}_{i-1}^+$ and $oldsymbol{\mathsf{U}}_{i+1}^-$
- ullet sources terms ${f Z}_{i-1}$ and ${f Z}_{i+1}$ by stationary profiles ${f Z}_{i-1}^+$ and ${f Z}_{i+1}^-$

With A_{i+1}^- and A_{i-1}^+ computed from the steady states :

$$\forall i, \begin{cases} D(\boldsymbol{A}_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) &= D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) \\ D(\boldsymbol{A}_{i-1}^+, Q_{i-1}, \mathbf{Z}_i) &= D(\mathbf{U}_{i-1}, \mathbf{Z}_{i-1}) \end{cases}$$
 where
$$D(\mathbf{U}, \mathbf{Z}) = \frac{Q^2}{2A} + \begin{cases} g\mathcal{H}(A)\cos\theta + gZ & \text{if } E = 0, \\ c^2\ln\left(\frac{A}{S}\right) + g\mathcal{H}(S)\cos\theta + gZ & \text{if } E = 1. \end{cases}$$

And $(\mathbf{Z}_{i+1}^-, \mathbf{Z}_{i-1}^+)$ are defined as follows :

$$\mathbf{Z}_{i+1}^{-} = \begin{cases} \mathbf{Z}_{i} & \text{if } A_{i+1}^{-} = A_{i} \\ \mathbf{Z}_{i+1} & \text{if } A_{i+1}^{-} \neq A_{i} \end{cases}$$

$$\mathbf{Z}_{i-1}^{+} = \begin{cases} \mathbf{Z}_{i} & \text{if } A_{i-1}^{+} = A_{i} \\ \mathbf{Z}_{i-1} & \text{if } A_{i-1}^{+} \neq A_{i} \end{cases}$$

IDEAS: replace

- ullet dynamic quantities $oldsymbol{\mathsf{U}}_{i-1}$ and $oldsymbol{\mathsf{U}}_{i+1}$ by stationary profiles $oldsymbol{\mathsf{U}}_{i-1}^+$ and $oldsymbol{\mathsf{U}}_{i+1}^-$
- ullet sources terms ${f Z}_{i-1}$ and ${f Z}_{i+1}$ by stationary profiles ${f Z}_{i-1}^+$ and ${f Z}_{i+1}^-$

Let us now consider

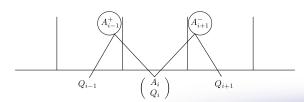
$$\begin{aligned} & \mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} + \\ & \frac{\Delta t^{n}}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n}, \ A_{i+1}^{-} \ , Q_{i+1}^{n}, \mathbf{Z}_{i}, \ \mathbf{Z}_{i+1}^{-} \) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\ A_{i-1}^{+} \ , Q_{i-1}^{n}, \mathbf{U}_{i}^{n}, \ \mathbf{Z}_{i-1}^{+} \ , \mathbf{Z}_{i}) \right) \end{aligned}$$

IDEAS: replace

- ullet dynamic quantities $oldsymbol{\mathsf{U}}_{i-1}$ and $oldsymbol{\mathsf{U}}_{i+1}$ by stationary profiles $oldsymbol{\mathsf{U}}_{i-1}^+$ and $oldsymbol{\mathsf{U}}_{i+1}^-$
- ullet sources terms ${f Z}_{i-1}$ and ${f Z}_{i+1}$ by stationary profiles ${f Z}_{i-1}^+$ and ${f Z}_{i+1}^-$

Let us now consider

$$\begin{aligned} & \mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} + \\ & \frac{\Delta t^{n}}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n}, \ A_{i+1}^{-}, Q_{i+1}^{n}, \mathbf{Z}_{i}, \ \mathbf{Z}_{i+1}^{-} \) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\ A_{i-1}^{+}, Q_{i-1}^{n}, \mathbf{U}_{i}^{n}, \ \mathbf{Z}_{i-1}^{+}, \mathbf{Z}_{i}) \right) \\ & \text{instead of the previous one} : \\ & \mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} + \\ & \frac{\Delta t^{n}}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n}, \ A_{i+1}^{n}, Q_{i+1}^{n}, \mathbf{Z}_{i}, \ \mathbf{Z}_{i+1} \) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\ A_{i-1}^{n}, Q_{i-1}^{n}, \mathbf{U}_{i}^{n}, \ \mathbf{Z}_{i-1}, \mathbf{Z}_{i}) \right) \end{aligned}$$



IDEAS: replace

- ullet dynamic quantities $oldsymbol{\mathsf{U}}_{i-1}$ and $oldsymbol{\mathsf{U}}_{i+1}$ by stationary profiles $oldsymbol{\mathsf{U}}_{i-1}^+$ and $oldsymbol{\mathsf{U}}_{i+1}^-$
- ullet sources terms \mathbf{Z}_{i-1} and \mathbf{Z}_{i+1} by stationary profiles \mathbf{Z}_{i-1}^+ and \mathbf{Z}_{i+1}^-

Let us now consider

$$\begin{aligned} & \mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} + \\ & \frac{\Delta t^{n}}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n}, \ A_{i+1}^{-} \ , Q_{i+1}^{n}, \mathbf{Z}_{i}, \ \mathbf{Z}_{i+1}^{-} \) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\ A_{i-1}^{+} \ , Q_{i-1}^{n}, \mathbf{U}_{i}^{n}, \ \mathbf{Z}_{i-1}^{+} \ , \mathbf{Z}_{i}) \right) \end{aligned}$$

Then,

THEOREM

the numerical scheme is well-balanced.

• the numerical flux is, by construction, consistent.

- the numerical flux is, by construction, consistent.
- ullet Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

- the numerical flux is, by construction, consistent.
- ullet Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

Then,

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) = h_0, \ \forall i$$

and especially, we have :

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_i, \mathbf{Z}_i).$$

- the numerical flux is, by construction, consistent.
- Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

Then,

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) = h_0, \ \forall i$$

and especially, we have :

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_i, \mathbf{Z}_i).$$

The application $A \to D(A, Q, Z)$ being injective, provides $A_{i+1}^- = A_i$ and thus $\mathbf{Z}_{i+1}^- = \mathbf{Z}_i$ by construction. Similarly, we get $A_{i-1}^+ = A_i$ and $\mathbf{Z}_{i-1}^+ = \mathbf{Z}_i$.

- the numerical flux is, by construction, consistent.
- ullet Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

Then,

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) = h_0, \ \forall i$$

and especially, we have :

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_i, \mathbf{Z}_i).$$

The application $A \to D(A,Q,Z)$ being injective, provides $A_{i+1}^- = A_i$ and thus $\mathbf{Z}_{i+1}^- = \mathbf{Z}_i$ by construction. Similarly, we get $A_{i-1}^+ = A_i$ and $\mathbf{Z}_{i-1}^+ = \mathbf{Z}_i$. Finally, since

$$\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{-},\mathbf{Z}_{i},\mathbf{Z}_{i+1}^{-}) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\mathbf{U}_{i-1}^{+},\mathbf{U}_{i}^{n},\mathbf{Z}_{i-1}^{+},\mathbf{Z}_{i}) = 0,$$

we get $\forall l\geqslant n,\ \ Q_i^{l+1}=Q_i^l:=Q_0.$

NUMERICAL PROPERTIES

For instance, with the simplest χ function [ABP00],

$$\chi(\omega) = \frac{1}{2\sqrt{3}} \mathbb{1}_{\left[-\sqrt{3},\sqrt{3}\right]}(\omega)$$

the following properties holds:

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Discrete equilibrium and,
- Natural treatment of drying and flooding area.

for example

and analytical expression of the numerical macroscopic fluxes.

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

• Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

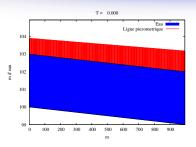
- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

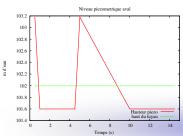
- Kinetic Formulation and numerical scheme
- ullet The χ function and well balanced scheme
 - Classical scheme fails in presence of complex source terms
 An alternative toward a Well-Ralanced scheme
- Numerical results
- CONCLUSION AND PERSPECTIVES

QUALITATIVE ANALYSIS OF CONVERGENCE

AND COMPARISON WITH THE WELL-BALANCED VFROE SCHEME



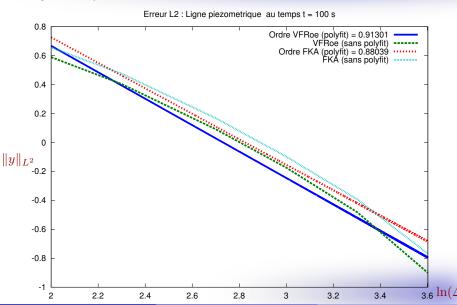
ullet upstream piezometric head $104\ m$



downstream piezometric head :

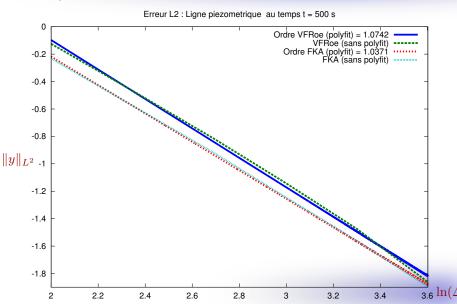
Convergence

During unsteady flows $t = 100 \ s$



Convergence

Stationary $t = 500 \ s$



- Unsteady mixed flows : PFS equations (Pressurized and Free Surface)
 - Previous works
 - Formal derivation of the free surface and pressurized model
 - A coupling : the PFS-model
- 2 A FINITE VOLUME FRAMEWORK
 - Kinetic Formulation and numerical scheme
 - \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2 An alternative toward a Well-Balanced scheme
 - Numerical results
- CONCLUSION AND PERSPECTIVES

CONCLUSION

- Conservative and simple formulation :
- → easy implementation even if source terms are complex
- The most of the properties of the continuous model are maintained at discrete level :
- --- positivity of the water area
- --> conservativity of the water area
- → discrete equilibrium maintained

CONCLUSION AND PERSPECTIVES

- Conservative and simple formulation :
- --- easy implementation even if source terms are complex
- The most of the properties of the continuous model are maintained at discrete level :
- --- positivity of the water area
- \longrightarrow conservativity of the water area
- --> discrete equilibrium maintained

What about discrete entropy inequalities?

→ same difficulties as for discrete balance (see [PhDErsoy] Chap. 2 for further details)

Thank you for your attention attention