
Numerical dispersion and Linearized
Saint-Venant Equations

M. Ersoy

Basque Center for Applied Mathematics

11 November 2010



Outline of the talk
Outline of the talk

1 Introduction

2 The Saint-Venant equations

3 Dispersion relations for the Saint-Venant equations

4 Numerical approximation
Cell-centered finite difference scheme
“Upwinded“ finite difference scheme
Finite Element method

5 Perspectives

M. Ersoy (BCAM) Numerical dispersion and LSVEs 11 November 2010 2 / 32



Outline
Outline

1 Introduction

2 The Saint-Venant equations

3 Dispersion relations for the Saint-Venant equations

4 Numerical approximation
Cell-centered finite difference scheme
“Upwinded“ finite difference scheme
Finite Element method

5 Perspectives

M. Ersoy (BCAM) Numerical dispersion and LSVEs 11 November 2010 3 / 32



Motivation

Even if an equation is nondispersive, any discrete model of it will be
dispersive[Tref]

L-.N. Trefethen

Group velocity in finite difference schemes.
SIAM Review, 24(1), p. 113–136, 1982.
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A simple example : The Saint-Venant
equations, approximation of the gravity waves

The Saint-Venant equations are the equations obtained by vertical averaging
of the Navier-Stokes system and are widely used for geophysical fluids, river,
lakes, . . .

The most numerical schemes introduce spurious modes ; the most dangerous
modes are the stationnary ones :

I discrete solution may not be unique
I lead to oscillating solutions

A fourier analysis is necessary to understand the behavior of discrete modes.
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Derivation
it models the shallow water physical configuration where

the movements are principally horizontal and ∂zu = 0.

the fluid is assumed incompressible, i.e. ρ = cte

the pressure is hydrostatic, i.e. ∂zP = −ρg
the characteristic length L and the height H are such that H � L

Under these assumptions, a vertical averaging of the Navier-Stokes equations
gives : {

∂th+H∂xu = 0
∂tu+ g∂xh = 0
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Let us consider the preceding system :{
∂tu+ g∂xh = 0
∂th+H∂xu = 0

As the system is linear, we seek for a solution :{
h = h̃ ei(kx+wt)

u = ũ ei(kx+wt)

where

h̃, ũ : the amplitude

kx+ wt : the phase with and where
I k = 2π/λ : the wave number where λ : the wavelength
I w = 2π/T : the frequence where T : the periode
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Substituting u and h in the previous equations, we get :(
w gk
Hk w

)(
ũ

h̃

)
= OR2 .

A non identically zero solution is provided when the determinant of this matrix is
zero, then we have the following relation :

w = ±
√
gHk.

We deduce

the phase velocity :

v =
w

k
= ±

√
gH

the group velocity :

vg =
∂w

∂k
= ±

√
gH

As, v = vg, the equations are evidently non dispersive.

Even if an equation is nondispersive . . . [Tref]
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. . . any discrete model of it will be dispersive [Tref]

It means that for several numerical schemes, unfortunately, the previous relations
are not respected and introduce non physical mode, called spurious mode, which
have consequences on the behavior of the solution.
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The equations {
∂tu+ g∂xh = 0
∂th+H∂xu = 0

are approximated by a cell-centered finite difference scheme where unknowns uj(t)
and hj(t) are the approximation of u(t, xj) and h(t, xj) : ∂tuj + g

hj+1 − hj−1

2∆x
= 0

∂thj +H
uj+1 − uj−1

2∆x
= 0

xj = j∆x
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Cell centered finite difference scheme

Substituting uj and hj , {
hj = h̃ ei(kxj+wt)

uj = ũ ei(kxj+wt)

in the previous discrete equations, we get :
iwũ+ gh̃

eik∆x − e−ik∆x

2∆x
= 0

iwh̃+Hũ
eik∆x − e−ik∆x

2∆x
= 0

or equivalently  w g
sin(k∆x)

∆x

H
sin(k∆x)

∆x
w

( ũ

h̃

)
= OR2 .
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Numerical dispersion

We obvisously get the following frequency

w = v
sin(k∆x)

∆x

where v is the phase velocity of the continuous model.
We deduce then that :

the phase velocity for the discrete model is non constant, that is :

v∗(k) = w(k)/k = v
sin(k∆x)

k∆x

the group velocity is

v∗g(k) =
∂w

∂k
= v cos(k∆x)
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v^*
v

v^*_g
v_g

The phase speed is zero when k∆x = π

The group speed is negative on the interval k∆x ∈ [π/2, π]

Consequently → the energy is propagated in the opposite direction
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For k∆x = π, we have w = 0
I uj = ũ eikj∆x and
I hj = h̃ eikj∆x.

Solution is stationnary and do not propagate ! We have :
I v∗ = 0
I v∗g = −v

and solution oscillates at each nodes.
Moreover, it is easy to check that this solutions belong to the kernel of the
discrete gradient.

Consequently → it does not allow to get the uniqness of the discrete solution.

This mode is called spurious mode.

For k = 0, we have again w = 0 but, in this case :
I v∗ = v
I v∗g = vg

This mode is called hydrostatic mode.
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Whenever, spurious mode exists, the solution belong to the kernel of the discrete
gradient with uj = 0, ∀j, that is : hj+1 = hj−1, whence we can rewrite as follows :

(h1, h2, h3, h4, . . .) = h1 (1, 0, 1, 0, . . .)︸ ︷︷ ︸
d1

+h2 (0, 1, 0, 1, . . .)︸ ︷︷ ︸
d2

Furthemore, we recover the hydrostatic mode for d1 + d2, i.e. hj = hj+1, ∀j.
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Now, we consider the following discretisation :

 ∂tuj + g
hj+1/2 − hj−1/2

2∆x
= 0

∂thj+1/2 +H
uj+1 − uj

∆x
= 0
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v^*
v

v^*_g
v_g

Following the previous computation, we get :

∀kh ∈ [0, π], w = v
sin(k∆x

2 )
∆x
2

, v∗ = v
sin(k∆x

2 )
k∆x

2

, c∗g = v cos(
k∆x

2
).
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Contrary to the previous scheme, for k∆x = π, the phase speed is not zero and
the energy propagates in the right direction.

Consequently → the upwinding of the unknowns on the mesh avoid the apparition
of the spurious mode.

In this case, the dimension of the kernel of the discrete gradient is 1, i.e. it
contains only the hydrostatic mode.
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We consider again the equations{
∂tu+ g∂xh = 0
∂th+H∂xu = 0

for which we seek solutions under the form :{
h = h̃(x) eiwt,
u = ũ(x) eiwt,

that is : {
iwũ+ g∂xh̃ = 0

iwh̃+H∂xũ = 0
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Weak formulation

Let Ω be the unidirectionnal domain.
We assume that ũ ∈ V and h̃ ∈ Q where V,Q are L2(Ω) or H1(Ω).
The weak formulation is : for every smooth test function φ ∈ V and ψ ∈ Q, we
have 

iw

∫
Ω

ũφ dx+ g

∫
Ω

∂xh̃φ dx = 0

iw

∫
Ω

h̃ψ dx+H

∫
Ω

∂xũψ dx = 0
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Galerkin method

Let τh be a discretisation of the domain Ω and ∆x the mesh size. For every
K ∈ τh, we denote by Ps(K) the space of polynoms of degre s.
For ũ ∈ Vh|K = P1(K) and h̃ ∈ Qh|K = P1(K), we have :

iw∆x

6
(ũj−1 + 4ũj + ũj+1) + g

h̃j+1 − h̃j−1

2
= 0

iw∆x

6
(h̃j−1 + 4h̃j + h̃j+1) +H

ũj+1 − ũj−1

2
= 0

we get

w =
v

∆x

(
3 sin(k∆x)

2 + cos(k∆x)

)
.

As in the previous case,

for k∆x = π, we have w = 0 and we are in presence of a spurious and
hydrostatic mode.

”upwinding” unknowns on the mesh will provide the same result as in the
”upwinded“ finite difference scheme.
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Conclusion

even if the considered model is simple, it easy to see that the numerical
dispersion may lead to wrong solution by introducing non physical mode

Therefore, it is important to understand the meanning of this numerical
dispersion, at least , to construct ”good” numerical scheme.

The analysis is done by Fourier analysis

Consequently → only for linear equations with constant coefficients.
Nevertheless, geometrical optic tools allows to study the behavior of solutions

along the bi-characteristic rays
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Perspectives

Developp numerical method to understand, in the context of nonlinear with
variable coefficient, the effect of the disrcretisation on the numerical solution
such as effect of the numerical dispersion and how the mesh influence it
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Further reading

related to shallow water equations

Le Roux D.Y., Pouliot B.

Analysis of numerically-induced oscillations in two-dimensional finite-element shallow-water models, Part II : Free planetary waves.
SIAM J. Sci. Comput., 2008, 30, pp. 1971-1991.

Rostand V., Le Roux D.Y., Carey G.F.

Kernel analysis of the discretized finite difference and finite element shallow-water models.
SIAM J. Sci. Comput., 2008, 31, pp. 531-556.

Rostand V., Le Roux D.Y.

Raviart-Thomas and Brezzi-Douglas-Marini finite element approximations of the shallow-water equations.
Int. J. Numer. Methods Fluids, 2008, 57, pp. 951-976.

related to bicharacteristic rays on uniform grids

P. Gérard, P.A. Markowiche, N.J. Mauser, F. Poupaud

Homogenization Limits and Wigner Transforms.
Comm. Pure and Apple. Math., 50 (1997), 323-378.

E. Zuazua

Propagation, observation, and control of waves approximated by finite difference methods.
SIAM Review, 47 (2) (2005), 197-243.

and
L-.N. Trefethen

Group velocity in finite difference schemes.
SIAM Review, 24(1), p. 113–136, 1982.
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