

A Finite Volume Kinetic (FVK) framework for unsteady mixed flows in non uniform closed water pipes.

Mehmet Ersoy¹, Christian Bourdarias² and Stéphane Gerbi³

Euskadi - Kyushu 2011

- 1. BCAM, Spain, mersoy@bcamath.org
- 2. LAMA-Savoie, France, christian.bourdarias@univ-savoie.fr
- 3. LAMA-Savoie, France, stephane.gerbi@univ-savoie.fr

- Definitions and examples
- The PFS model

2 A FVK FRAMEWORK

- Kinetic Formulation and numerical scheme
- Numerical results

③ CONCLUSION AND PERSPECTIVES

- Definitions and examples
- The PFS model

2 A FVK FRAMEWORK

- Kinetic Formulation and numerical scheme
- Numerical results

B Conclusion and perspectives

- Definitions and examples
- The PFS model

2 A FVK Framework

- Kinetic Formulation and numerical scheme
- Numerical results

③ CONCLUSION AND PERSPECTIVES

UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

• Pressurized area (CH) sections are non completely filled and the flow is compressible...

UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

- Pressurized area (CH) sections are non completely filled and the flow is compressible...
- Transition point _

EXAMPLES OF PIPES

Orange-Fish tunnel

Forced pipe

Sewers ... in Paris

problems ...at Minnesota http://www.sewerhistory.org/grfx/ misc/disaster.htm

- Definitions and examples
- The PFS model

2 A FVK Framework

- Kinetic Formulation and numerical scheme
- Numerical results

③ CONCLUSION AND PERSPECTIVES

C. Bourdarias, M. Ersoy and S. Gerbi

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. Int. J. On Finite Volumes, 6(2):1–47, 2009.

M. Ersoy (BCAM)

FVK framework for PFS-model

PRESSURE AND SOURCE TERMS

$$p = c^2(A - \mathbf{S}) + gI_1(x, \mathbf{S})\cos\theta$$

: mixed pressure law

$$Pr = c^2 \left(\frac{A_{ch}}{S} - 1\right) \frac{dS}{dx} + gI_2(\mathbf{S})\cos\theta$$
 : pressure source term

 $G \quad = \quad gA\overline{z}\frac{d}{dx}\cos\theta$

 $K = \frac{1}{K_s^2 R_h(\mathbf{S})^{4/3}}$

The **PFS** model

MATHEMATICAL PROPERTIES

- The **PFS** system is strictly hyperbolic for A(t, x) > 0.
- $\bullet\,$ For regular solutions, the mean speed u=Q/A verifies

$$\partial_t u + \partial_x \left(\frac{u^2}{2} + c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z \right) = -g K(x, \mathbf{S}) u |u|$$

and for u = 0, we have :

$$c^2 \ln(A/\mathbf{S}) + g \mathcal{H}(\mathbf{S}) \cos \theta + g Z = cte$$

where $\mathcal{H}(\mathbf{S})$ is the physical water height.

• There exists a mathematical entropy

$$E(A,Q,S) = \frac{Q^2}{2A} + c^2 A \ln(A/\mathbf{S}) + c^2 S + g\overline{z}(x,\mathbf{S})\cos\theta + gAZ$$

which satisfies

$$\partial_t E + \partial_x \left(E \, u + p(x, A, E) \, u \right) = -g \, A \, K(x, \mathbf{S}) \, u^2 \, |u| \leqslant 0$$

D Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

- Definitions and examples
- The PFS model

2 A FVK Framework

- Kinetic Formulation and numerical scheme
- Numerical results

3 Conclusion and perspectives

PFS equations under vectorial form :

 $\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$

PFS equations under vectorial form :

$$\begin{array}{l} \partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x) \\ \text{with } \mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx \text{ and } \mathcal{S}(t,x) \text{ constant per mesh,} \end{array}$$

PFS equations under vectorial form :

$$\begin{array}{l} \partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x) \\ \text{with } \mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx \text{ and } \mathcal{S}(t,x) \text{ constant per mesh,} \end{array}$$

Cell-centered numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\mathcal{F}_{i+1/2}(\mathbf{U}_{i}, \mathbf{U}_{i-1}) - \mathcal{F}_{i-1/2}(\mathbf{U}_{i-1}, \mathbf{U}_{i}) \right) + \Delta t^{n} \mathcal{S}(\mathbf{U}_{i}^{n})$$

where

$$\Delta t^n \mathcal{S}_i^n \approx \int_{t_n}^{t_{n+1}} \int_{m_i} \mathcal{S}(t, x) \, dx \, dt$$

PFS equations under vectorial form :

$$\begin{array}{l} \partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x) \\ \text{with } \mathbf{U}_i^n \overset{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx \text{ and } \mathcal{S}(t,x) \text{ constant per mesh,} \end{array}$$

Upwinded numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2}(\mathbf{U}_{i}, \mathbf{U}_{i-1}, \mathcal{S}_{i,i+1}) - \widetilde{\mathcal{F}}_{i-1/2}(\mathbf{U}_{i-1}, \mathbf{U}_{i}, \mathcal{S}_{i-1,i}) \right)$$

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

${\sf Positivity} \ {\sf of} \ A$

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mbox{Our goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mbox{Our goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

VFRoe solver[BEGVF]

C. Bourdarias, M. Ersoy and S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. International Journal On Finite Volumes, Vol 6(2) 1–47, 2009.

C. Bourdarias, M. Ersoy and S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms. J. Sci. Comp., pp 1-16, 10.1007/s10915-010-9456-0, 2011.

- Definitions and examples
- The PFS model

2 A FVK Framework

- Kinetic Formulation and numerical scheme
- Numerical results

③ CONCLUSION AND PERSPECTIVES

PRINCIPLE DENSITY FUNCTION

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

PRINCIPLE

GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

then we define the Gibbs equilibrium by

.

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$
$$b(t, x) = \sqrt{\frac{p(t, x)}{A(t, x)}}$$

with

Principle

MICRO-MACROSCOPIC RELATIONS

Since

$$\chi(\omega) = \chi(-\omega) \ge 0 \ , \ \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 \ ,$$

and

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$

then

$$A = \int_{\mathbb{R}} \mathcal{M}(t, x, \xi) d\xi$$
$$Q = \int_{\mathbb{R}} \xi \mathcal{M}(t, x, \xi) d\xi$$
$$\frac{Q^{2}}{A} + \underbrace{A b^{2}}_{p} = \int_{\mathbb{R}} \xi^{2} \mathcal{M}(t, x, \xi) d\xi$$

PRINCIPLE [P02]

The kinetic formulation

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t, x, \xi)$ is a collision kernel satisfying a.e. (t, x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

B. Perthame.

Kinetic formulation of conservation laws. Oxford University Press. Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.

PRINCIPE

The kinetic formulation

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t, x, \xi)$ is a collision kernel satisfying a.e. (t, x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 \ , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

General form of the source terms :

$$\Phi = \underbrace{\frac{d}{dx}Z}_{\text{conservative}} + \underbrace{\mathbf{B} \cdot \frac{d}{dx}\mathbf{W}}_{\text{conservative}} + \underbrace{K\frac{Q|Q|}{A^2}}_{\text{conservative}}$$

with $\mathbf{W} = (Z, S, \cos \theta)$

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$ $\Phi(t,x) = 0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i} \Phi(t,x)=0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} = \mathcal{K}(t, x, \xi)$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$ $\Phi(t,x)=0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0\\ f(t_n, x, \xi) &= \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \frac{A(t_n, x, \xi)}{b(t_n, x, \xi)} \chi\left(\frac{\xi - u(t_n, x, \xi)}{b(t_n, x, \xi)}\right) \end{cases}$$

by neglecting the collision kernel

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_{i}^{n+1}(\xi) = \mathcal{M}_{i}^{n}(\xi) + \xi \frac{\Delta t^{n}}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^{-}(\xi) - \mathcal{M}_{i-\frac{1}{2}}^{+}(\xi) \right)$$

where

$$\mathbf{U}_{i}^{n+1} = \left(\begin{array}{c} A_{i}^{n+1} \\ Q_{i}^{n+1} \end{array}\right) \stackrel{def}{\mathrel{\mathop:}=} \int_{\mathbb{R}} \left(\begin{array}{c} 1 \\ \xi \end{array}\right) \, f_{i}^{n+1}(\xi) \, d\xi$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

or

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2}^{-} - \widetilde{\mathcal{F}}_{i-1/2}^{+} \right)$$

with

$$\widetilde{\mathcal{F}}_{i\pm\frac{1}{2}}^{\pm} = \int_{\mathbb{R}} \xi \begin{pmatrix} 1 \\ \xi \end{pmatrix} \mathcal{M}_{i\pm\frac{1}{2}}^{\pm}(\xi) d\xi.$$

INTERPRETATION : POTENTIAL BAREER

positive transmission $\mathcal{M}_{i+1/2}^{-}(\xi) = \qquad \overbrace{\mathbb{1}_{\{\xi > 0\}}}^{-} \widetilde{\mathcal{M}_{i}^{n}(\xi)}$ $+ \mathbb{1}_{\{\xi < 0, \xi^2 - 2g\Delta\Phi_{i+1/2}^n > 0\}} \mathcal{M}_{i+1}^n \left(-\sqrt{\xi^2 - 2g\Delta\Phi_{i+1/2}^n} \right)$ negative transmission $\mathcal{M}_{i+1/2}^{-} \begin{bmatrix} z \\ \mathcal{M}_{i+1/2}^{+} \end{bmatrix}$ Z_{i+1} $\Delta \Phi^n_{i+1/2}$ barrière de potentiel $\blacktriangleright x$ $x_{i+1/2}$ $x_{i-1/2}$ $x_{i+3/2}$ \mathcal{M}_{i+1}^n \mathcal{M}^n_i

INTERPRETATION : POTENTIAL BAREER

INTERPRETATION : POTENTIAL BAREER

 $\Delta \Phi_{i+1/2}^n$ may be interpreted as a time-dependant slope!

INTERPRETATION : DYNAMIC SLOPE \implies Upwinding of the friction

19 / 26

UPWINDING OF THE SOURCE TERMS

• conservative $\partial_x W$:

$$\mathbf{W}_{i+1} - \mathbf{W}_i$$

• non-conservative $\mathbf{B}\partial_x \mathbf{W}$:

$$\overline{\mathbf{B}}(\mathbf{W}_{i+1} - \mathbf{W}_i)$$

where

$$\overline{\mathbf{B}} = \int_0^1 \mathbf{B}(s, \phi(s, \mathbf{W}_i, \mathbf{W}_{i+1})) \; ds$$

for the « straight lines paths », i.e.

$$\phi(s, \mathbf{W}_i, \mathbf{W}_{i+1}) = s\mathbf{W}_{i+1} + (1-s)\mathbf{W}_i, \, s \in [0, 1]$$

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products. J. Math. Pures Appl., Vol 74(6) 483-548, 1995.

NUMERICAL PROPERTIES

With [ABP00]

$$\chi(\omega) = \frac{1}{2\sqrt{3}}\mathbbm{1}_{[-\sqrt{3},\sqrt{3}]}(\omega)$$

we have :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Natural treatment of drying and flooding area.

for example

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

NUMERICAL PROPERTIES

With [ABP00]

$$\chi(\omega) = \frac{1}{2\sqrt{3}}\mathbbm{1}_{[-\sqrt{3},\sqrt{3}]}(\omega)$$

we have :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Natural treatment of drying and flooding area.

for example

 \longrightarrow non well-balanced scheme with such a χ

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

NUMERICAL PROPERTIES

With [ABP00]

$$\chi(\omega) = \frac{1}{2\sqrt{3}}\mathbbm{1}_{[-\sqrt{3},\sqrt{3}]}(\omega)$$

we have :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Natural treatment of drying and flooding area.
- \longrightarrow non well-balanced scheme with such a χ
- \longrightarrow but easy computation of the numerical fluxes

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

- Definitions and examples
- The PFS model

2 A FVK FRAMEWORK

- Kinetic Formulation and numerical scheme
- Numerical results

③ CONCLUSION AND PERSPECTIVES

QUALITATIVE ANALYSIS OF CONVERGENCE

• upstream piezometric head 104 m

• downstream piezometric head :

M. Ersoy (BCAM)

CONVERGENCE

During unsteady flows $t = 100 \ s$

Erreur L2 : Ligne piezometrique au temps t = 100 s

CONVERGENCE

Stationary $t = 500 \ s$

1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

- Definitions and examples
- The PFS model

2 A FVK Framework

- Kinetic Formulation and numerical scheme
- Numerical results

③ CONCLUSION AND PERSPECTIVES

Easy implementation even if source terms are complex.Very good agreement for uniform pipe.

CONCLUSION AND PERSPECTIVES

Easy implementation even if source terms are complex.
Very good agreement for uniform pipe.

To do :

- Upwinding scheme \implies *a priori* preservation of steady states (in progress).
- Discrete entropy inequalities?

Thank you

for your

attention

4 imes 4 9 Mars 2011

M. Ersoy (BCAM)

FVK framework for PFS-model