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CONTEXT

Navier-Stokes equations (NSEs) or Euler equations (EEs) on
Q= {(z,y) € R*; H < L} "thin layer domain”
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Navier-Stokes equations (NSEs) or Euler equations (EEs) on
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1 [Ped]

Hydrostatic approximation (asymptotic analysis with e = H/L = W/V <« 1 and
rescaling z =z /L, § = y/H, @ = u/U @& = w/W )— Primitive equations (PEs)

J. Pedlowski

Geophysical Fluid Dynamics.
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Navier-Stokes equations (NSEs) or Euler equations (EEs) on
Q = {(z,y) € R*; H < L} "thin layer domain”

1 [Ped]

Hydrostatic approximation (asymptotic analysis with e = H/L = W/V <« 1 and
rescaling z =z /L, § = y/H, @ = u/U @& = w/W )— Primitive equations (PEs)

1 [GP]

Averaged PEs with respect to depth or altitude y — Saint-Venant Equations
(SVEs)

J. Pedlowski

Geophysical Fluid Dynamics.
2nd Edition, Springer-Verlag, New-York, 1987

J-F Gerbeau and B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1), 2001.
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@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
> Principally horizontal movements

> Density stratified




ATMOSPHERE DYNAMIC -

@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
» Principally horizontal movements
> Density stratified
@ Modeling (neglecting phenomena such as the evaporation and solar heating) :
Compressible Navier-Stokes equations
Hydrostatic approximation —> compressible primitive equations (CPEs)

d
—p+pdvU = 0
dtd
9 (pv) +div(pUv) +9yp(p) = — pg +divy(oy)

plp) = p

ood
wnthazzat—i—u-vx—l—v@y
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ATMOSPHERE DYNA_‘

@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
> Principally horizontal movements
» Density stratified
@ Modeling (neglecting phenomena such as the evaporation and solar heating) :
Compressible Navier-Stokes equations
Hydrostatic approximation — compressible primitive equations (CPEs)

%p—f-pdivU =0
p%u +Vep = divg(oz)+ f
oyp(p) = N
plp) = cp
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> Principally horizontal movements
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ATMOSPHERE DYNAMIQ-

@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
> Principally horizontal movements
» Density stratified : p = £(¢, x)efg/CQy
@ Modeling (neglecting phenomena such as the evaporation and solar heating) :
Compressible Navier-Stokes equations
Hydrostatic approximation — compressible primitive equations (CPEs)

%p—i—pdivU = 0
poutVep = diva(ow) + f
yp(p) = S P9
plp) = cp

Ia M. Ersoy and T. Ngom
Existence of a global weak solution to one model of Compressible Primitive Equations.
Submitted, 2010.

@ M. Ersoy, T. Ngom and M. Sy

Compressible primitive equations : formal derivation and stability of weak solutions. g
Nonlinearity, 24(1), pp 79-96, 2011 ‘O
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Main difference with respect to the erature

(see, for instance, Temam and Ziane [TZ04]) : here

viscosities depend on the density and are anisotropic.

R. Temam and M. Ziane

Some mathematical problems in geophysical fluid dynamics.
Handbook of mathematical fluid dynamics. Vol. 11, 2004.
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@ Existence of solutions for the classical viscous term ?
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Main difference with respect to the classical visc und in the literature

(see, for instance, Temam and Ziane [TZ04]) : here

viscosities depend on the density and are anisotropic.

Questions :
@ Existence of solutions for the classical viscous term ?
Lions et al. [LTW92]
@ A special case for the two dimensional problem 7
Gatapov and Kazhikhov [GK05]

Ij J.L. Lions and R. Temam and S. Wang

New formulations for the primitive equations for the atmosphere and applications
Nonlinearity, 5(2), pp 237-288, 1992.

@ R. Temam and M. Ziane

Some mathematical problems in geophysical fluid dynamics.
Handbook of mathematical fluid dynamics. Vol. Ill, 2004

Ia B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics "
Siberian Mathematical Journal, 46(5), pp 805-812, 2005. ‘O
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FRAMEWORK q
Main difference with respect to the classical viscous term found in the literature

(see, for instance, Temam and Ziane [TZ04]) : here
viscosities depend on the density and are anisotropic.

Questions :
@ Existence of solutions for the classical viscous term ?
Lions et al. [LTW92]
@ A special case for the two dimensional problem 7
Gatapov and Kazhikhov [GKO05]

@ Anisotropic and density dependent viscosities for the three dimensional
y
problem 7
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Main difference with respect to the classical viscous term found in the literature

(see, for instance, Temam and Ziane [TZ04]) : here
viscosities depend on the density and are anisotropic.

Questions :
@ Existence of solutions for the classical viscous term ?
Lions et al. [LTW92]
@ A special case for the two dimensional problem 7
Gatapov and Kazhikhov [GKO05]

@ Anisotropic and density dependent viscosities for the three dimensional
y
problem 7

©

ﬁ J.L. Lions and R. Temam and S. Wang
New formulations for the primitive equations for the atmosphere and applications
Nonlinearity, 5(2), pp 237-288, 1992
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Some mathematical problems in geophysical fluid dynamics.
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Find a change of variables (in the same spirit of Lions et al
[LTWO2]) to get a similar model as in [GKO05], that is to
say, change the hydrostatic equation

*d,p = —g p into 9.£ = 0.

M. Ersoy (BCAM)
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Let us consider the following two dimensional problem :

dip +pdivU = 0
@u +E0p = 0:(ni(t,m,y)0pu) + 0y (va(t, z,y)0yu)
0yp = —gp

with U = (u,v) € R?
or equivalently, in conservative form :

Owp + O (pu) +0y(pv) = 0
B(pu) + 0:(pu?) + 9y (puv) + *0p = Dp(ni(t,x,y)0u)
+ay(V2(t?$> y)ayu)
Foyp = —gp

M. Ersoy (BCAM)



Let us consider the following two dimensional problem :

Oip + O0z(pu) + 9y(pu) = 0
3y (pu) + 0:(pu®) + 9y (puv) + 20pp = Du(1(t, ,y)0;u)
+8y(l/2(t,$, y)ayu)
Foyp = —gp

Then,
@ Set p = &(t, x)e_c%y, v (t,z,y) = e Y, va(t,x,y) = ey,
(71, 72) € R? and multiply by ey

M. Ersoy (BCAM)



Let us consider the following two dimensional problem :

O + 0p(Eu) + €7V, (Ce” V) = 0
By (€u) + 0u(Eu?) + 7Y, (e P Vuv) + P0pE = T1Oppu
+I/_2€c%yay(€c%yayu)
c2ec%y8y(§e_c%y) = —g¢

Then,
e Set p = (L, a:)e_'c%y, v (t,x,y) = e Y, va(t,x,y) = hetY,
(71, 72) € R? and multiply by ey
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Let us consider the following two dimensional problem :

Ol + 0, (Cu) + €YD, (Ce™F) = 0
Dy(Eu) + 0, (u?) + €20, (Ce™ V) + 0,6 = T1Oppu
736299, (e Y D,u)
PeFVY, (CemEY) = gt

Then,
e Set p = (L, x)efc%y, v (t,x,y) = ve Y, va(t,x,y) = vhezY,
(71, 72) € R? and multiply by ey

9 — 9
o Set 0.- =e2Y0,-and w =e Y0

M. Ersoy (BCAM)



Let us consider the following two dimensional problem :

6t€ + am (gu) + 82(5“) - 0
Ot (&u) + 0,(Eu?) + 0. (€uw) + 0,6 = T10,,u
+720..u

2.£=0
Then,

@ Set p = £&(t, w)e_?gfy, vi(t,x,y) = e Y, vo(t,z,y) = ety
(71, 17) € R? and multiply by e ¥

9 —9
o Set 0,- =e2¥dy- and w=e" 2%

M. Ersoy (BCAM)



A USEFUL CHANGE OF Vw
Finally, we get : . 7

O + 05(&u) + 0, (§u) = 0
0:(€u) + 0, (€u?) + 0:(€ww) + ¢*0p§ = Ti0psu
+720;.u
0:£=0
or equivalently, in non-conservative form :
dif +&divd = 0
fau + 8283;5 = 770zu+ V_28zzuaz£ =0
with
o U:=(u,w),
D
(] Ht = 6,5 + uU- V,
o V= (0,,0.)",
o div:=0, + 0.,.

and corresponds exactly to the model studied by [GKO05] : existence of weak

solutions global in time for the model with (p,u) is then a straightforward
consequence.

k2
M. Ersoy (BCAM) CPEs LJK, Grenoble, the 03 February 2011
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THE 3D-CPES

Let us consider the following model posed on Q = {(z,y); z € T2, 0 <y < 1} :

%p + pdivU = 0,

pou + Vap = 2div, (v1(t, 2, y) Dy (u)) + 0y (va(t, z,y)0yu) ,
yp = —gp,
pp) =cp
with
periodic conditions on 02,
Vly=0 = Vjy=r =0,
yuy,_o = Oyu,_py =0.
and
U(O, €T, y) = Uo(l‘, y)7
pl0,2,y) = olw)e /<
where

M. Ersoy (BCAM)

3



Let us multiply the previous system by U, we get :

d
dt/(p|u|2+plnp—p+l) dmdy+/ 2V1|Dx(u)|2+ug|8§u|dmdy—i—/pgvdxdy
Q Q Q

where / pgvdxdy >7 <0777,
Q




ENERGY ESTIMAT_

Let us multiply the previous system by U, we get :

d

a/(p|u|2+plnp—p+l) dﬂcdy+/ 21/1|Dx(u)|2+1/2|8§u|dmdy+/ pgv dxdy
Q Q Q

where / pgvdxdy >7 <0777,
Q
Could we simply multiply by u instead of U?

M. Ersoy (BCAM)



Let us multiply the previous system by U, we get :

d

E/(p|u|2+plnp—p+l) dﬂcdy+/ 21/1|Dx(u)|2+1/2|8§u|dmdy+/ pgv dxdy
Q Q Q

where / pgvdxdy >7 <0777,
Q

No, it is not enough to get useful estimates for stability of solutions.




ENERGY ESTIMATES 2.2 -

Let us multiply the previous system by U, we get :

d
E/(p|u|2+p1np—p+l)dxdy+/ 2V1|Dz(u)|2+V2|8§u|dxdy+/pgvdxdy
Q Q Q

where / pgvdady >7 <0777
Q

However, if the rhs of the last is zero : from the mass equation, we have
1.
0w = Edlvm(gazu)
a crucial information to get additional estimates.

Consequently, we systematically perform the previous change of variables, i.e.
changes (p,u,v) in (§,u,w).

M. Ersoy (BCAM) CPEs LJK, Grenoble, the 03 February 2011 13 /26



If we choose the previous viscosities, we get :

d .
E& + &divU = 0,

d
§ut Vap = 1Az u + 730,u,
0uE = 0

4. up to our knowledge
M. Ersoy (BCAM)



If we choose the previous viscosities, we get :

d .
Ef + &divU = 0,

d
§ut Vap = 1Az u + 730,u,
0uE = 0

@ energy estimates OK'!

4. up to our knowledge
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If we choose the previous viscosities, we get :

d .
af + &divU = 0,

d
§ut Vap = 1Az u + 730,u,
azg =0

@ energy estimates OK !

@ No way to establish results* : Lagrangian coordinates approach as in [GKO05]
fails.

4. up to our knowledge -

M. Ersoy (BCAM)



VISCOSITIES ? 7 2 -

Choose vy (t,z,y) = v1p(t,z,y) and vo(t, z,y) = Dap(t, z,y)e*? with ; > 0,, we
get :

%5 + ¢(divzu 4+ 0,w) = 0,

§%u + 2V € = 201 div, (€D, (u)) + 720, (Eva(t, x, 2)0.u), (1)
azf =0,

p(§) =c*¢

Then,
o Existence??7?

@ Stability of weak solutions : Yes!!! by adding a regularizing term to equations
in order to pass to the limit in the non-linear term £u? (BD-entropy).

M. Ersoy (BCAM)



WITH THESE SETTIN-‘

Multiply by U, the energy reads :

d
% (g + (EIn€ — ¢ +1)) dadz + / €(201|Dy(u)|? + 22]0,u?) dadz
QI
+r/ €|u)® dedz < 0
Q/
)
which provides the uniform estimates :
\/gu is bounded in L*>(0, T; (L*(
¢5u is bounded in L3(0, T; (L(
V/€0,u is bounded in L?(0, T} (L*(
V€D, (u) is bounded in L?(0, T; (LQ(QI
€In¢ — € + 1 is bounded in L>(0,T; L*()).

M. Ersoy (BCAM)



WITH THESE SETTINGS -
Following BD the strong convergence of \/Eu required to pass to the limit in the
non linear term £u ® u is obtained by the BD entropy :

Take the gradient of the mass equation, multiply by 20, write the term V£ as
&V, In €, combine with the momentum equations, to get the entropy inequality :

1d
2dt o (§|u+2171vx1n£|2+2(§log§—§+1)) drdz

+/ 201€|0,w|? + 201€| Ay (u)]? + 72€|0,u|? dzdz
Q/
+/ ré|ul® + 2017 u|uV € + 851 |V /€] dadz = 0. (3)
Q/
which gives the following estimates :

V /€ is bounded in L=(0,T; (L*(2))%),
V/€0.w is bounded in L*(0,T; L*(Q)),
V€A, (u) is bounded in L?(0, T} (LAADoN2

M. Ersoy (BCAM) CPEs LJK, Grenoble, the 03 February 2011 16 / 26



Define the set of function p € PE(u,v;y, po) which satisfy

p € L0, T; L*(), VP € L¥(0,T; H' (),

Jau € L2(0,T: (L2(Q))?), v € L0, T; L3(9)),
VD) € L2(0,T: (IX(0))), ooy € LX(0,7: 1*(),
Vs e X0, T (I())

with p > 0 and where (p, \/pu, \/pv) satisfies :

{ dvp + divy (y/py/pu) + 0y (y/py/pv) = 0,
Pt=0 = pPo-

M. Ersoy (BCAM)



WITH THESE SETTIN
Define the integral operators, for any smoo ompact

support such as (T, z,y) =0 and ¢o = P10 :
Alp,u,v;0,dy) = / / pudyp dzdydt
/ / (2v1(t,z,y)pDy(u) — pu @ u) : Voo dedydt

//rp|u|ug0d;z:dydt //pdlv ) dxdydt

/ / udy (va(t, x, y)0yp) dedydt

— / / pvuldyp drdydt
0o Ja

T
B(p,u,v;so,dy)=/ /pmpdxdydt
0 Q

and
Clp,u;p,dy) = /Qplt:0u|t:0900 dzdy

M. Ersoy (BCAM) CPEs



DEFINITION

A weak solution of 3D-CPEs on [0, 7] x €, with boundary conditions and initial
conditions, is a collection of functions (p,u,v) such as p € PE(u,v;y, po) and the
following equality holds for all smooth test function ¢ with compact support such

as <p(T,x,y) =0 and Yo = Pt=0 -

A(p,u,v;0,dy) + B(p,u,v; ¢, dy) = C(p,u; p,dy) .

-

M. Ersoy (BCAM) CPEs LJK, Grenoble, the 03 February 2011 19 / 26



i -

THEOREM

Let (pn,un,v,) be a sequence of weak solutions of 3D-CPEs, with boundary
conditions and initial conditions, satisfying entropy inequalities (2) and (3) such as

pn =0, p§ — poin LN(Q), piug — pouo in L'(9).

Then, up to a subsequence,

o p, converges strongly in C°(0, T} L3/2(Q)),

o \/pnu, converges strongly in L(0,T; (L*/?(2))?),

o pnuy converges strongly in L*(0,T; (L*(Q))?) for all T > 0,
(Prs/Prlin, /Pnvn) converges to a weak solution of 3D-CPEs,

(pn, Uy, vy,) satisfies the energy inequality (2), the entropy inequality (3) and
converges to a weak solution of 3D-CPEs.

M. Ersoy (BCAM) CPEs LJK, Grenoble, the 03 February 2011 20/ 26



To show the compactness of sequences (&, riate space function

we follow the work of Mellet et

@ show the convergence of the sequence /&,

Q we seek bounds of \/&,u,, and /&, wy,

@ prove the convergence of &,u,,,

@ prove the convergence of \/&,u,,.

which ends the proof.

A. Mellet and A. Vasseur

On the barotropic compressible Navier-Stokes equations.
Comm. Partial Differential Equations, 32(1-3), pp 431-452, 2007.

M. Ersoy (BCAM) Cl
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@ Show the existence or stability of weak solutions for the 3D-CPEs with

v = V_le_ffy and vy = I/_Qeffy,

@ Show the existence of weak solutions for the presented 3D-CPEs.
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One more thing
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MAIN STEPS [LT

Equations are

%u + Vap = pAzu + v0ou

c’z,p— —gp, p=¢cp
7 —p + pdivU = 0,
D 1 D

q:Qq

J.L. Lions and R. Temam and S. Wang

New formulations for the primitive equations for the atmosphere and applications
Nonlinearity, 5(2), pp 237288, 1992.

R. Temam and M. Ziane

Some mathematical problems in geophysical fluid dynamics.
Handbook of mathematical fluid dynamics. Vol. Ill, 2004.




Mo sters (LW o2
Equations are - -

d
p—u+ Vep = pAzu+ V@Zu

dt )
c’z,p =—gp, p=cp
7 —p + pdivU = 0,
D 1 D

q= Qq
Ideas :
@ Use the pressure as a vertical coordinate.

J.L. Lions and R. Temam and S. Wang
New formulations for the primitive equations for the atmosphere and applications
Nonlinearity, 5(2), pp 237288, 1992.

R. Temam and M. Ziane

Some mathematical problems in geophysical fluid dynamics.
Handbook of mathematical fluid dynamics. Vol. 111, 2004.
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Mary stors (LT W02 AR

Equations are
d
p—u+ Vep = pAzu+ yagu

Pat ,
%p——gp, p=c’p
7 —p + pdivU =0,

D 1D
i S Db QT,

q:Qq

Ideas :
@ Use the pressure as a vertical coordinate.
@ Write equations in spherical coordinate.

J.L. Lions and R. Temam and S. Wang

New formulations for the primitive equations for the atmosphere and applications
Nonlinearity, 5(2), pp 237-288, 1992

R. Temam and M. Ziane

Some mathematical problems in geophysical fluid dynamics.
Handbook of mathematical fluid dynamics. Vol. 111, 2004.
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MAIN STEPS [LTWQ_‘

Equations are

d
Eu + Vep = pAzu+ V@Zu
c’fiyp— —gp, p=¢cp
P + pdivU = 0,
D 1D
i S Db QT,
q= Qq

Ideas :

@ Use the pressure as a vertical coordinate.

@ Write equations in spherical coordinate.

@ Mass equation is changed into incompressible one : Leray’s results are
available.

J.L. Lions and R. Temam and S. Wang

New formulations for the primitive equations for the atmosphere and applications
Nonlinearity, 5(2), pp 237-288, 1992

R. Temam and M. Ziane
Some mathematical problems in geophysical fluid dynamics.
Handbook of mathematical fluid dynamics. Vol. 111, 2004.
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MAIN STEPS [G

Equations are
d
a{ + £(0zu + 0.w) = 0,
d
pEU + 0 = Au,
0.¢£ =0.

Lo d
with E::&—l—u-vz—i—v@z

B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics
Siberian Mathematical Journal, 46(5), pp 805-812, 2005.
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Equations are

d

ag + 5(830'“ + 8zw) =0,
d

pEu + 0,& = Au,

0.£ = 0.

with % =0y +u-V, +v0, Ideas:

xT
o Write equations in Lagrangian coordinates : 7 =t and n = / &(t,s)ds
0

B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics
Siberian Mathematical Journal, 46(5), pp 805-812, 2005.
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Equations are
d
E& + £(0u + 0,w) = 0,

d
pEu + 0,& = Au,
0.¢ =0.

with % =0y +u-V, +v0, Ideas:

x
o Write equations in Lagrangian coordinates : 7 =t and n = / &(t,s)ds
0

@ Show by standard argument (Gronwall inequality, Cauchy-Schwartz,...) that
the density is bounded from below and above

B. V. Gatapov and A. V. Kazhikhov

Existence of a global solution to one model problem of atmosphere dynamics
Siberian Mathematical Journal, 46(5), pp 805-812, 2005

M. Ersoy (BCAM)



MAIN sTEPS [GKO05] : _

Equations are
d
%g + £(0zu + 0, w) = 0,
p%u + 0,& = Au,
0,£ =0.

with % =0y +u-V, +v0, Ideas:

xT
@ Write equations in Lagrangian coordinates : 7 =t and n = / &(t,s)ds
0

@ Show by standard argument (Gronwall inequality, Cauchy-Schwartz,...) that
the density is bounded from below and above

@ Write mean-oscillation equations and apply a Schauder fixed point theorem

return
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@ x = (z1,x2) horizontal and y vertical coordinate,

@ U= (u= (u1,usz),v) velocity vector (horizontal and vertical component),
@ p density,

@ p barotropic pressure,

@ g gravity constant,

o ¢? usually set to RT where R is the specific gas constant for the air and 7

the temperature,

div, := 0y, + Op,, Dy = (Vo + VL) /2,

o vi(t,x,y) # va(t, x,y) represent the anisotropic pair of viscosity depending
on the density p,

D
(] Ht—at"_uv,
° %:zﬁt—i-u'vz-i-va,

0 2D, (u) =V,u+Viu= (5’in;‘ + O, ui)

1<0,j<2 7
-
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