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Motivations

Modelling of open channel and rivers
I water availability,
I urban sewer systems,
I flood risks,
I . . .

(a) Flooding (b) DeltaFlume (NL) (c) Araguari River (Brazil)

Most widely used depth-averaged models :
Saint-Venant system

Hydrostatic models limitations

I Esteves, Faucher, Galle, and Vauclin. Journal of hydrology, 2000.

I Torsvik, Pedersen, and Dysthe. Journal of waterway, port, coastal, and ocean engineering, 2009.
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Motivations

Modelling of open channel and rivers

Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic)

and non-dispersive)

Depth averaged model


∂th+ div(hu) = 0,

∂t(hu) + div

(
hu⊗ u+ g

h2

2
I

)
= −gh∇d,

with
h(t, x) = η(t, x)− d(x) : water level
u(t, x) ∈ R2 : depth averaged speed
g : gravity

Hydrostatic models limitations

I Saint-Venant. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 1871.

I Marche. Eur. J. Mech.B/ Fluids, 2007

I Bourdarias, Ersoy, and Gerbi. Science China Mathematics, 2012.
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Motivations

Modelling of open channel and rivers

Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic)

and non-dispersive)

Section averaged model


∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(x,A)

)
= gI2(x,A)

with

A(t, x) : wet area
Q(t, x) : discharge

I1(x,A) =

∫ η

d

σ(x, z)(η − z)dz : hydrostatic pressure

I2(x,A) =

∫ η

d

∂

∂x
σ(x, z)(η − z)dz : hydrostatic pressure source

g : gravity

Hydrostatic models limitations → Illustration with undular bore

I Bourdarias, Ersoy, and Gerbi. Science China Mathematics, 2012.
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Motivations

Modelling of open channel and rivers

Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic)

and non-dispersive)

Hydrostatic models limitations → Illustration with undular bore
I discontinuous solution also referred as bores takes the form of a breaking wave

with turbulent rollers for large transitions.

(d) Bore

(e) Un-
dular
bore
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Motivations

Modelling of open channel and rivers

Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic and non-dispersive)

Hydrostatic models limitations → Illustration with undular bore
I discontinuous solution also referred as bores takes the form of a breaking wave

with turbulent rollers for large transitions.
I the advancing front is followed by a train of free-surface undulations (whelps)

for small or moderate transitions → dispersive effects

(f) Bore (g) Un-
dular
bore
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State of the Art : weakly non linear, weakly dispersive

Observation of Soliton

Figure – Russell’s experiments “like” in 1834

Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with ε = O(µ)� 1

KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

Witting proposed a method to improve the frequency dispersion of the
Boussinesq-type equations in 1984

A 1D fully non-linear (ε = O(1)) and weakly dispersive equation for flat
bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear
close to shoaling zone)

Green and Naghdi derived the 2D fully nonlinear dispersive equations for
uneven bottom in 1976

Recent progress : Lannes, Bonneton, Cienfuegos, Dutykh, Richard, Gavrilyuk,
Sainte-Marie, . . .
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State of the Art : weakly non linear, weakly dispersive

Observation of Soliton

Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with ε = O(µ)� 1


∂

∂t
ξ +

∂

∂x
(hu) = O(µ2)

∂

∂t
u+ εu

∂

∂x
u+∇ξ + µD = O(µ2)

with

ε =
a

H
: non-linear parameter

µ =

(
H

L

)2

: dispersive parameter

h : water depth
ξ : free surface elevation
D : dispersive term

KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

Witting proposed a method to improve the frequency dispersion of the
Boussinesq-type equations in 1984

A 1D fully non-linear (ε = O(1)) and weakly dispersive equation for flat
bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear
close to shoaling zone)

Green and Naghdi derived the 2D fully nonlinear dispersive equations for
uneven bottom in 1976

Recent progress : Lannes, Bonneton, Cienfuegos, Dutykh, Richard, Gavrilyuk,
Sainte-Marie, . . .

I Boussinesq. Comptes Rendus Acad. Sci, 1871.
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I Boussinesq. Comptes Rendus Acad. Sci, 1871.

I Korteweg and Gustav De Vries. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895.
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Recent progress : Lannes, Bonneton, Cienfuegos, Dutykh, Richard, Gavrilyuk,
Sainte-Marie, . . .

I Witting. Journal of Computational Physics, 1984.

I Madsen and Sorensen. Coastal engineering, 1992.

I Nwogu. Journal of waterway, port, coastal, and ocean engineering, 1993.
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State of the Art : non linear, weakly dispersive

Observation of Soliton

Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with ε = O(µ)� 1

KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.
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A 1D fully non-linear (ε = O(1)) and weakly dispersive equation for flat
bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear
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Green and Naghdi derived the 2D fully nonlinear dispersive equations for
uneven bottom in 1976

Recent progress : Lannes, Bonneton, Cienfuegos, Dutykh, Richard, Gavrilyuk,
Sainte-Marie, . . .

I Serre. La Houille Blanche, 1953.
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Sainte-Marie, . . .

I Green and Naghdi. Journal of Fluid Mechanics, 1976.
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State of the art & aims
Construction of a new averaged model for open channel and river flows
considering that

with 2D models → high memory and computer requirements.

with 1D models → not accurate.

good compromise can be achieved by 3D-1D model reduction
I with non-linear terms
I with dispersive terms
I which takes into account of the channel/river geometry
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Outline of the talk
Outline of the talk

1 Derivation (based on Euler equations)
3D-2D
2D-1D
3D-1D

2 Improved model and stability
Reformulated and stable models
Invertible operator

3 Numerical analysis and test case
Finite Volume scheme
Numerical simulation

4 Conclusion and perspectives
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Geometric set-up & Equations

Incompressible and irrotational Euler
equations

div(ρ0u) = 0,
∂

∂t
(ρ0u) + div(ρ0u⊗ u) +∇p− ρ0F = 0

with
u = (u, v, w) : velocity field
ρ0 : density
F = (0, 0,−g) : external force
p : pressure

completed with the irrotational relations

∂u

∂y
=
∂v

∂x
,
∂v

∂z
=

∂w

∂y
,
∂u

∂z
=
∂w

∂x
.
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Geometric set-up & Equations

Incompressible and irrotational Euler
equations

div(ρ0u) = 0,
∂

∂t
(ρ0u) + div(ρ0u⊗ u) +∇p− ρ0F = 0

free surface kinematic boundary condition,

u · nfs =
∂

∂t
m · nfs and p = p0, ∀m(t, x, y) = (x, y, η(t, x, y)) ∈ Γfs(t, x)

no-penetration condition on the wet boundary

u · nwb = 0, ∀m(x, y) = (x, y, d(x, y)) ∈ Γwb(x)
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Rescaling and asymptotic regime
Let us define the dispersive parameters

µ1 =
h2

1

L2

µ2 =
H2

2

L2
,

such that
h1 < H1 = H2 � L, i.e. µ1 < µ2

2

where
H1 : characteristic scale of channel width
h1 : characteristic wave-length in the transversal direction
H2 : characteristic water depth

Fr =
U√
gH2

: Froude’s number

T =
L

U
: characteristic time

P = U2 : characteristic pressure
X : characteristic length of x
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Rescaling and asymptotic regime
Then, define the dimensionless variables

x̃ =
x

L
, P̃ =

P

P
, ϕ̃ =

ϕ

h1
,

ỹ =
y

h1
, ũ =

u

U
, d̃ =

d

H2
,

z̃ =
z

H2
, ṽ =

v

V
=

v
√
µ1U

, η̃ =
η

H2
.

t̃ =
t

T
, w̃ =

w

W
=

w
√
µ2U

.
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Rescaling and asymptotic regime
We get

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂P

∂x
= 0

µ1

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+
∂P

∂y
= 0

µ2

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+
∂P

∂z
= − 1

Fr
2

and
∂u

∂y
= µ1

∂v

∂x
, µ1

∂v

∂z
= µ2

∂w

∂y
,
∂u

∂z
= µ2

∂w

∂x
.
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”Coulisses” I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in , we proceed as follows

Therefore, we assume µ1 6= µ2.
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”Coulisses” I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

ux + wz = 0

+BC⇒ w(t, x, z) = −
(∫ z

d

u(t, x, z) dz

)
x

uz = µwx ⇒ u(t, x, z) = u|z=d(t, x) + µ

∫ z

d

wx(t, x, z) dz ⇒

w(t, x, z) = −
(∫ z

d

u|z=d(t, x) dz

)
x

+O(µ)

⇒ u(t, x, z) = f1(u|z=d(t, x)) + µf2(z, u|z=d(t, x), d(x)) +O(µ2) ⇒
u|z=d = f3(ū(t, x)) . . .

Therefore, we assume µ1 6= µ2.
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”Coulisses” I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

ux + vy + wz = 0 ⇒
∫

Ω

vy + wz dydz . . .

Therefore, we assume µ1 6= µ2.
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”Coulisses” II : why introduce h1 < H1 ?
A counter example if h1 = H1 :

Consider the (nondimensional) rectangular channel

(x̃, ỹ, z̃) ∈
[
0,
Lc
L

]
×
[
0,
H1

h1

]
× [0, 1] where L� Lc.

Incompressible + Irrotational ⇒ ∃φ̃ ; (ũ, ṽ, w̃)T = ∇φ̃
More precisely, ∀(p, q) ∈ N2, we have :

φ̃p,q(x, y, z) = cos

(
pπ
x̃L

Lc

)
cos

(
qπ
ỹh1

H1

) cosh
(
πz̃
√
p2µ2

L2

L2
c

+ q2 µ2

µ1

h2
1

H2
1

)
cosh

(
π
√
p2µ2

L2

L2
c

+ q2 µ2

µ1

h2
1

H2
1

) .

Keeping in mind that H2 < L� Lc,

I if h1 = H1 < H2 then

is rapidly varying in z̃

I Therefore, we consider h1 < H1 = H2 :

p2µ2
L2

L2
c

+ q2 µ2

µ1

h2
1

H2
1

= p2H
2
2

L2
c

+ q2H
2
2

H2
1
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More precisely, ∀(p, q) ∈ N2, we have :

φ̃p,q(x, y, z) = cos

(
pπ
x̃L

Lc

)
cos

(
qπ
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”Coulisses” III : order of integration

”Coulisses” II naturally yields to V < W < U where
(U, V =

√
µ1U,W =

√
µ2U)

As a consequence, we proceed as follows
I 3D-2D reduction (width averaging)

:

u(t, x, y, z) = 〈u〉(t, x, z) +O(µ1)

I 2D-1D reduction (depth averaging)

:

〈u〉(t, x, z) = u(t, x) + µ2f(u(t, x),Ω(t, x)) +O(µ2
2)

where u(t, x) is the section-averaged velocity

I 3D-1D reduction (section averaging)

:

u(t, x, y, z) = u(t, x) + µ2f(u(t, x),Ω(t, x)) +O(µ2
2)
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Step 1 : 3D-2D reduction

Div and irrotational equations ⇒

noting

Xα(t, x, z) := X (t, x, α(x, z), z)

we have

u(t, x, y, z) = uα(t, x, z)− µ1

2

∂

∂x
divx,z

[
wα(t, x, z)(y − α(x, z))2]+O

(
µ2

1

µ2

)
and

w(t, x, y, z) = wα(t, x, z)− µ1

2µ2

∂

∂z
divx,z

[
wα(t, x, z)(y − α(x, z))2]+O

(
µ2

1

µ2
2

)
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Step 1 : 3D-2D reduction

Width-averaging ⇒ noting

〈X〉(t, x, z) :=
1

σ(x, z)

∫ β(x,z)

α(x,z)

X(t, x, y, z) dy

we have

σ(x, z)〈u〉(t, x, z) = σ(x, z)uα(t, x, z)− µ1

6

∂

∂x
divx,z

[
wα(t, x, z)σ(x, z)3]+O

(
µ2

1

µ2

)
,

σ(x, z)〈w〉(t, x, z) = σ(x, z)wα(t, x, z)− µ1

6µ2

∂

∂z
divx,z

[
wα(t, x, z)σ(x, z)3]+O

(
µ2

1

µ2
2

)
.

where σ(x, z) = β(x, z)− α(x, z) is the width of the section at the elevation z.
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Step 1 : 3D-2D reduction

Width-averaging ⇒

P (t, x, y, z) = Pα(t, x, z)+O(µ1) =
η(t, x, y)− z

Fr
2 +µ2

∫ η(t,x,y)

z

D

Dt
wα(t, x, z) ds+O(µ1)

⇓
Flat free surface approximation a :

η(t, x, y) = ηeq(t, x) +O(µ1)

(a) Initial

⇒
(b) Flat FS approximation

a. Debyaoui, Ersoy, Asymptotic Analysis, 2020
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η(t, x, y)− z

Fr
2 +µ2

∫ η(t,x,y)

z

D

Dt
wα(t, x, z) ds+O(µ1)

⇓
Flat free surface approximation a :

η(t, x, y) = ηeq(t, x) +O(µ1)

(c) Initial

⇒
(d) Flat FS approximation

a. Debyaoui, Ersoy, Asymptotic Analysis, 2020
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Step 1 : 3D-2D reduction

Width-averaging ⇒ we get the 2D width-averaged model

divx,z [σwα] +O

(
µ2
1

µ2
2

)
=

µ1

6µ2

∂

∂z

(
σ
∂

∂z

(
divx,z

[
wασ

3
]))

∂

∂t
(σuα) + divx,z [σuαwα] +

∂

∂x
(σPα) +O

(
µ2
1

µ2
2

)
= Pα

∂σ

∂x

+
µ1

6µ2

∂

∂x

(
uα

∂

∂z
divx,z

[
wασ

3
])

µ2

(
∂

∂t
(σwα) + divx,z [σwαwα]

)
+

∂

∂z
(σPα) = −

σ

Fr2

+Pα
∂σ

∂z
+O(µ1)

completed with the irrotational equation

∂uα
∂z

= µ2
∂wα
∂x

+O(µ1)
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Step 2 : 2D-1D reduction

Div and irrotational equations (model 2D) ⇒ noting

fb(t, x) = fα(t, x, d
∗
(x)), S(u, x, z) =

1

σ(x, z)

∂

∂x
(uS(x, z)) , S(x, z) =

∫ z

d∗(x)

σ(x, s) ds

we have

uα(t, x, z) = ub(t, x)− µ2

∫ z

d∗(x)

∂

∂x
S(ub, x, s) ds+O(µ2

2)

and

wα(t, x, z) = − 1

σ(x, z)

∂

∂x
(ub(t, x)S(x, z)) +O(µ2)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 11 / 21



Step 2 : 2D-1D reduction

Depth-averaging ⇒ noting

ūeq =
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

∫ β(x,z)

α(x,z)

u(t, x, y, z) dydz

we get

ub(t, x) = ūeq(t, x)

+
µ2

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)

(∫ z

d∗(x)

∂

∂x
S(ūeq(t, x), x, s) ds

)
dz

+O(µ2
2)
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Step 2 : 2D-1D reduction

Depth-averaging ⇒ finally,

u(t, x, y, z) = ūeq(t, x) + µ2B0(ūeq, x, z) +O(µ2
2)

with

B0(ūeq, x, z) =
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

(
σ(x, z)

∫ z

d∗(x)

∂

∂x
S(ūeq(t, x), x, s) ds

)
dz

−
∫ z

d∗(x)

∂

∂x
S(ūeq(t, x), x, s) ds
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Step 2 : 2D-1D reduction

Depth-averaging ⇒ we also have

P (t, x, y, z) = Ph(t, x, z) + µ2Pnh(t, x, z) +O(µ2
2)

where

Ph(t, x, z) =
(z − ηeq(t, x))

Fr
2

and

Pnh(t, x, z) =

∫ ηeq(t,x)

z

1

2σ(x, s)2

∂

∂z

(
(σ(x, s)S(ūeq(t, x), x, s))

2 )
ds

−
∫ ηeq(t,x)

z

∂

∂t
S(ūeq(t, x), x, s)

+
ūeq(t, x)

σ(x, s)

∂

∂x
(σ(x, s)S(ūeq(t, x), x, s)) ds
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Step 3 : 3D-1D reduction

Euler equations in Ωeq instead of Ω

Boundary condition :∫
∂Ωeq(t,x)

(
∂

∂t
M + u

∂

∂x
M − v

)
· n ds = 0

Introduce wet region indicator function Φ which satisfies

∂

∂t
Φ +

∂

∂x
(Φu) + divy,z [Φv] = 0 on Ωeq(t) =

⋃
0≤x≤1

Ωeq(t, x) .

where v = (v, w).

Section-averaging equations using the approximation

u(t, x, y, z) = ūeq(t, x) + µ2B0(ūeq, x, z) +O(µ2
2)

η(t, x, y) = ηeq(t, x) +O(µ1)
P (t, x, y, z) = Ph(t, x, z) + µ2Pnh(t, x, z) +O(µ2

2)
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The new 1D nonlinear and dispersive model


∂

∂t
Aeq +

∂

∂x
Qeq = 0

∂

∂t
Qeq +

∂

∂x

(
Qeq

2

Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(DI1(x,Aeq, Qeq)) =

I2(x,Aeq) + µ2DI2(x,Aeq, Qeq) +O(µ2
2)

where

Aeq =

∫
Ωeq(t,x)

dy dz : wet area

Qeq = Aeq(t, x)ūeq(t, x) : discharge

Remark (Generalisation of the free surface model)

Setting µ2 = 0, we recover the usual nlsw equations for open channel.

I Bourdarias, Ersoy, Gerbi. Science China Mathematics, 2012.

I Debyaoui, Ersoy. Asymptotic Analysis, 2020
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σ(x, z) dy dz : hydro. press.

I2 = −
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y−(t,x)
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Fr
2

∂

∂x
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I Bourdarias, Ersoy, Gerbi. Science China Mathematics, 2012.
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Reformulation : generalization of the SGN equations


∂

∂t
Aeq +

∂

∂x
Qeq = 0

∂

∂t
Qeq +

∂

∂x

(
Qeq

2

Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(D(ūeq)G(Aeq, x)) = I2(x,Aeq)

+µ2G(ūeq, S, σ) +O(µ2
2)
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Qeq = 0

∂

∂t
Qeq +

∂

∂x

(
Qeq

2

Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(D(ūeq)G(Aeq, x)) = I2(x,Aeq)

+µ2G(ūeq, S, σ) +O(µ2
2)

where

D(ūeq) =

(
∂

∂x
ūeq

)2

− ∂

∂t

∂

∂x
ūeq − ūeq

∂

∂x

∂

∂x
ūeq

and

G(Aeq, x) =

∫ ηeq

d∗(x)

σ(x, z)

∫ ηeq

z

S(x, s)

σ(x, s)
ds dz
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Reformulation : generalization of the SGN equations
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∂

∂t
Qeq +

∂
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(
Qeq

2

Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(D(ūeq)G(Aeq, x)) = I2(x,Aeq)

+µ2G(ūeq, S, σ) +O(µ2
2)

where

G(u, S, σ) =

∫ ηeq

z

u2

σ(x, s)

 ∂

∂x
S(x, s)

∂

∂x
σ(x, s)

σ(x, s)
− ∂

∂x

∂

∂x
S(x, s)


+
∂

∂x

(
u2

2

)S(x, s)
∂

∂x
σ(x, s)

σ(x, s)2

−
(
∂

∂t
ūeq + ūeq

∂

∂x
ūeq

) ∂

∂x
S(x, s)

σ(x, s)
ds

.
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Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(D(ūeq)G(Aeq, x)) = I2(x,Aeq)

+µ2G(ūeq, S, σ) +O(µ2
2)

Setting σ = 1, d = 1,

Aeq = heq

S(x, z) ≡ S(z) ⇒ G = 0 and I2 = 0

G =
heq

3

3

I1 =
heq

2

2F 2
r
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Reformulation : generalization of the SGN equations


∂

∂t
Aeq +

∂

∂x
Qeq = 0

∂

∂t
Qeq +

∂

∂x

(
Qeq

2

Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(D(ūeq)G(Aeq, x)) = I2(x,Aeq)

+µ2G(ūeq, S, σ) +O(µ2
2)

we recover the classical SGN equations on flat bottom
∂

∂t
heq +

∂

∂x
(hequeq) = 0

∂

∂t
(hequeq) +

∂

∂x

(
hequeq

2 +
heq

2

2F 2
r

)
+ µ2

∂

∂x

(
heq

3

3
D(ueq)

)
= O(µ2

2)
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Reformulation : generalization of the SGN equations


∂

∂t
Aeq +

∂

∂x
Qeq = 0

∂

∂t
Qeq +

∂

∂x

(
Qeq

2

Aeq
+ I1(x,Aeq)

)
+ µ2

∂

∂x
(D(ūeq)G(Aeq, x)) = I2(x,Aeq)

+µ2G(ūeq, S, σ) +O(µ2
2)

Remark

Dispersive equation are usually characterized by third order term ⇒ may create
high frequencies instabilities

Figure – Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283–304, 2017.
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A more stable formulation→ useful for numerical purpose

Define the linear T and the quadratic Q operators

T [Aeq, d, σ, z](u) =
∂

∂x
(u)

∫ ηeq

z

S(x, s)

σ(x, s)
ds+ u

∫ ηeq

z

1

σ(x, s)

∂

∂x
S(x, s) ds ,

and

G[Aeq, d, σ, z](u) =

∫ ηeq

z

2

(
∂

∂x
u

)2
S(x, s)

σ(x, s)
+

u2

σ(x, s)

 ∂

∂x
S(x, s)

∂

∂x
σ(x, s)

σ(x, s)
− ∂

∂x

∂

∂x
S(x, s)


+
∂

∂x

(
u2

2

)S(x, s)
∂

∂x
σ(x, s)

σ(x, s)2
ds

Define the averaged linear T and the quadratic Q operators

Define the operators L and Q
and finally the operator L
Reformulated model

∂

∂t
Aeq +

∂

∂x
(Aequeq) = 0(

Id − µ2L[Aeq, d, σ]
)( ∂

∂t
(Aequeq) +

∂

∂x

(
Aequeq

2))
+µ2AeqQ[Aeq, d, σ](ueq) = O(µ2

2)

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Part 2, preprint, 2020
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A more stable formulation→ useful for numerical purpose

Define the linear T and the quadratic Q operators

Define the averaged linear T and the quadratic Q operators

T [Aeq, d, σ](u, ψ) =
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A more stable formulation→ useful for numerical purpose

Define the linear T and the quadratic Q operators

Define the averaged linear T and the quadratic Q operators

Define the operators L and Q

L[Aeq, d, σ](u) = AeqL[Aeq, d, σ]

(
u

Aeq

)
and

Q[Aeq, d, σ](u) =
1

Aeq

[
∂

∂x

(
G[Aeq, d, σ] (u, σ)

)
− G[Aeq, d, σ]

(
u,

∂

∂x
σ

)]

and finally the operator L
Reformulated model
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A more stable formulation→ useful for numerical purpose
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Define the averaged linear T and the quadratic Q operators

Define the operators L and Q
and finally the operator L
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+µ2AeqQ[Aeq, d, σ](ueq) = I2(x,Aeq) +O(µ2
2)
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A more stable formulation→ useful for numerical purpose

Define the linear T and the quadratic Q operators

Define the averaged linear T and the quadratic Q operators

Define the operators L and Q
and finally the operator L
Reformulated model

∂

∂t
Aeq +

∂

∂x
(Aequeq) = 0(

Id − µ2L[Aeq, d, σ]
)( ∂

∂t
(Aequeq) +

∂

∂x

(
Aequeq

2))+
∂

∂x
I1(x,Aeq)

+µ2AeqQ[Aeq, d, σ](ueq) = I2(x,Aeq) +O(µ2
2)

Remark

Inverting Id − µ2L[Aeq, d, σ] ⇒ no third order term ⇒ more stable formulation

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Part 2, preprint, 2020
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A more stable formulation→ useful for numerical purpose

Define the linear T and the quadratic Q operators

Define the averaged linear T and the quadratic Q operators

Define the operators L and Q
and finally the operator L
Reformulated model
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(Aequeq) = 0(

Id − µ2L[Aeq, d, σ]
)( ∂

∂t
(Aequeq) +

∂
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(
Aequeq

2))+
∂

∂x
I1(x,Aeq)

+µ2AeqQ[Aeq, d, σ](ueq) = I2(x,Aeq) +O(µ2
2)

Remark

A consistent one-parameter family (up to order O(µ2
2)) can be introduced to

improve the frequency dispersion.
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A more stable formulation→ useful for numerical purpose

Define the linear T and the quadratic Q operators

Define the averaged linear T and the quadratic Q operators

Define the operators L and Q
and finally the operator L
Reformulated model

∂

∂t
Aeq +

∂

∂x
(Aequeq) = 0(

Id − µ2κL[Aeq, d, σ]
)( ∂

∂t
(Aequeq) +

∂

∂x

(
Aequeq

2)+
κ− 1

κ

(
∂

∂x
I1 − I2

))
+

1

κ

(
∂

∂x
I1 − I2

)
+ µ2AeqQ[Aeq, d, σ](ueq) = O(µ2

2)

Remark

A consistent one-parameter κ > 0 family (up to order O(µ2
2)) can be introduced

to improve the frequency dispersion.

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011
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Invertibility of the operator T = A(Id − µ2L[Aeq, d, σ])

Theorem

Let α,β and d ∈ C∞b and A ∈W 1,∞(R) such that inf
x∈R

A ≥ A0 > 0. Then the

operator
T : H2(R)→ L2(R)

is well-defined, one-to-one and onto.

Let µ2 ∈ (0, 1). Define the space H1
µ2

(R)

Define the bilinear form a(u, v)

Lax-Milgram theorem

∃! u ∈ H1
µ2

(R) ; a(u, v) = (f, v), ∀v ∈ H1
µ2

(R), f ∈ L2(R)

⇓

∃! u ∈ H1
µ2

(R) ; Tu = f

From definition of T, we get uxx = g(A, u, d, σ) ∈ L2(R) ⇒ u ∈ H2(R).

I Debyaoui, Ersoy. Part 2, preprint, 2019
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Numerical scheme : hyperbolic part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

where Fi±1/2 ≈
1

δtn

∫
mi

F (U(t, xi+1/2)) dx is a Finite volume solver,

for

instance, with upwind technique to deal with source term

Fi±1/2 =
F (U) + F (V )

2
− sni

2
(V −U)

with
F (U) =

 Au

Au2 +
κ− 1

κ

(
I1 −′′

∫
I2
′′
)
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F (U(t, xi+1/2)) dx is a Finite volume solver, for

instance, with upwind technique to deal with source term

Fi±1/2 =
F (U) + F (V )

2
− sni

2
(V −U)

with
F (U) =

 Au

Au2 +
κ− 1

κ

(
I1 −′′

∫
I2
′′
)

I Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011
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Numerical scheme : dispersive part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

−δt
n

δx
([(Id − µ2L)n]

−1
Dn)i

with

(Dn)i = Di+1/2(Un
i−1,U

n
i ,U

n
i+1)−Di−1/2(Un

i−2,U
n
i−1,U

n
i )

where Di±1/2 and [(Id − µ2L)n]
−1 are the centred approximation of

D =
1

κ

(
∂

∂x
I1 − I2

)
+ µ2AQ and [(Id − µ2L)]

−1
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Numerical scheme :

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

−δt
n

δx
([(Id − µ2L)n]

−1
Dn)i

Theorem

The numerical scheme is stable under the classical CFL condition,

max
λ∈Sp(DUF (U))

|λ|δt
n

δx
6 1 .

I Debyaoui, Ersoy. NumHyp, 2020
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Propagation of a solitary wave (κ = 1)

Accuracy (σ = d = 1)
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Propagation of a solitary wave (κ = 1)

Influence of the Section Variation (N = 5000 cells) :
σ(x; ε) = β(x; ε)− α(x; ε) with

β =
1

2
− ε

2
exp

(
−ε2

(
x− L/2)2

))
and α = −β
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Propagation of a solitary wave (κ = 1)
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Propagation of a solitary wave (κ = 1)

Numerical order for ε = 0
N ‖ ηnum − ηexact ‖2 ‖ ηnum − ηexact ‖∞
100 0.0789 0.0449
200 0.0497 0.0288
400 0.0304 0.0180
800 0.0198 0.0116
1600 0.0153 0.0081
3200 0.0138 0.0062
Order 0.53 0.58
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Propagation of a solitary wave (κ = 1)

Numerical order for ε = 0.4 (reference solution obtained with N = 10000
cells)
N ‖ ηnum − ηref ‖2 ‖ ηnum − ηref ‖∞
100 0.05212 0.02533
200 0.02096 0.01082
400 0.01079 0.00554
800 0.00748 0.00503
1600 0.00635 0.00412
3200 0.00505 0.00300
Order 0.64 0.56
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two solitary waves test case

Comparison with the NLSW and the exact solution

Figure – σ = 1, d = 1, N = 1000, CFL = 0.95, Tf = 10 and κ = 1.159

Influence of κ

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 1  2  3  4  5  6  7

E
rr

o
r

κ

L
1
 Error

(a) ‖ hex − hκ ‖1

M. Ersoy (IMATH) 3D-1D 2020, 20 October 19 / 21
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Conclusion

and perspectives

Modeling
−→ Non-linear
−→ Dispersive
−→ Non trivial geometry

Theoretical analysis
Numerical analysis & Simulation
−→ Implementation of the general case

−→ Implementation in adaptive framework
−→ Dissipative SGN (D-SGN) : switch from NLSW ↔ SGN dynamically
−→ 2D D-SGN – 1D D-SGN coupling

Tools already developed for 1D, 2D and 3D problems

(e) 1D (f) 2D

I Pons, Ersoy, Golay, Marcer. Adaptive mesh refinement method. Application to tsunamis propagation, 2019

I Pons, Ersoy. Adaptive mesh refinement method. Automatic thresholding based on a distribution function, 2019

I Altazin, Ersoy, Golay, Sous, Yushchenko. Numerical investigation of BB-AMR scheme using entropy production as refinement criterion.
International Journal of Computational Fluid Dynamics, Taylor & Francis, 2016,

I Golay, Ersoy, Yushchenko, Sous. Block-based adaptive mesh refinement scheme using numerical density of entropy production for
three-dimensional two-fluid flows. International Journal of Computational Fluid Dynamics, Taylor & Francis, 2015,

I Yushchenko, Golay, Ersoy. Entropy production and mesh refinement – Application to wave breaking. Mechanics & Industry, EDP Sciences, 2015

I Ersoy, Golay, Yushchenko. Adaptive multi scale scheme based on numerical density of entropy production for conservation laws. Central European
Journal of Mathematics, Springer Verlag, 2013
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