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MOTIVATIONS —

@ Modelling of open channel and rivers
> water availability,
» urban sewer systems,
» flood risks,
>

(a) Flooding (b) DeltaFlume (NL) (c) Araguari River (Brazil)

> Esteves, Faucher, Galle, and Vauclin. Journal of hydrology, 2000.

> Torsvik, Pedersen, and Dysthe. Journal of waterway, port, coastal, and ocean engineering, 2009.

M. Ersoy (IMATH) 3D-1D 2020, 20 October 2/21



MOTIVATIONS

@ Modelling of open channel and rivers

@ Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic)

DEPTH AVERAGED MODEL

wet aread(t,z) [l
O¢h + div(hu) = 0,
h2
O (hw) + div <hﬂ®ﬂ+g?I> = —ghVd, "
h(t,x) =n(t,z) —d(x) : water level
with a(t,z) € R? :  depth averaged speed
g : gravity
> Saint-Venant. Comptes rendus hebdomadaires des séances de |'’Académie des sciences, 1871.
> Marche. Eur. J. Mech.B/ Fluids, 2007
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MOTIVATIONS

@ Modelling of open channel and rivers

o Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic)

SECTION AVERAGED MODEL

DA+ 0.Q =0, _
Q2
atQ+am (7 +g.z’1(.'l':,A)> :gIQ(Qf,A) ()
A(t, x) : wet area
Q(t,x) :  discharge
U
o Li(z, A) = / o(z,z)(n— z)dz . hydrostatic pressure
with d
"0
Iy(z,A) = / %a(a:, z)(n—z)dz : hydrostatic pressure source
d
g : gravity
> Bourdarias, Ersoy, and Gerbi. Science China Mathematics, 2012.
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e Modelling of open channel and rivers
@ Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic)
o Hydrostatic models limitations — lllustration with undular bore

» discontinuous solution also referred as bores takes the form of a breaking wave
with turbulent rollers for large transitions.

(d) Bore

M. Ersoy (IMATH) 3D-1D



MOTIVATIONS —

@ Modelling of open channel and rivers

@ Most widely used depth-averaged models :
Saint-Venant system (hyperbolic, non linear, hydrostatic and non-dispersive)
e Hydrostatic models limitations — Illustration with undular bore
» discontinuous solution also referred as bores takes the form of a breaking wave
with turbulent rollers for large transitions.
» the advancing front is followed by a train of free-surface undulations (whelps)
for small or moderate transitions — dispersive effects

M. Ersoy (IMATH) 3D-1D 2020, 20 October 2/21




STATE OF THE ART : WEAKLY NON LINEAR, _

@ Observation of Soliton

FIGURE — Russell's experiments “like” in 1834
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STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

@ Observation of Soliton

e Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(u) < 1

0 0
N R h_ = 2
TR 012
4+ eU—T D = 2
atu+suaxu+V§+u O(u?)
S l t
e=5 non-linear parameter
H\2
== . dispersive parameter
with a L ) P P
h water depth
13 free surface elevation
D dispersive term

> Boussinesq. Comptes Rendus Acad. Sci, 1871.
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STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

@ Observation of Soliton

o Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(p) < 1

e KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

> Boussinesq. Comptes Rendus Acad. Sci, 1871.

> Korteweg and Gustav De Vries. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895.
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STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

@ Observation of Soliton

@ Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(p) < 1

e KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

@ Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

> Peregrine. Journal of fluid mechanics, 1967.
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STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

e Observation of Soliton

e Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(p) < 1

e KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

@ Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

e Witting proposed a method to improve the frequency dispersion of the
Boussinesqg-type equations in 1984

> Witting. Journal of Computational Physics, 1984.

v

Madsen and Sorensen. Coastal engineering, 1992.

> Nwogu. Journal of waterway, port, coastal, and ocean engineering, 1993
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STATE OF THE ART : NON LINEAR, WEAKLY DISPERSIVE

@ Observation of Soliton

e Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(u) < 1

e KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

@ Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

o Witting proposed a method to improve the frequency dispersion of the
Boussinesg-type equations in 1984

e A 1D fully non-linear (¢ = O(1)) and weakly dispersive equation for flat
bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear
close to shoaling zone)

> Serre. La Houille Blanche, 1953.
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STATE OF THE ART : NON LINEAR, WEAKLY DISPERSIVE

@ Observation of Soliton

@ Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(p) < 1

e KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

@ Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

e Witting proposed a method to improve the frequency dispersion of the
Boussinesg-type equations in 1984

e A 1D fully non-linear (¢ = O(1)) and weakly dispersive equation for flat
bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear
close to shoaling zone)

@ Green and Naghdi derived the 2D fully nonlinear dispersive equations for
uneven bottom in 1976

> Green and Naghdi. Journal of Fluid Mechanics, 1976.
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STATE OF THE ART : NON LINEAR, WEAKLY DISPERSIVE

o Observation of Soliton

e Dispersive equations (1D) introduced by Boussinesq in 1872 to justify
mathematically the existence of solitary waves with e = O(u) < 1

e KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries
in 1877

@ Peregrine introduced the first 2D Boussinesq type equations for non flat
bottom in 1967.

e Witting proposed a method to improve the frequency dispersion of the
Boussinesg-type equations in 1984

e A 1D fully non-linear (¢ = O(1)) and weakly dispersive equation for flat
bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear
close to shoaling zone)

@ Green and Naghdi derived the 2D fully nonlinear dispersive equations for
uneven bottom in 1976

@ Recent progress : Lannes, Bonneton, Cienfuegos, Dutykh, Richard, Gavrilyuk,
Sainte-Marie, . ..
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STATE OF THE ART & AIMS )
Construction of a new averaged model for
considering that

e with 2D models — high memory and computer requirements.
o with 1D models — not accurate.
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STATE OF THE ART & AIMS
Construction of a new averaged model for open channel and river flows
considering that

e with 2D models — high memory and computer requirements.

o with 1D models — not accurate.

@ good compromise can be achieved by 3D-1D model reduction

> with non-linear terms
> with dispersive terms
> which takes into account of the channel/river geometry

M. Ersoy (IMATH) 3D-1D 2020, 20 October 4/21



OUTLINE OF THE TALK

@ DERIVATION (BASED ON EULER EQUATIONS)
e 3D-2D
e 2D-1D
e 3D-1D

© IMPROVED MODEL AND STABILITY
@ Reformulated and stable models
@ Invertible operator

© NUMERICAL ANALYSIS AND TEST CASE
@ Finite Volume scheme
@ Numerical simulation

@ CONCLUSION AND PERSPECTIVES

-

M. Ersoy (IMATH) 3D-1D



OUTLINE . .
ONLITITE

@ DERIVATION (BASED ON EULER EQUATIONS)
e 3D-2D
e 2D-1D
e 3D-1D

Reformulated and stable models
Invertible operator

Finite Volume scheme
Numerical simulation

M. Ersoy (IMATH) 3D-1D



Incompressible and irrotational Euler

equations
dlv(pOU’) = 0,
0 .
a(pgu) +divipou@u)+Vp—poF = 0

M. Ersoy (IMATH) 3D-1D



Incompressible and irrotational Euler

equations
le(POU) = 0,
0 .
a(pgu) +divipou@u)+Vp—poF = 0
with
u = (u,v,w) : velocity field
00 : density
F =(0,0,—g) : external force
D :  pressure

M. Ersoy (IMATH) 3D-1D



(GEOMETRIC SET-UP & EQUATIONS

Incompressible and irrotational Euler

equations
div(pou) = 0,
0 .
a(pou) +div(pou @ u) + Vp—poFF = 0
with completed with the irrotational relations
u = (u,v,w) : velocity field
Po . density %:@7__ a_w’@:a_w,
F =(0,0,—g) : external force oy Oz’ 0z dy 0z Oz
P . pressure

2020, 20 October
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GEOMETRIC SET-UP & EQUATIONS A

Incompressible and irrotational Euler

equations
d(w,y)

divi(pou) -,

0 .

a(pou) +div(ppu @u) + Vp—poF = 0 e

with completed with the irrotational relations
u = (u,v,w) : velocity field

Po . density %:@7__ a_w’@:a_w'
F =(0,0,—g) : external force oy Oz’ 0z dy 0z Oz

D . pressure

2020, 20 October
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GEOMETRIC SET-UP & EQUATIONS

Incompressible and irrotational Euler
equations

div(pow)

a(pou) + div(pou @ u) + Vp — po F

o free surface kinematic boundary condition,

0
u-ng = —m-ng and p = py, Vm(t,z,y) = (z,y,1(t, z,y)) € Te(t, x)

ot

@ no-penetration condition on the wet boundary

afz,

d(x,y)

U - Nyp = Ou Vm(w,y) = (.’I,‘,y,d(%,y)) € wa(.’l))

M. Ersoy (IMATH) 3D-1D
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RESCALING AND ASYMPTOTIC REGIME
Let us define the dispersive parameters

h?
@ 1 = ﬁ
Hj
®H2= T
such that
hi < Hy=Hy < L,ie pu < u§
where
H, . characteristic scale of channel width
hy . characteristic wave-length in the transversal direction
H> . characteristic water depth
U
F, = 7 . Froude's number
giiz
L e
T= i characteristic time
P=U? characteristic pressure
X characteristic length of x
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Then, define the dimensionless varia

. T ~ P - P
= — P:— = —
x L, 'P’ SO hl,
-y - u ~ d
= — = — d:_
Yy hl’ u U’ H27
s Z Gt _v L

H,’ v ymu ",
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RESCALING AND ASYMPTOTIC REGI
We get

or "oy Ta: 70
ou ou ou o 0P
ot 0 dy dz  Or

o TMor Ty TYa: ) Ty T
<8w ow ow aw) oP 1
H2 - =

ot Yor oy Vo) 0 T T R?

and
ou ov ov ow Ou ow

By M1£7 Mlg :/J’QB_yv 92 —Mza .
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"CouLIsSES” I : WHY pg

1 = o = no analytical expression of the asymptotic terms.
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"CoULISSES” I : WHY p1 #

1 = o = no analytical expression of the asymptotic terms.
Indeed, in 2D-1D reduction, we proceed as follows

e Uy +w, =0

M. Ersoy (IMATH)



1 = o = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o u, +w, =04+BC= w(t,x,z) = — (/ u(t,x, z) dz)
d T

M. Ersoy (IMATH) 3D-1D



1 = o = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o u; +w, =0 +BC= w(t,z,2) = — (/ u(t,z, z) dz)
d T

Q Uy = Wy

M. Ersoy (IMATH)



11 = p2 = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o u; +w, =0 +BC= w(t,z,2) = — (/ u(t,z, z) dz)
d T

o u, = pw, = u(t,x,z) =u,—q(t,z)+ ,u/ we(t, x, 2)dz
d

M. Ersoy (IMATH)



"COULISSES” I : WHY puq # po ?

11 = p2 = no analytical expression of the asymptotic terms.
Indeed, in 2D-1D reduction, we proceed as follows

o u; +w, =0 +BC= w(t,z,2) = — (/ u(t,z, z) dz)
d T

z

° u, = pw, = u(t,r,z) =up.—qt, ) +,u/ we(t, x,2)dz =
d

w(t,z,z) = — (/dzu|z_d(t,x) dz>$ +0(p)

M. Ersoy (IMATH) 3D-1D



i1 = j2 = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o u; +w, =0 +BC= w(t,z,2) = — </ u(t,z, z) dz)
d T

° u, = pw, = u(t,r,z) =up.—qt, ) +,u/ we(t, x,2)dz =
d

w(t,z,z) = — (/dz U)—q(t, ) clz>z +O(p)

° = u(t,x, Z) - fl(u|z:d(tax)) + ,LLfg(Z,U|z:d(t,$), d(l‘)) + O(ILLQ) =
U|z=d = f3(7'_"(t7 :IZ)) ce

M. Ersoy (IMATH) 3D-1D



"COULISSES” I : WHY 1 # um
1 = o = no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

° um+vy+wz:0:>/vy+wz dydz ...
Q

M. Ersoy (IMATH)



"COULISSES” | : WHY p1 # p2?

141 = p2 = no analytical expression of the asymptotic terms.
Indeed, in 3D-1D reduction, we proceed as follows

° um+vy+w,z:0:>/vy+wz dydz ...
Q

Therefore, we assume (11 # p2.

M. Ersoy (IMATH)



»COULISSES” 11 : WHY INTRODU-
A counter example if hy = H; :
o Consider the (nondimensional) rectangular channel

L. H
(%,9,2) € [0, f] X [0, h—l] x [0,1] where L < L.
1

M. Ersoy (IMATH)



"CouLisses” I : WHY INTRODUCE -
A counter example if hy = H; :
o Consider the (nondimensional) rectangular channel

(jagaé) € |:05 %] X |:0, %] X [0, ].] where L < Lc.
1

o Incompressible + Irrotational = 3¢ ; (i1, 0, w)" = V¢ solution of

-1 -1 -
230+ —02,0+ —0%:0=0.
M1 M2

M. Ersoy (IMATH) 3D-1D



?CouLISSES” II : WHY INTRODUCE hy < Hy ? -
A counter example if hy = H; :

o Consider the (nondimensional) rectangular channel

@52 € 0, 2| x [0, 22| x 0, 1] where L < L.
I T

o Incompressible + Irrotational = 3¢ ; (i, 9, @) = V¢
@ More precisely, ¥(p, q) € N, we have :

1) () L 1 )

q;p,q(x,y, z) = cos <p7r— qm—
Le H, cosh( \/p u2—+q2&h11)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 8/21



?CouLISSES” II : WHY INTRODUCE hy < Hy ?
A counter example if hy = H; :

o Consider the (nondimensional) rectangular channel

(%,9,%2) € 0,& x |0, H x [0,1] where L < L.
L hy

o Incompressible + Irrotational = 3¢ ; (@,9,w)" = Vo
o More precisely, ¥(p, q) € N?, we have :

2
« L ghy\ cosh (ﬂZ\/p 2 L2 + ng)
bp.q(2,y,2) = cos pﬂf cos qﬂ'F =
¢ 1 COSh( \/p ‘LLQ +q2ﬂ2 hl)

o Keeping in mind that Hs < L < L,
» if hy = Hi < Hs then

L? <. . N
p? MZ? + q2% = 4 = 0z ¢ is rapidly varying inZ

unless Hy > H> (out of context)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 8/21



?CouLISSES” II : WHY INTRODUCE hy < Hy ?
A counter example if hy = H; :

o Consider the (nondimensional) rectangular channel

(%,9,%2) € 0,& x |0, H x [0,1] where L < L.
L hy

o Incompressible + Irrotational = 3¢ ; (@,9,w)" = Vo
o More precisely, ¥(p, q) € N?, we have :

2
iL) ( yh1> cosh (ﬂz\/p 112 L2 >+ 2 :jf ng)
COS .

(;;p,q(x,y, z) = cos <p7r qm—
L. H; cosh( \/p po s + gL B2 h?)

o Keeping in mind that Hs < L < L,
> if hy = Hy1 < H> then is rapidly varying in 2
» Therefore, we consider hy < H; = H> :

2 2M2ﬁ_ 2 H3 2H§
1”‘21:2’L mH Pt

M. Ersoy (IMATH) 3D-1D 2020, 20 October 8/21



"CouLIssEs” 111 : ORDER OF INTEGR_

@ "Coulisses” Il naturally yields to V' < W < U where
(U, V =/mUW = /uU)
@ As a consequence, we proceed as follows
> 3D-2D reduction (width averaging)

» 2D-1D reduction (depth averaging)

» 3D-1D reduction (section averaging)

M. Ersoy (IMATH) 3D-1D



"CouLIsses” I : ORDER OF INTEGRATION easTR——

@ "Coulisses” Il naturally yields to V' < W < U where
(U, V =/mUW = /uU)
@ As a consequence, we proceed as follows
» 3D-2D reduction (width averaging) :

u(tv T, Y, Z) = <LL> (tv €z, Z) + O(:ul)

» 2D-1D reduction (depth averaging)

» 3D-1D reduction (section averaging)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 9/21



”?CouLISSES” III : ORDER OF INTEGRATION

@ "Coulisses” Il naturally yields to V' < W < U where
U,V = /U W = /uU)
@ As a consequence, we proceed as follows
» 3D-2D reduction (width averaging) :

u(t7 T, Y, Z) = <LL> (tv T, Z) + O(:U‘l)

» 2D-1D reduction (depth averaging) :
(u)(t,, 2) = u(t, ) + pa f (Ut ), QAt, ) + O(p3)

where u(t, z) is the section-averaged velocity
» 3D-1D reduction (section averaging)
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”?CouLISSES” III : ORDER OF INTEGRATION

@ "Coulisses” Il naturally yields to V' < W < U where
U,V = /U W = /uU)
@ As a consequence, we proceed as follows
» 3D-2D reduction (width averaging) :

ult, z,y,2) = (w)(t, 2, 2) + O(p)

» 2D-1D reduction (depth averaging) :
<u>(ta z, Z) = ﬂ(t, I) + ;u/?f(ﬂ(ta 1‘), Q(t, x)) + O(:U/g)

where u(t, z) is the section-averaged velocity
» 3D-1D reduction (section averaging) :

u(t, @, y, 2) = (t, ©) + pa f (U, ), Qt, x)) + O(u3)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 9/21



OUTLINE

@ DERIVATION (BASED ON EULER EQUATIONS)
e 3D-2D

© IMPROVED MODEL AND STABILITY
© NUMERICAL ANALYSIS AND TEST CASE

@ CONCLUSION AND PERSPECTIVES

M. Ersoy (IMATH)



STEP 1 : 3D-2D REDUCTION -

e Div and irrotational equations =

noting

d(w,y)

Xa(taxvz) =X (taxva(x7 Z),Z)

we have
u(t,z,y,2) = wua(t,z,z)— p o dive . [wao(t, z,2)(y — a(z z))2] +0 ,u_%
) ) ) ) ) 2 8 ) u2
and
w(t,z,y,2) = walt,z,z)— 9 diva > [wa(t, 2, 2)(y — oz(a:,z))2] +0 ("ﬁ)
2}1,2 8 M%

M. Ersoy (IMATH) 3D-1D



STEP 1 : 3D-2D REDUCTION

e Width-averaging = noting

1 B(x,2)
X)(t,x,z) = / X(t,z,y,2) dy
(X)( ) o@ ) Japn, ( )
we have
oz, 2){u)(t,z,2) = oz, 2)ua(t,z,z) — &édivw 2 [wal(t,z, 2)o(x z)s] +0 ;ﬁ
9 b 9 b b b 6 aw 3 b b b u2 9
p1 0
o(z,z)(w)(t,z,2) = oz, 2)wa(t,z,2) = — =

2
d. T,z «@ t7 bl ? 3 O &

62 0 Va,z [wa(t, 2, 2)o(z, 2)°] + (M%

where o(z,z) = B(z, z) — a(z, z) is the width of the section at the elevation z.

M. Ersoy (IMATH) 3D-1D



STEP 1 : 3D-2D REDUCTION -

e Width-averaging =

t _ n(t,z,y) D
Pt 2.5.2) = Palte,2)+0(m) = W20 =2y [T D t,0,2) dstOm)
F, > Dt
z
(a) Initial
a. Debyaoui, Ersoy, Asymptotic Analysis, 2020 ‘

M. Ersoy (IMATH) 3D-1D



STEP 1 : 3D-2D REDUCTION ,-,

o Width-averaging =

n(t..y) p

t —
Pt 2.5.2) = Palte,2)+0(m) = W20 =2y [T D t,0,2) dstOm)

Fr

¢

Flat free surface approximation ? :
77(t7 z, y) = nCQ(t7 x) + O(/Ll)

A. o z2=0
= x v y* vty
(c) Initial (d) Flat FS approximation
a. Debyaoui, Ersoy, Asymptotic Analysis, 2020 g

M. Ersoy (IMATH) 3D-1D



STEP 1 : 3D-2D REDUCTION e—
e Width-averaging =  we get the 2D width-averaged model

? 9 ]
divy - [owa] + O l% - Mg (0—(divzyz [waas])>
"3 6us 0z 0z
e} ) a u? o
a(aua)%»dlvz,z[auawa]%»a(aPa)—l»O (/»T% = Paa
p1 0 9 . 3
+@£<uagdlvz,z ['wao ])
O (gwa) +dive.: [owawa] ) + —(oPa) = -2
2 ot OCWq Wg,z [OWa W 92 (ol et = FTQB
P2 4 O(p1)
0z

completed with the irrotational equation

Oue  Owg
. Mo +O(u1)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 10/21



OUTLINE

@ DERIVATION (BASED ON EULER EQUATIONS)

e 2D-1D

© IMPROVED MODEL AND STABILITY
© NUMERICAL ANALYSIS AND TEST CASE

@ CONCLUSION AND PERSPECTIVES
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STEP 2 : 2D-1D REDUCTION

e Div and irrotational equations (model 2D) = noting

1 17} 2
fo(t @) = fa(t,z,d"(2), S(u,z,2) = ——— - (uS(z,2)), S(z,2)= / o(w,s) ds
o(z,z) Oz a* (@)
z
d(,y)
N5
ae, £) (2, 2)
At Ao ! z=0
x v y* Y Yy

we have

z

0
ua(t,x,z) = ub(ta il?) - “’2/ 8_S(ubax73) ds + O(Mg)

d*(z) x
and 1 8
wa(ta €z, Z) = _0'(.’13, Z) % (U/b(t, .’E)S(I, Z)) + O(NQ)

M. Ersoy (IMATH) 3D-1D



STEP 2 : 2D-1D REDUCTION -

@ Depth-averaging = noting

B Teq (£,%) B(z,z) D
fea = (@) /zz) w22 duds |
A Wi ‘ z=0
T v y* vty
we get
up(t, ) = Ueq(t,x)
eq (t,2) z
112 /77 q / o
+—— o(x, 2z —S(Ueq(t, ), x,5) ds | dz
Aeq(t,x> & (x) ( ) ( & (x) ox ( q( ) )
+O0(u3)

M. Ersoy (IMATH) 3D-1D



@ Depth-averaging = finally,
u(ta r,y, Z) = ﬁeq(ta l‘) + MzBo(aﬂD €, Z) + O(/”’%)

with

1 Neq (t,T) z o
B Ue s Ly = i N ) e
0(Teq, T, 2) Aoa(6,2) /d*(z) o(x,2) /d*(z) p S(teq(t,x), z,s) ds | dz

0
- S(Ueq(t, x),x,s) ds
[, Sttt 2.9

M. Ersoy (IMATH)



STEP 2 : 2D-1D REDUCTION -

@ Depth-averaging =  we also have

P(t,x,y,2) = Py(t, 2, 2) + poPan(t, @, 2) + O(u3)

where
(2 — Neq(t, 2))
Ph(t,{E,Z) = T
and
TNeq (t,2) 1 9 9
Pu(t,z,2) = ; W&((0($,S)5(ﬂeq(ta$),$,5)) ) ds
ﬂeq(t@) a B
_ i QS(ueq(t,x),m,s)
Ueg(t,z) O

o(o.3) Bz (@ 8)8(Hea(t,2),2,5)) ds

M. Ersoy (IMATH) 3D-1D
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STEP 3 : 3D-1D REDUCTIO

o Euler equations in e instead of

M. Ersoy (IMATH)



STEP 3 : 3D-1D REDUCTION

o Euler equations in {24 instead of

@ Boundary condition :

0 0
M +u— M—v)-nds:O
/(9(25(11&00)(({% oz

M. Ersoy (IMATH) 3D-1D



STEP 3 : 3D-1D REDUCTION -

o Euler equations in {¢4 instead of {2

e Boundary condition :

0 0
/meth (atM—i-uaxM—v)-nds—O

@ Introduce wet region indicator function ® which satisfies

0 0
a@ P —(Pu) +divy, . [Pv] = 0 on Qeq(t) 0<L£J<lﬂeq (t,x) .

where v = (v, w).

&
M. Ersoy (IMATH) 3D-1D



STEP 3 : 3D-1D REDUCTION
o Euler equations in {¢4 instead of {2

@ Boundary condition :

/ (8M+u8M—v>~nds:0
8Qeq(t,r) 315 8x

@ Introduce wet region indicator function ® which satisfies

0 0 ,
aq) + £(<I>u) +divy . [Pv] = 0 on Qeq(t) = O<L£J<1 Qeq(t, ) .

where v = (v, w).
@ Section-averaging equations using the approximation

aeq<ta Z‘) + M2B0<aeqa xz, Z) + O(/,L%)

u(tax7y7z) =
nt,z,y) = neq(t,x) +O(u1)
P(tvxvyaz) = Ph(talfyz)+H2Pnh(t,$az)+0(/1§)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 12 /21



8
eq + Qeq =0
Qeq” 9
Qeq +Il($7Aeq) +,u2 (Dfl(x Aeq7Qeq))
0x \ Aeq Ox
12(% Acq) + p2DIo(x, Aeqs Qoq) + O(u3)
where
Aeq = dy dz © wet area
Qeq(t,x)
Qeq = Acq(t, @)tUeq(t,z) : discharge

> Debyaoui, Ersoy. Asymptotic Analysis, 2020

M. Ersoy (IMATH)



THE NEW 1D NONLINEAR AND DISPE-

8
eq+ Qeq—O

eq 0
Qeq 8.1: (ae +1; (xu Aeq)) + ,UQB (DIl(x Aeq7 Qeq))

q
Ig(x, Aeq) + ,UQDIQ(-Ta Aeqa Qeq) + O(:“‘Q)

where
I = wo(x,z) dydz : hydro. press.
Qeqit(sz)) Fr
t,x
heq(t,z) O
I = _/ S d(x,y) dy : hydro. press. source
Yy~ (t,2) F? Ox

| 4 Debyaoui, Ersoy. Asymptotic Analysis, 2020
M. Ersoy (IMATH) 3D-1D



THE NEW 1D NONLINEAR AND DISPER-

8
eq+ Qeq—o

eq 0
Qeq 8.1: (ae + Il (l‘, Aeq)) + ,UQB (DII (37 Aeq7 Qeq))

q
IQ(I, Aeq) + M2D12(-737 Aeqa Qeq) + O(/J‘Q)

where
DI = Pun(t,z,2)dy dz : (disp) non hydro. press.
Qeq(t,@)
ut () P
DI, = —/ P (t, z, d(m,y))a—xd(w,y) dy : (disp) non hydro. press. source
y~ (t,z)

| 4 Debyaoui, Ersoy. Asymptotic Analysis, 2020
-
M. Ersoy (IMATH) 3D-1D



THE NEW 1D NONLINEAR AND DISPERSIVE MODEL-

8
eq"’ Qeq—o

eq 9
Qeq o (aeq + I, Aeq)) + 125 (DL (@, Acg; Qeq)) =

IQ(I Aeq) + MQDI2(1' Aeq7 Qeq) + O(NZ)

REMARK (GENERALISATION OF THE FREE SURFACE MODEL)

Setting po = 0, we recover the usual nlsw equations for open channel.

> Bourdarias, Ersoy, Gerbi. Science China Mathematics, 2012.

> Debyaoui, Ersoy. Asymptotic Analysis, 2020

M. Ersoy (IMATH) 3D-1D 2020, 20 October 13/21



0
eq+ Qeq—o

ot
0 6 o 0 _
et 1 1 Ae) ) + s (Dln) Gl e ) = Do )

&Qeq *or oz Aeq
+,u2g(ael17 Sv U) + O(/"Z)

M. Ersoy (IMATH)



REFORMULATION : GENERALIZATIO-

0
eq+ Qeq—o

ot
0 6 o 0 -
et 1 1 Ae) ) + s (D) Gl e ) = Do, A

EQ"" +or 0z \ Aeq
+N2g(aem Sv 0) + O(NZ)

where 5
_ 0 _ g 0 _ 0 0 _
D(tteq) = (%“eq) - a%“eq - ueq%%ueq
" G(Aeg, ) = /neq oz, z) /neq Sz, s) ds dz
o d*(z) ’ z U(I,S)

M. Ersoy (IMATH) 3D-1D



REFORMULATION : GENERALIZATIO-

0
eq+ Qeq—o

ot
0 6 Qeq” + (s, Aeq)) ¥ o 86 (D(theq)G(Acq, x)) = I2(x, Acq)

EQ"" +or 0z \ Aeq
+N2g(ueqv Sv G) + O(NZ)

where
7] 0
e 2 %S(a:,s)%o(:v,s) 9 9
G, S,0) = /z o(x,s) o(z,s) _%%S(gj’s)
0
5 (uy 5(.5) o(a.s)
+_ J—
&U( ) o(x,s)?
iS(ac s)

0 0 O
_ (8t Ueq + Ueqa— ) —0'(1,‘7 5) ds

M. Ersoy (IMATH) 3D-1D




REFORMULATION : GENERALIZATION(-)

8
at eq + Qeq - 0
0 8 o 0 _

et 1 1 Ae) ) + s (Dln) Gl e ) = Do )

EQ‘*" +or 0z \ Aeq
+N2g(aem Sv U) + O(NZ)

Settingo=1,d =1,

0 Aeq = heq
o S(x,2)=8(z) =G=0and I, =0

M. Ersoy (IMATH) 3D-1D



REFORMULATION : GENERALIZATION _

9,
8t eq + Qeq =0
Qeq 0 B

Qeq ™ +11(2, Aeq) | + p2 5 (D(lieq) G Acq, 7)) = Ta(2, Acq)

+N2g(ueq7 S7 U) + O(/'LQ)

we recover the classical SGN equations on flat bottom

0 0

Eheq + %(hequ‘SQ) =0
d d heg” 0 ([ heg®
E(hequeQ) + I (hequeq2 2F2> +pe o Oz < 3q D(“Eq)) = O(M%)

M. Ersoy (IMATH) 3D-1D



REFORMULATION : GENERALIZATION OF THE SGN EQUATIONS

9] 9]

_BtAeq + _3xQeq =0

—8Q +—a Qeq2+[(xA ))+ —a(D(ﬂ )G (Aeq, ) = In(z, Aeq)
ot 9z \ Aeq 1 fea M2 s ed e 245 feq

+:U'2g(ﬂem Sv G) + O(II'L%)

REMARK
Dispersive equation are usually characterized by third order term = may create

high frequencies instabilities

t=0.255

0.2
0.15
01 Gy 01
0.05

(L) E—

~0.05
0

5 10 15 20 25 30

5 10 20 25 30 5
x(m)

15
2(m)

FIGURE — Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283-304, 2017.

3D-1D 2020, 20 October 14 /21
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators

Meq Neq
T(Acard,0,2)(u) = 2 (u) / S@.5) 4o 4 / L0 g o) ds )

= o o(z, s) o(@,s) dx
and
_ Neq o 2 S(l‘,S)
g[Aeqada a, Z](u) - /z 2 <£u) U(.’IZ,5)+
2 S(:Evs)_a(m“s)
v 3 O =99 5a,)
o(z,s) o(z,s) 0z 9
0
o /u2 S(x,s)a—o’(l‘;s)
+— — S
83:( 2 ) o(z,s)?

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21



A MORE STABLE FORMULATION— US_

@ Define the linear 7 and the quadratic Q ope}ators

o Define the averaged linear T and the quadratic Q operators

Tleq
7_-[Aeq7 d, U](u7 ¢) = ¢T[Aeqa d,o, Z] (u) dz
d*(z)
and Tea
E[Aeq) d> U](u, 1/}) = djg[Aeq? d’ g, Z] (’LL) dZ
d*(z)

M. Ersoy (IMATH) 3D-1D



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators
o Define the averaged linear T and the quadratic Q operators
o Define the operators £ and Q

L[Aeqadv J](u) = Aeqﬁ[Aeq,dva] (AU )
eq

Qe i) = 5= | 37 (OlAeas 0] (1.) = Tl o] (1. )|

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic Q operators
Define the operators £ and Q

@ and finally the operator L

Ll dln) = Auglldeq o] ()
€q

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic Q operators
Define the operators £ and Q

and finally the operator L
o Reformulated model

0 0
aAeq + %(AEqueq) —80 )
(Id - I/LQ]L[Aem d7 O—D (E(Aequeq) + a (Aequeqz)) +

+M2ACqQ[ACQ7 d7 U] (uCQ) = [2 (l‘, Ae‘l) + O(/Lg)

0
%Il (337 Aeq)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic O operators
Define the operators £ and Q

e and finally the operator L
o Reformulated model

0 0

ot o
0 0 2 0

(Id — p2l[Aeq, d, U]) E(Aequeq) + %(Aequeq ) + - Ni(z, Aeq)

ox
+:U‘2Aqu[Aeqv d7 U] (ueCI) = [2 (Z’, AEQ) + O(Mg)

(Aeqtieq) =0

REMARK
Inverting Iq — polL[Acq, d, 0] = no third order term = more stable formulation

>

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

> Debyaoui, Ersoy. Part 2, preprint, 2020

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic O operators
Define the operators £ and Q

e and finally the operator L

@ Reformulated model

0 0
Aeq +

ot Ox
19} 0 0

(Id — /LQ]L[Aeq,CL O']) (E(Aequeq) =+ %(Aequeq2)> + %Il(a:, Aeq)

+:U‘2Aqu[Aeqv d7 U] (uGQ) = [2 (l‘, AEQ) + O(Mg)

(Aeqtieq) =0

REMARK

A consistent one-parameter family (up to order O(y3)) can be introduced to
improve the frequency dispersion.

>

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

> Debyaoui, Ersoy. Part 2, preprint, 2020

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

o Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic O operators
Define the operators £ and Q

e and finally the operator L

@ Reformulated model

0 3]
aAeq + %(Aequeq) = Oa ) s
o
(Id — p2kL[Aeq, d, a]) (a(Aequeq) + a(Aequef) + - (%Il — 12))
1/0
+- (,7[1 - I2) + N2Aqu[Aeq7da G}(ueq) = O(ﬂg)
Kk \ Ox
REMARK

A consistent one-parameter x > 0 family (up to order O(p3)) can be introduced
to improve the frequency dispersion.

>

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

> Debyaoui, Ersoy. Part 2, preprint, 2020

M. Ersoy (IMATH) 3D-1D 2020, 20 October 15/21
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INVERTIBILITY OF THE OPERATOR T -

THEOREM
Let a,3 and d € C5° and A € WH*°(R) such that igﬂng > Ao > 0. Then the
operator

T: H*(R) — L*(R)

is well-defined, one-to-one and onto.

> Debyaoui, Ersoy. Part 2, preprint, 2019

M. Ersoy (IMATH) 3D-1D



INVERTIBILITY OF THE OPERATOR T = A(I; — pslL[Aeq, d, )

THEOREM
Let a,3 and d € C5° and A € WH*°(R) such that in&A > A > 0. Then the
TE

operator
T: H*(R) — L*(R)
is well-defined, one-to-one and onto.
o Let us € (0,1). Define the space Hiz (R) the space H'(R) endowed with the

norm

w5, =1 13 2 | e 113

M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 /21



INVERTIBILITY OF THE OPERATOR T = A(I; — pslL[Aeq, d, )

THEOREM

Let a,3 and d € C5° and A € WH*°(R) such that in&A > A > 0. Then the
TE
operator

T: H*(R) — L*(R)

is well-defined, one-to-one and onto.

o Let sy € (0,1). Define the space H,,, (R)
o Define the bilinear form a(u,v)

a(u,v) = (ATu,v) = (Au,v)+

2 (A <\/§Au - ?dwu> : (é@ - ‘fczwv» + (Adyu, dyv)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 /21



INVERTIBILITY OF THE OPERATOR T = A(I; — pslL[Aeq, d, )

THEOREM

Let a,3 and d € C5° and A € WH*°(R) such that in&A > A > 0. Then the
TE
operator
T: H*(R) — L*(R)

is well-defined, one-to-one and onto.

o Let sy € (0,1). Define the space H,,, (R)
o Define the bilinear form a(u,v)

o Lax-Milgram theorem
3w e HYL(R) ; au,v) = (f,0), Yo € HY(R), f € LA(R)

¢
El!uEH/iZ(R) ; Tu=f

o From definition of T, we get u,, = g(A,u,d,o) € L*(R) = u € H*(R).

M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 /21
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NUMERICAL SCHEME : HYPERBOLIC PART Em——

m;
<
1 r
—F—
Ti—1/2 T T/
< >
L

We consider a classical Finite Volume scheme, U = (4, Q)

UMttt =up - 5T (Fiy1/2(UM UML) — Fiy o (U, U))

1
where Fi /5 = &—n/ F(U(t,;41/2)) dx is a Finite volume solver,
my

Au

FO) = g2 RT <11 / IJ)

M. Ersoy (IMATH) 3D-1D 2020, 20 October 17/21
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NUMERICAL SCHEME : HYPERBOLIC PART

m;
>

1 5
Ticyz T Ty

\

<
<

L
We consider a classical Finite Volume scheme, U = (4, Q)

UMttt =up - 5T (Fip12(UM UML) — Fimq o (U, U))

where Fjy /9 ~ / F(U(t,;41/2)) dx is a Finite volume solver, for

instance, with ulend technlque to deal with source term

FU)+F(V) s?

F )TN Cyv U
i+1/2 9 9 ( )
with . A

K
> Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011

M. Ersoy (IMATH) 3D-1D 2020, 20 October 17/21



NUMERICAL SCHEME : DISPERSIVE PART

m;
>

: =
Ti—1j2 T T

\

<
<

L
We consider a classical Finite Volume scheme, U = (4, Q)

ot"

UMttt =up - 5T (Fip12(UM UML) — Fimq o (U, U))
5t o
—%([(Lz—/zzlf)”] ‘D)

with
(D")i = Diy1)2(U 1, U U y) — Diq2(Ufk, UL, U

where D; 115 and [(1g — 112.)"] " are the centred approximation of

1/0 =
D=— <—Il — 12) + ILLQAQ and [(Id = /J,QIL)] L
Kk \ Ox

M. Ersoy (IMATH) 3D-1D 2020, 20 October 17/21



NUMERICAL SCHEME :

m;
>

+ t
Ticyz T Ty

<
<

\

L
We consider a classical Finite Volume scheme, U = (4, Q)
n+1 n 5tn n n
v =u - - (Fis1/2(U Ulyy) = Fioa o (UL, U7Y)

O ((ta— oLy D",

THEOREM

The numerical scheme is stable under the classical CFL condition,

ot"
max Al— < 1.
\eSp(Dy F(U)) — 0x
> Debyaoui, Ersoy. NumHyp, 2020

2020, 20 October 17/21
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o Accuracy (c=d=1)

22— ‘ ‘ ‘ ‘ . ‘ ‘ ‘
xx065
PEELH
2a9f xR, 1
. Xy * x PB8ogg,
X x"x DDDDDD
+ N L Pfoonagg,
218 N *x XXk s
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. x Xk
217} . *x <
= N X%y
= T Tk
216 e Xy i
g + XX ox oy
0“ XXk
215 FN =200 - te, J
N =400 «
‘0
_ .

214 [N =800 . el 1
N = 1600 e
LaN=300
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FIGURE — M" := max

0<i<N+

(h?) and Msoliton(t) =22




PROPAGATION OF A SOLITARY WA ]

o Influence of the Section Variation (N = 5000 cells) :
o(x;e) = B(z;e) — afx; ) with

1

B = 5~ gexp (=e*(z = L/2)%)) and o= —f3

2215 T T T T T T T

221 q

2205 F ae®®%°, g

a
o
mmoof”

gx° x
8 x x
22 x;:xxxxxxxx*" * o

* x
**x;,‘}§)’(

a
X x x Xl
S2195¢ RS FRERRTPPI
iy

L L |

2.19 8 X X
e=0 . ok
2185 ¢ = (.1 N T

@
€= 02 * L
2= 03 o ]

2175 e= 04 ‘ ‘ ‘ ‘ ‘ ‘
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PROPAGATION OF A SOLITARY WAV

o Influence of the Section Variation (N = 5000 cells) :
o(x;e) = B(z;e) — afx; ) with
B = 5~ gexp (=e*(z = L/2)%)) and o= —f3

12 T T T T T T T

115 1 q
L1F 9

1.05 |- q
>

£

£

0 IE0ENEINIC0NNENNUSRANSIIRRAITATF X T 5|

0.95 1

0.9

oox o x o+

0.85

mmmmm

coooo
LN~

L L L L

4
t(s)

0.8 0

[N)
w

m" . = 1 =
FIGURE — Influence of o : oo with m" = N Z Aj
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PROPAGATION OF A SOLITARY WAVE -

@ Numerical order for e =0

N || nnum — Nezact ||2 ” num — Nezact ||oo
100 0.0789 0.0449

200 0.0497 0.0288

400 0.0304 0.0180

800 0.0198 0.0116

1600 0.0153 0.0081

3200 0.0138 0.0062

Order 0.53 0.58

M. Ersoy (IMATH) 3D-1D



PROPAGATION OF A SOLITARY WAVE (k = 1)

o Numerical order for ¢ = 0.4 (reference solution obtained with N = 10000

cells)

—_—

N
100
200
400
800
1600
3200
Order

I 7num — neef ll2
0.05212

0.02096
0.01079
0.00748
0.00635
0.00505
0.64

Il 7num — Meef oo

0.02533
0.01082
0.00554
0.00503
0.00412
0.00300
0.56

M. Ersoy (IMATH) 3D-1D
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TWO SOLITARY WAVES TEST CASE

o Comparison with the NLSW and the exact solution

T= 0.000
1.5 T
h (SGN)
N (SW) ——
nEX)
14 |
1.3

FIGURE ~ 0 =1,d=1, N =1000, CFL =0.95, Ty = 10 and x = 1.159

M. Ersoy (IMATH) 3D-1D



TWO SOLITARY WAVES TEST CASE

o Comparison with the NLSW and the exact solution

o Influence of s

1.3 T T T T

Exact solution E—

= 115

1.1

1.05

(b) Solutions at time Ty = 10

M. Ersoy (IMATH) 3D-1D 2020, 20 October 19/21



TWO SOLITARY WAVES TEST CASE

o Comparison with the NLSW and the exact solution

o Influence of s

0.016

0.014

0.012

0.008

0.006

1 2 3 4 5 6 7
K

(d) | hea — e |2
e, | 01

0.004
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Tools already developed for 1D, 2D and 3D problems
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