

Generalised Serre-Green-Naghdi equations for open channel and for natural river hydraulics

Debyaoui, M.A.¹ Ersoy, M.¹^a

¹IMATH, Université de Toulon

2020, 20 October CMI, Marseille

a. Mehmet.Ersoy@univ-tln.fr

- Modelling of open channel and rivers
 - water availability,
 - urban sewer systems,
 - flood risks,
 - •

(a) Flooding

- (b) DeltaFlume (NL)
- (c) Araguari River (Brazil)

- Esteves, Faucher, Galle, and Vauclin. Journal of hydrology, 2000.
- Torsvik, Pedersen, and Dysthe. Journal of waterway, port, coastal, and ocean engineering, 2009.

- Modelling of open channel and rivers
- Most widely used depth-averaged models : Saint-Venant system (hyperbolic, non linear, hydrostatic)

DEPTH AVERAGED MODEL

$$\begin{cases} \partial_t h + \operatorname{div}(h\overline{u}) = 0, \\ \partial_t(h\overline{u}) + \operatorname{div}\left(h\overline{u} \otimes \overline{u} + g\frac{h^2}{2}I\right) = -gh\nabla d, \\ h(t,x) = \eta(t,x) - d(x) \quad : \quad \text{water level} \\ \overline{u}(t,x) \in \mathbb{R}^2 \quad : \quad \text{depth averaged speed} \\ g \quad : \quad \text{gravity} \end{cases}$$

Saint-Venant. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 1871.

Marche, Eur. J. Mech.B/ Fluids, 2007

- Modelling of open channel and rivers
- Most widely used depth-averaged models : Saint-Venant system (hyperbolic, non linear, hydrostatic)

SECTION AVERAGED MODEL

$$\begin{cases} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + gI_1(x, A)\right) = gI_2(x, A) \end{cases}$$

$$\begin{array}{c} A(t,x) \\ Q(t,x) \end{array}$$

with $I_1(x,A) = \int_{d\eta}^{1} \sigma(x,z)(\eta-z)dz$ $I_2(x,A) = \int_{d\eta}^{\eta} \frac{\partial}{\partial \sigma} \sigma(x,z)(\eta-z)dz$

$$I_2(x,A) = \int_d \frac{\partial}{\partial x} \sigma(x,z)(\eta-z)dz$$

g

Bourdarias, Ersoy, and Gerbi. Science China Mathematics, 2012.

- x wet area.l(t, x) h(A)
- : wet area

: discharge

- : hydrostatic pressure
 - hydrostatic pressure source
- : gravity

:

- Modelling of open channel and rivers
- Most widely used depth-averaged models : Saint-Venant system (hyperbolic, non linear, hydrostatic)
- $\bullet\,$ Hydrostatic models limitations \rightarrow Illustration with undular bore
 - discontinuous solution also referred as bores takes the form of a breaking wave with turbulent rollers for large transitions.

(d) Bore

- Modelling of open channel and rivers
- Most widely used depth-averaged models : Saint-Venant system (hyperbolic, non linear, hydrostatic and non-dispersive)
- $\bullet\,$ Hydrostatic models limitations \rightarrow Illustration with undular bore
 - discontinuous solution also referred as bores takes the form of a breaking wave with turbulent rollers for large transitions.
 - ► the advancing front is followed by a train of free-surface undulations (whelps) for small or moderate transitions → dispersive effects

(f) Bore

(g) Undular bore STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

• Observation of Soliton

FIGURE - Russell's experiments "like" in 1834

STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$

$$\begin{cases} \frac{\partial}{\partial t}\xi + \frac{\partial}{\partial x}(h\overline{u}) &= O(\mu^2)\\ \frac{\partial}{\partial t}\overline{u} + \varepsilon\overline{u}\frac{\partial}{\partial x}\overline{u} + \nabla\xi + \mu\mathcal{D} &= O(\mu^2) \end{cases}$$

 $\varepsilon = \frac{a}{H} \qquad :$ with $\mu = \left(\frac{H}{L}\right)^2 \qquad :$ $h \qquad :$ $\xi \qquad :$ $\mathcal{D} \qquad :$

- : non-linear parameter
- dispersive parameter
- : water depth
 - free surface elevation
- : dispersive term

Boussinesq. Comptes Rendus Acad. Sci, 1871.

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$
- KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries in 1877

Boussinesq. Comptes Rendus Acad. Sci, 1871.

Korteweg and Gustav De Vries. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895.

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$
- KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries in 1877
- Peregrine introduced the first 2D Boussinesq type equations for non flat bottom in 1967.

STATE OF THE ART : WEAKLY NON LINEAR, WEAKLY DISPERSIVE

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$
- KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries in 1877
- Peregrine introduced the first 2D Boussinesq type equations for non flat bottom in 1967.
- Witting proposed a method to improve the frequency dispersion of the Boussinesq-type equations in 1984

Witting. Journal of Computational Physics, 1984.

- Madsen and Sorensen. Coastal engineering, 1992.
- Nwogu. Journal of waterway, port, coastal, and ocean engineering, 1993.

STATE OF THE ART : NON LINEAR, WEAKLY DISPERSIVE

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$
- KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries in 1877
- Peregrine introduced the first 2D Boussinesq type equations for non flat bottom in 1967.
- Witting proposed a method to improve the frequency dispersion of the Boussinesq-type equations in 1984
- A 1D fully non-linear ($\varepsilon = O(1)$) and weakly dispersive equation for flat bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear close to shoaling zone)

STATE OF THE ART : NON LINEAR, WEAKLY DISPERSIVE

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$
- KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries in 1877
- Peregrine introduced the first 2D Boussinesq type equations for non flat bottom in 1967.
- Witting proposed a method to improve the frequency dispersion of the Boussinesq-type equations in 1984
- A 1D fully non-linear ($\varepsilon = O(1)$) and weakly dispersive equation for flat bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear close to shoaling zone)
- Green and Naghdi derived the 2D fully nonlinear dispersive equations for uneven bottom in 1976

Green and Naghdi. Journal of Fluid Mechanics, 1976.

STATE OF THE ART : NON LINEAR, WEAKLY DISPERSIVE

- Observation of Soliton
- Dispersive equations (1D) introduced by Boussinesq in 1872 to justify mathematically the existence of solitary waves with $\varepsilon = O(\mu) \ll 1$
- KdV equations (1D) introduced by Boussinesq/Korteweg and Gustav de Vries in 1877
- Peregrine introduced the first 2D Boussinesq type equations for non flat bottom in 1967.
- Witting proposed a method to improve the frequency dispersion of the Boussinesq-type equations in 1984
- A 1D fully non-linear ($\varepsilon = O(1)$) and weakly dispersive equation for flat bottom was derived by Serre in 1953 (wave dynamics is strongly nonlinear close to shoaling zone)
- Green and Naghdi derived the 2D fully nonlinear dispersive equations for uneven bottom in 1976
- Recent progress : Lannes, Bonneton, Cienfuegos, Dutykh, Richard, Gavrilyuk, Sainte-Marie, . . .

STATE OF THE ART & AIMS

Construction of a new averaged model for open channel and river flows considering that

- \bullet with 2D models \rightarrow high memory and computer requirements.
- $\bullet\,$ with 1D models $\rightarrow\,$ not accurate.

STATE OF THE ART & AIMS

Construction of a new averaged model for open channel and river flows considering that

- \bullet with 2D models \rightarrow high memory and computer requirements.
- $\bullet\,$ with 1D models $\rightarrow\,$ not accurate.
- good compromise can be achieved by 3D-1D model reduction
 - with non-linear terms
 - with dispersive terms
 - which takes into account of the channel/river geometry

DERIVATION (BASED ON EULER EQUATIONS)

- 3D-2D
- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 Numerical analysis and test case

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

DERIVATION (BASED ON EULER EQUATIONS) 3D-2D

- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

ONCLUSION AND PERSPECTIVES

Incompressible and irrotational Euler equations

$$\begin{aligned} &\operatorname{div}(\rho_0 \boldsymbol{u}) &= 0, \\ &\frac{\partial}{\partial t}(\rho_0 \boldsymbol{u}) + \operatorname{div}(\rho_0 \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p - \rho_0 \boldsymbol{F} &= 0 \end{aligned}$$

Incompressible and irrotational Euler equations

$$\begin{aligned} &\operatorname{div}(\rho_0 \boldsymbol{u}) &= 0, \\ &\frac{\partial}{\partial t}(\rho_0 \boldsymbol{u}) + \operatorname{div}(\rho_0 \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p - \rho_0 \boldsymbol{F} &= 0 \end{aligned}$$

with

$\boldsymbol{u} = (u, v, w)$:	velocity field
$ ho_0$:	density
- (0 0)		

$$\mathbf{F} = (0, 0, -g) \quad : \quad \mathbf{e} \\ p \quad : \quad \mathbf{F}$$

: pressure

Incompressible and irrotational Euler equations

$$\begin{aligned} &\operatorname{div}(\rho_0 \boldsymbol{u}) &= 0, \\ &\frac{\partial}{\partial t}(\rho_0 \boldsymbol{u}) + \operatorname{div}(\rho_0 \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p - \rho_0 \boldsymbol{F} &= 0 \end{aligned}$$

with

p

- $\boldsymbol{u} = (u, v, w)$: velocity field
- $\begin{array}{rcl} \rho_0 & : & {\rm density} \\ {\pmb F} = (0,0,-g) & : & {\rm external \ force} \end{array}$

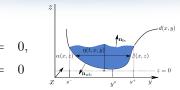
pressure

completed with the irrotational relations

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}, \ \frac{\partial v}{\partial z} = \ \frac{\partial w}{\partial y}, \ \frac{\partial u}{\partial z} = \frac{\partial w}{\partial x}$$

Incompressible and irrotational Euler equations

$$\frac{\operatorname{div}(\rho_0 \boldsymbol{u})}{\frac{\partial}{\partial t}(\rho_0 \boldsymbol{u}) + \operatorname{div}(\rho_0 \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p - \rho_0 \boldsymbol{F}}$$



with

p

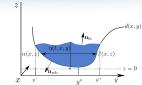
- $\boldsymbol{u} = (u, v, w)$: velocity field
- $\begin{array}{l} \rho_0 & \vdots \\ \boldsymbol{F} = (0,0,-g) & \vdots \end{array}$ density
 - : external force

pressure

completed with the irrotational relations

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}, \ \frac{\partial v}{\partial z} = \ \frac{\partial w}{\partial y}, \ \frac{\partial u}{\partial z} = \frac{\partial w}{\partial x}$$

Incompressible and irrotational Euler equations



• free surface kinematic boundary condition,

$$\boldsymbol{u} \cdot \boldsymbol{n}_{\mathrm{fs}} = \frac{\partial}{\partial t} \boldsymbol{m} \cdot \boldsymbol{n}_{\mathrm{fs}} \text{ and } p = p_0, \ \forall \boldsymbol{m}(t, x, y) = (x, y, \eta(t, x, y)) \in \Gamma_{\mathrm{fs}}(t, x)$$

• no-penetration condition on the wet boundary

$$\boldsymbol{u} \cdot \boldsymbol{n}_{\mathrm{wb}} = 0, \ \forall \boldsymbol{m}(x, y) = (x, y, d(x, y)) \in \Gamma_{\mathrm{wb}}(x)$$

RESCALING AND ASYMPTOTIC REGIME Let us define the dispersive parameters

•
$$\mu_1 = \frac{h_1^2}{L^2}$$

• $\mu_2 = \frac{H_2^2}{L^2}$,

such that

$h_1 < H_1 = H_2 \ll L$, i.e. $\mu_1 < \mu_2^2$

where H_1 : h_1 : H_2 : $F_r = \frac{U}{\sqrt{gH_2}}$: $T = \frac{L}{U}$: $\mathcal{P} = U^2$: X :

- : characteristic scale of channel width
- : characteristic wave-length in the transversal direction
- : characteristic water depth

Froude's number

- characteristic time
- : characteristic pressure
 - : characteristic length of x

RESCALING AND ASYMPTOTIC REGIME Then, define the dimensionless variables

$$\begin{split} \widetilde{x} &= \frac{x}{L}, \quad \widetilde{P} = \frac{P}{\mathcal{P}}, \qquad \qquad \widetilde{\varphi} = \frac{\varphi}{h_1}, \\ \widetilde{y} &= \frac{y}{h_1}, \quad \widetilde{u} = \frac{u}{U}, \qquad \qquad \widetilde{d} = \frac{d}{H_2}, \\ \widetilde{z} &= \frac{z}{H_2}, \quad \widetilde{v} = \frac{v}{V} = \frac{v}{\sqrt{\mu_1}U}, \qquad \qquad \widetilde{\eta} = \frac{\eta}{H_2}. \\ \widetilde{t} &= \frac{t}{T}, \qquad \qquad \widetilde{w} = \frac{w}{W} = \frac{w}{\sqrt{\mu_2}U}. \end{split}$$

Rescaling and asymptotic regime We get $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} + \frac{\partial P}{\partial x} = 0$$
$$\mu_1 \left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) + \frac{\partial P}{\partial y} = 0$$
$$\mu_2 \left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) + \frac{\partial P}{\partial z} = -\frac{1}{F_r^2}$$

 and

$$\frac{\partial u}{\partial y} = \mu_1 \frac{\partial v}{\partial x}, \ \mu_1 \frac{\partial v}{\partial z} = \mu_2 \frac{\partial w}{\partial y}, \ \frac{\partial u}{\partial z} = \mu_2 \frac{\partial w}{\partial x} \ .$$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

• $u_x + w_z = 0$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x \Rightarrow u(t, x, z) = u_{|z=d}(t, x) + \mu \int_d^z w_x(t, x, z) \, dz$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x \Rightarrow u(t, x, z) = u_{|z=d}(t, x) + \mu \int_d^z w_x(t, x, z) \, dz \Rightarrow$
 $w(t, x, z) = -\left(\int_d^z u_{|z=d}(t, x) \, dz\right)_x + O(\mu)$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

•
$$u_x + w_z = 0 + BC \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) dz\right)_x$$

• $u_z = \mu w_x \Rightarrow u(t, x, z) = u_{|z=d}(t, x) + \mu \int_d^z w_x(t, x, z) dz \Rightarrow$
 $w(t, x, z) = -\left(\int_d^z u_{|z=d}(t, x) dz\right)_x + O(\mu)$
• $\Rightarrow u(t, x, z) = f_1(u_{|z=d}(t, x)) + \mu f_2(z, u_{|z=d}(t, x), d(x)) + O(\mu^2) \Rightarrow$
 $u_{|z=d} = f_3(\bar{u}(t, x)) \dots$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

•

•
$$u_x + v_y + w_z = 0 \Rightarrow \int_{\Omega} v_y + w_z \, dy dz \dots$$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

•
$$u_x + v_y + w_z = 0 \Rightarrow \int_{\Omega} v_y + w_z \, dy dz \dots$$

Therefore, we assume $\mu_1 \neq \mu_2$.

"COULISSES" II : WHY INTRODUCE $h_1 < H_1$? A counter example if $h_1 = H_1$:

• Consider the (nondimensional) rectangular channel $(\tilde{x}, \tilde{y}, \tilde{z}) \in \left[0, \frac{L_c}{L}\right] \times \left[0, \frac{H_1}{h_1}\right] \times [0, 1]$ where $L \ll L_c$.

• Consider the (nondimensional) rectangular channel $(\tilde{x}, \tilde{y}, \tilde{z}) \in \left[0, \frac{L_c}{L}\right] \times \left[0, \frac{H_1}{h_1}\right] \times [0, 1]$ where $L \ll L_c$.

• Incompressible + Irrotational $\Rightarrow \exists \tilde{\phi} \ ; \ (\tilde{u}, \tilde{v}, \tilde{w})^T = \nabla \tilde{\phi}$ solution of

$$\partial_{\tilde{x}\tilde{x}}^2\tilde{\phi} + \frac{1}{\mu_1}\partial_{\tilde{y}\tilde{y}}^2\tilde{\phi} + \frac{1}{\mu_2}\partial_{\tilde{z}\tilde{z}}^2\tilde{\phi} = 0$$

- Consider the (nondimensional) rectangular channel $(\tilde{x}, \tilde{y}, \tilde{z}) \in \left[0, \frac{L_c}{L}\right] \times \left[0, \frac{H_1}{h_1}\right] \times [0, 1]$ where $L \ll L_c$.
- Incompressible + Irrotational $\Rightarrow \exists \tilde{\phi} ; (\tilde{u}, \tilde{v}, \tilde{w})^T = \nabla \tilde{\phi}$
- More precisely, $\forall (p,q) \in \mathbb{N}^2,$ we have :

$$\tilde{\phi}_{p,q}(x,y,z) = \cos\left(p\pi\frac{\tilde{x}L}{L_c}\right)\cos\left(q\pi\frac{\tilde{y}h_1}{H_1}\right)\frac{\cosh\left(\pi\tilde{z}\sqrt{p^2\mu_2\frac{L^2}{L_c^2}} + q^2\frac{\mu_2}{\mu_1}\frac{h_1^2}{H_1^2}\right)}{\cosh\left(\pi\sqrt{p^2\mu_2\frac{L^2}{L_c^2}} + q^2\frac{\mu_2}{\mu_1}\frac{h_1^2}{H_1^2}\right)}$$

- Consider the (nondimensional) rectangular channel $(\tilde{x}, \tilde{y}, \tilde{z}) \in \left[0, \frac{L_c}{L}\right] \times \left[0, \frac{H_1}{h_1}\right] \times [0, 1]$ where $L \ll L_c$.
- Incompressible + Irrotational $\Rightarrow \exists \tilde{\phi} \ ; \ (\tilde{u}, \tilde{v}, \tilde{w})^T = \nabla \tilde{\phi}$
- More precisely, $\forall (p,q) \in \mathbb{N}^2,$ we have :

$$\tilde{\phi}_{p,q}(x,y,z) = \cos\left(p\pi\frac{\tilde{x}L}{L_c}\right)\cos\left(q\pi\frac{\tilde{y}h_1}{H_1}\right)\frac{\cosh\left(\pi\tilde{z}\sqrt{p^2\mu_2\frac{L^2}{L_c^2}} + q^2\frac{\mu_2}{\mu_1}\frac{h_1^2}{H_1^2}\right)}{\cosh\left(\pi\sqrt{p^2\mu_2\frac{L^2}{L_c^2}} + q^2\frac{\mu_2}{\mu_1}\frac{h_1^2}{H_1^2}\right)}$$

- Keeping in mind that $H_2 < L \ll L_c$,
 - if $h_1 = H_1 < H_2$ then

$$p^2 \mu_2 \frac{L^2}{L_c^2} + q^2 \frac{\mu_2}{\mu_1} \Rightarrow \tilde{u} = \partial_{\tilde{x}} \tilde{\phi}$$
 is rapidly varying in \tilde{z}

unless $H_1 > H_2$ (out of context)

- Consider the (nondimensional) rectangular channel $(\tilde{x}, \tilde{y}, \tilde{z}) \in \left[0, \frac{L_c}{L}\right] \times \left[0, \frac{H_1}{h_1}\right] \times [0, 1]$ where $L \ll L_c$.
- Incompressible + Irrotational $\Rightarrow \exists \tilde{\phi} \ ; \ (\tilde{u}, \tilde{v}, \tilde{w})^T = \nabla \tilde{\phi}$
- More precisely, $\forall (p,q) \in \mathbb{N}^2,$ we have :

$$\tilde{\phi}_{p,q}(x,y,z) = \cos\left(p\pi\frac{\tilde{x}L}{L_c}\right)\cos\left(q\pi\frac{\tilde{y}h_1}{H_1}\right)\frac{\cosh\left(\pi\tilde{z}\sqrt{p^2\mu_2\frac{L^2}{L_c^2}} + q^2\frac{\mu_2}{\mu_1}\frac{h_1^2}{H_1^2}\right)}{\cosh\left(\pi\sqrt{p^2\mu_2\frac{L^2}{L_c^2}} + q^2\frac{\mu_2}{\mu_1}\frac{h_1^2}{H_1^2}\right)}$$

• Keeping in mind that $H_2 < L \ll L_c$,

- if $h_1 = H_1 < H_2$ then is rapidly varying in \tilde{z}
- Therefore, we consider $h_1 < H_1 = H_2$:

$$p^{2}\mu_{2}\frac{L^{2}}{L_{c}^{2}} + q^{2}\frac{\mu_{2}}{\mu_{1}}\frac{h_{1}^{2}}{H_{1}^{2}} = p^{2}\frac{H_{2}^{2}}{L_{c}^{2}} + q^{2}\frac{H_{2}^{2}}{H_{1}^{2}}$$

- "Coulisses" II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - 3D-2D reduction (width averaging)

2D-1D reduction (depth averaging)

3D-1D reduction (section averaging)

- "Coulisses" II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - ▶ 3D-2D reduction (width averaging) :

 $u(t, x, y, z) = \langle u \rangle(t, x, z) + O(\mu_1)$

2D-1D reduction (depth averaging)

3D-1D reduction (section averaging)

- "Coulisses" II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - 3D-2D reduction (width averaging) :

$$u(t, x, y, z) = \langle u \rangle(t, x, z) + O(\mu_1)$$

2D-1D reduction (depth averaging) :

 $\langle u \rangle(t,x,z) = \overline{u}(t,x) + \mu_2 f(\overline{u}(t,x),\Omega(t,x)) + O(\mu_2^2)$

where $\overline{u}(t,x)$ is the section-averaged velocity

3D-1D reduction (section averaging)

- "Coulisses" II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - 3D-2D reduction (width averaging) :

$$u(t, x, y, z) = \langle u \rangle(t, x, z) + O(\mu_1)$$

2D-1D reduction (depth averaging) :

$$\langle u \rangle(t, x, z) = \overline{u}(t, x) + \mu_2 f(\overline{u}(t, x), \Omega(t, x)) + O(\mu_2^2)$$

where $\overline{u}(t, x)$ is the section-averaged velocity > 3D-1D reduction (section averaging) :

$$u(t, x, y, z) = \overline{u}(t, x) + \mu_2 f(\overline{u}(t, x), \Omega(t, x)) + O(\mu_2^2)$$

DERIVATION (BASED ON EULER EQUATIONS) 3D-2D

- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 Numerical analysis and test case

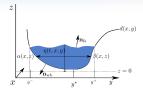
- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

• Div and irrotational equations \Rightarrow

noting

$$X_{\alpha}(t, x, z) := X(t, x, \alpha(x, z), z)$$



we have

$$u(t,x,y,z) = u_{\alpha}(t,x,z) - \frac{\mu_1}{2} \frac{\partial}{\partial x} \operatorname{div}_{x,z} \left[w_{\alpha}(t,x,z)(y-\alpha(x,z))^2 \right] + O\left(\frac{\mu_1^2}{\mu_2}\right)$$

and

$$w(t,x,y,z) = w_{\alpha}(t,x,z) - \frac{\mu_1}{2\mu_2} \frac{\partial}{\partial z} \operatorname{div}_{x,z} \left[w_{\alpha}(t,x,z)(y-\alpha(x,z))^2 \right] + O\left(\frac{\mu_1^2}{\mu_2^2}\right)$$

• Width-averaging \Rightarrow noting

$$\langle X \rangle(t,x,z) := \frac{1}{\sigma(x,z)} \int_{\alpha(x,z)}^{\beta(x,z)} X(t,x,y,z) \, dy$$

we have

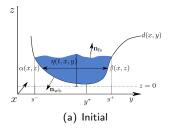
$$\sigma(x,z)\langle u\rangle(t,x,z) = \sigma(x,z)u_{\alpha}(t,x,z) - \frac{\mu_1}{6}\frac{\partial}{\partial x}\mathsf{div}_{x,z}\left[\boldsymbol{w}_{\alpha}(t,x,z)\sigma(x,z)^3\right] + O\left(\frac{\mu_1^2}{\mu_2}\right) ,$$

$$\begin{split} \sigma(x,z)\langle w\rangle(t,x,z) &= \sigma(x,z)w_{\alpha}(t,x,z) - \frac{\mu_1}{6\mu_2}\frac{\partial}{\partial z}\mathsf{div}_{x,z}\left[w_{\alpha}(t,x,z)\sigma(x,z)^3\right] + O\left(\frac{\mu_1^2}{\mu_2^2}\right) \\ &\text{where } \sigma(x,z) = \beta(x,z) - \alpha(x,z) \text{ is the width of the section at the elevation } z. \end{split}$$

STEP 1 : 3D-2D REDUCTION

• Width-averaging \Rightarrow

$$P(t, x, y, z) = P_{\alpha}(t, x, z) + O(\mu_1) = \frac{\eta(t, x, y) - z}{F_r^2} + \mu_2 \int_z^{\eta(t, x, y)} \frac{D}{Dt} w_{\alpha}(t, x, z) \, ds + O(\mu_1)$$



a. Debyaoui, Ersoy, Asymptotic Analysis, 2020

• Width-averaging \Rightarrow

$$P(t, x, y, z) = P_{\alpha}(t, x, z) + O(\mu_1) = \frac{\eta(t, x, y) - z}{F_r^2} + \mu_2 \int_z^{\eta(t, x, y)} \frac{D}{Dt} w_{\alpha}(t, x, z) \, ds + O(\mu_1)$$

 $\label{eq:Flat} \bigcup_{a} \mathsf{Flat} \ \mathsf{free} \ \mathsf{surface} \ \mathsf{approximation}^a :$

 $\eta(t, x, y) = \eta_{\rm eq}(t, x) + O(\mu_1)$

a. Debyaoui, Ersoy, Asymptotic Analysis, 2020

• Width-averaging \Rightarrow we get the 2D width-averaged model

$$\begin{aligned} \operatorname{div}_{x,z}\left[\sigma\boldsymbol{w}_{\alpha}\right] + O\left(\frac{\mu_{1}^{2}}{\mu_{2}^{2}}\right) &= \frac{\mu_{1}}{6\mu_{2}}\frac{\partial}{\partial z}\left(\sigma^{2}_{\alpha}\left(\operatorname{div}_{x,z}\left[\boldsymbol{w}_{\alpha}\sigma^{3}\right]\right)\right) \\ \frac{\partial}{\partial t}(\sigma u_{\alpha}) + \operatorname{div}_{x,z}\left[\sigma u_{\alpha}\boldsymbol{w}_{\alpha}\right] + \frac{\partial}{\partial x}(\sigma P_{\alpha}) + O\left(\frac{\mu_{1}^{2}}{\mu_{2}^{2}}\right) &= P_{\alpha}\frac{\partial\sigma}{\partial x} \\ \mu_{2}\left(\frac{\partial}{\partial t}(\sigma w_{\alpha}) + \operatorname{div}_{x,z}\left[\sigma w_{\alpha}\boldsymbol{w}_{\alpha}\right]\right) + \frac{\partial}{\partial z}(\sigma P_{\alpha}) &= -\frac{\sigma}{F_{r}^{2}} \\ + P_{\alpha}\frac{\partial\sigma}{\partial z} + O(\mu_{1}) \end{aligned}$$

completed with the irrotational equation

$$\frac{\partial u_{\alpha}}{\partial z} = \mu_2 \frac{\partial w_{\alpha}}{\partial x} + O(\mu_1)$$

Derivation (based on Euler equations) 3D-2D

2D-1D

• 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

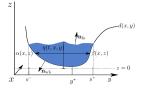
3 Numerical analysis and test case

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

• Div and irrotational equations (model 2D) \Rightarrow noting

$$f_b(t,x) = f_\alpha(t,x,d^*(x)), \quad \mathcal{S}(u,x,z) = \frac{1}{\sigma(x,z)} \frac{\partial}{\partial x} \left(uS(x,z) \right), \quad S(x,z) = \int_{d^*(x)}^z \sigma(x,s) \, ds$$



we have

$$u_{\alpha}(t,x,z) = u_b(t,x) - \mu_2 \int_{d^*(x)}^z \frac{\partial}{\partial x} \mathcal{S}(u_b,x,s) \ ds + O(\mu_2^2)$$

and

$$w_{\alpha}(t,x,z) = -\frac{1}{\sigma(x,z)} \frac{\partial}{\partial x} \left(u_{b}(t,x) S(x,z) \right) + O(\mu_{2})$$

• Depth-averaging \Rightarrow noting

$$\bar{u}_{\rm eq} = \frac{1}{A_{\rm eq}(t,x)} \int_{d^*(x)}^{\eta_{\rm eq}(t,x)} \int_{\alpha(x,z)}^{\beta(x,z)} u(t,x,y,z) \ dydz \\ x \\ x \\ y^{-} \\ y^{-} \\ y^{+} \\$$

we get

$$\begin{aligned} u_b(t,x) &= \bar{u}_{eq}(t,x) \\ &+ \frac{\mu_2}{A_{eq}(t,x)} \int_{d^*(x)}^{\eta_{eq}(t,x)} \sigma(x,z) \left(\int_{d^*(x)}^z \frac{\partial}{\partial x} \mathcal{S}(\bar{u}_{eq}(t,x),x,s) \ ds \right) dz \\ &+ O(\mu_2^2) \end{aligned}$$

• Depth-averaging \Rightarrow finally,

$$u(t, x, y, z) = \bar{u}_{eq}(t, x) + \mu_2 B_0(\bar{u}_{eq}, x, z) + O(\mu_2^2)$$

with

$$B_{0}(\bar{u}_{eq}, x, z) = \frac{1}{A_{eq}(t, x)} \int_{d^{*}(x)}^{\eta_{eq}(t, x)} \left(\sigma(x, z) \int_{d^{*}(x)}^{z} \frac{\partial}{\partial x} \mathcal{S}(\bar{u}_{eq}(t, x), x, s) \, ds \right) dz$$
$$- \int_{d^{*}(x)}^{z} \frac{\partial}{\partial x} \mathcal{S}(\bar{u}_{eq}(t, x), x, s) \, ds$$

• Depth-averaging \Rightarrow we also have

$$P(t, x, y, z) = P_{\rm h}(t, x, z) + \mu_2 P_{\rm nh}(t, x, z) + O(\mu_2^2)$$

where

$$P_{\rm h}(t,x,z) = \frac{(z - \eta_{\rm eq}(t,x))}{{F_r}^2}$$

and

$$P_{\rm nh}(t,x,z) = \int_{z}^{\eta_{\rm eq}(t,x)} \frac{1}{2\sigma(x,s)^2} \frac{\partial}{\partial z} \left(\left(\sigma(x,s) \mathcal{S}(\bar{u}_{\rm eq}(t,x),x,s) \right)^2 \right) ds \\ - \int_{z}^{\eta_{\rm eq}(t,x)} \frac{\partial}{\partial t} \mathcal{S}(\bar{u}_{\rm eq}(t,x),x,s) \\ + \frac{\bar{u}_{\rm eq}(t,x)}{\sigma(x,s)} \frac{\partial}{\partial x} (\sigma(x,s) \mathcal{S}(\bar{u}_{\rm eq}(t,x),x,s)) ds$$

DERIVATION (BASED ON EULER EQUATIONS) 3D-2D

- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

• Euler equations in Ω_{eq} instead of Ω

- Euler equations in $\Omega_{\rm eq}$ instead of Ω
- Boundary condition :

$$\int_{\partial \Omega_{eq}(t,x)} \left(\frac{\partial}{\partial t} \boldsymbol{M} + u \frac{\partial}{\partial x} \boldsymbol{M} - \boldsymbol{v} \right) \cdot \boldsymbol{n} \, ds = 0$$

- Euler equations in $\Omega_{\rm eq}$ instead of Ω
- Boundary condition :

$$\int_{\partial \Omega_{eq}(t,x)} \left(\frac{\partial}{\partial t} \boldsymbol{M} + u \frac{\partial}{\partial x} \boldsymbol{M} - \boldsymbol{v} \right) \cdot \boldsymbol{n} \, ds = 0$$

 \bullet Introduce wet region indicator function Φ which satisfies

$$\frac{\partial}{\partial t} \Phi + \frac{\partial}{\partial x} (\Phi u) + {\rm div}_{y,z} \left[\Phi v \right] = 0 \, \, {\rm on} \, \, \Omega_{\rm eq}(t) = \bigcup_{0 \leq x \leq 1} \Omega_{\rm eq}(t,x) \, \, .$$

where $\boldsymbol{v} = (v, w)$.

- Euler equations in $\Omega_{\rm eq}$ instead of Ω
- Boundary condition :

$$\int_{\partial\Omega_{eq}(t,x)} \left(\frac{\partial}{\partial t} \boldsymbol{M} + u \frac{\partial}{\partial x} \boldsymbol{M} - \boldsymbol{v} \right) \cdot \boldsymbol{n} \, ds = 0$$

 $\bullet\,$ Introduce wet region indicator function Φ which satisfies

$$\frac{\partial}{\partial t} \Phi + \frac{\partial}{\partial x} (\Phi u) + {\rm div}_{y,z} \left[\Phi \boldsymbol{v} \right] = 0 \, \, {\rm on} \, \, \Omega_{\rm eq}(t) = \bigcup_{0 \leq x \leq 1} \Omega_{\rm eq}(t,x) \, \, .$$

where $\boldsymbol{v} = (v, w)$.

• Section-averaging equations using the approximation

$$\begin{array}{lll} u(t,x,y,z) &=& \bar{u}_{\rm eq}(t,x) + \mu_2 B_0(\bar{u}_{\rm eq},x,z) + O(\mu_2^2) \\ \eta(t,x,y) &=& \eta_{\rm eq}(t,x) + O(\mu_1) \\ P(t,x,y,z) &=& P_{\rm h}(t,x,z) + \mu_2 P_{\rm nh}(t,x,z) + O(\mu_2^2) \end{array}$$

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} Q_{\rm eq} = 0\\ \frac{\partial}{\partial t} Q_{\rm eq} + \frac{\partial}{\partial x} \left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq}) \right) + \mu_2 \frac{\partial}{\partial x} (DI_1(x, A_{\rm eq}, Q_{\rm eq})) = \\ I_2(x, A_{\rm eq}) + \mu_2 DI_2(x, A_{\rm eq}, Q_{\rm eq}) + O(\mu_2^2) \end{cases}$$

where

$$egin{aligned} A_{\mathrm{eq}} &= \int_{\Omega_{\mathrm{eq}}(t,x)} dy\,dz &: & ext{wet area} \ Q_{\mathrm{eq}} &= A_{\mathrm{eq}}(t,x)ar{u}_{\mathrm{eq}}(t,x) &: & ext{discharge} \end{aligned}$$

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} Q_{\rm eq} = 0\\ \frac{\partial}{\partial t} Q_{\rm eq} + \frac{\partial}{\partial x} \left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq}) \right) + \mu_2 \frac{\partial}{\partial x} (DI_1(x, A_{\rm eq}, Q_{\rm eq})) = \\ I_2(x, A_{\rm eq}) + \mu_2 DI_2(x, A_{\rm eq}, Q_{\rm eq}) + O(\mu_2^2) \end{cases}$$

where

$$\begin{split} &I_1 = \int_{\Omega_{\text{eq}}(t,x)} \frac{\eta_{\text{eq}}(t,x) - z}{F_r^2} \sigma(x,z) \, dy \, dz \quad : \quad \text{hydro. press.} \\ &I_2 = -\int_{y^-(t,x)}^{y^+(t,x)} \frac{h_{\text{eq}}(t,x)}{F_r^2} \frac{\partial}{\partial x} d(x,y) \, dy \quad : \quad \text{hydro. press. source} \end{split}$$

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} Q_{\rm eq} = 0\\ \frac{\partial}{\partial t} Q_{\rm eq} + \frac{\partial}{\partial x} \left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq}) \right) + \mu_2 \frac{\partial}{\partial x} (DI_1(x, A_{\rm eq}, Q_{\rm eq})) = \\ I_2(x, A_{\rm eq}) + \mu_2 DI_2(x, A_{\rm eq}, Q_{\rm eq}) + O(\mu_2^2) \end{cases}$$

$$DI_{1} = \int_{\Omega_{eq}(t,x)} P_{nh}(t,x,z) \, dy \, dz \qquad : \quad (disp) \text{ non hydro. press.}$$
$$DI_{2} = -\int_{y^{-}(t,x)}^{y^{+}(t,x)} P_{nh}(t,x,d(x,y)) \frac{\partial}{\partial x} d(x,y) \, dy \qquad : \quad (disp) \text{ non hydro. press. source}$$

...hawa

$$\begin{cases} \frac{\partial}{\partial t}A_{\rm eq} + \frac{\partial}{\partial x}Q_{\rm eq} = 0\\ \frac{\partial}{\partial t}Q_{\rm eq} + \frac{\partial}{\partial x}\left(\frac{Q_{\rm eq}^2}{A_{\rm eq}} + I_1(x, A_{\rm eq})\right) + \mu_2\frac{\partial}{\partial x}(DI_1(x, A_{\rm eq}, Q_{\rm eq})) = \\ I_2(x, A_{\rm eq}) + \mu_2DI_2(x, A_{\rm eq}, Q_{\rm eq}) + O(\mu_2^2) \end{cases}$$

REMARK (GENERALISATION OF THE FREE SURFACE MODEL) Setting $\mu_2 = 0$, we recover the usual nlsw equations for open channel.

Bourdarias, Ersoy, Gerbi. Science China Mathematics, 2012.

Debyaoui, Ersoy. Asymptotic Analysis, 2020

$$\begin{cases} \frac{\partial}{\partial t}A_{\rm eq} + \frac{\partial}{\partial x}Q_{\rm eq} = 0\\ \frac{\partial}{\partial t}Q_{\rm eq} + \frac{\partial}{\partial x}\left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq})\right) + \mu_2\frac{\partial}{\partial x}(\mathcal{D}(\bar{u}_{\rm eq})G(A_{\rm eq}, x)) = I_2(x, A_{\rm eq})\\ + \mu_2\mathcal{G}(\bar{u}_{\rm eq}, S, \sigma) + O(\mu_2^2) \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial t}A_{\rm eq} + \frac{\partial}{\partial x}Q_{\rm eq} = 0\\ \frac{\partial}{\partial t}Q_{\rm eq} + \frac{\partial}{\partial x}\left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq})\right) + \mu_2\frac{\partial}{\partial x}(\mathcal{D}(\bar{u}_{\rm eq})G(A_{\rm eq}, x)) = I_2(x, A_{\rm eq})\\ + \mu_2\mathcal{G}(\bar{u}_{\rm eq}, S, \sigma) + O(\mu_2^2) \end{cases}$$

where

and

$$\mathcal{D}(\bar{u}_{eq}) = \left(\frac{\partial}{\partial x}\bar{u}_{eq}\right)^2 - \frac{\partial}{\partial t}\frac{\partial}{\partial x}\bar{u}_{eq} - \bar{u}_{eq}\frac{\partial}{\partial x}\frac{\partial}{\partial x}\bar{u}_{eq}$$
$$G(A_{eq}, x) = \int_{d^*(x)}^{\eta_{eq}}\sigma(x, z)\int_{z}^{\eta_{eq}}\frac{S(x, s)}{\sigma(x, s)} ds dz$$

$$\begin{cases} \frac{\partial}{\partial t}A_{\rm eq} + \frac{\partial}{\partial x}Q_{\rm eq} = 0\\ \frac{\partial}{\partial t}Q_{\rm eq} + \frac{\partial}{\partial x}\left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq})\right) + \mu_2\frac{\partial}{\partial x}(\mathcal{D}(\bar{u}_{\rm eq})G(A_{\rm eq}, x)) = I_2(x, A_{\rm eq})\\ + \mu_2\mathcal{G}(\bar{u}_{\rm eq}, S, \sigma) + O(\mu_2^2) \end{cases}$$

where

$$\begin{aligned} \mathcal{G}(u,S,\sigma) &= \int_{z}^{\eta_{eq}} \frac{u^{2}}{\sigma(x,s)} \left(\frac{\frac{\partial}{\partial x} S(x,s) \frac{\partial}{\partial x} \sigma(x,s)}{\sigma(x,s)} - \frac{\partial}{\partial x} \frac{\partial}{\partial x} S(x,s) \right) \\ &+ \frac{\partial}{\partial x} \left(\frac{u^{2}}{2} \right) \frac{S(x,s) \frac{\partial}{\partial x} \sigma(x,s)}{\sigma(x,s)^{2}} \\ &- \left(\frac{\partial}{\partial t} \bar{u}_{eq} + \bar{u}_{eq} \frac{\partial}{\partial x} \bar{u}_{eq} \right) \frac{\frac{\partial}{\partial x} S(x,s)}{\sigma(x,s)} ds \end{aligned}$$

REFORMULATION : GENERALIZATION OF THE SGN EQUATIONS

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} Q_{\rm eq} = 0\\ \frac{\partial}{\partial t} Q_{\rm eq} + \frac{\partial}{\partial x} \left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq}) \right) + \mu_2 \frac{\partial}{\partial x} (\mathcal{D}(\bar{u}_{\rm eq}) G(A_{\rm eq}, x)) = I_2(x, A_{\rm eq})\\ + \mu_2 \mathcal{G}(\bar{u}_{\rm eq}, S, \sigma) + O(\mu_2^2) \end{cases}$$

Setting $\sigma = 1$, d = 1,

•
$$A_{eq} = h_{eq}$$

• $S(x,z) \equiv S(z) \Rightarrow \mathcal{G} = 0$ and $I_2 = 0$
• $G = \frac{h_{eq}^{-3}}{3}$
• $I_1 = \frac{h_{eq}^{-2}}{2F_r^2}$

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} Q_{\rm eq} = 0\\ \frac{\partial}{\partial t} Q_{\rm eq} + \frac{\partial}{\partial x} \left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq}) \right) + \mu_2 \frac{\partial}{\partial x} (\mathcal{D}(\bar{u}_{\rm eq}) G(A_{\rm eq}, x)) = I_2(x, A_{\rm eq}) \\ + \mu_2 \mathcal{G}(\bar{u}_{\rm eq}, S, \sigma) + O(\mu_2^2) \end{cases}$$

we recover the classical SGN equations on flat bottom

$$\begin{cases} \frac{\partial}{\partial t}h_{\rm eq} + \frac{\partial}{\partial x}(h_{\rm eq}u_{\rm eq}) = 0\\ \frac{\partial}{\partial t}(h_{\rm eq}u_{\rm eq}) + \frac{\partial}{\partial x}\left(h_{\rm eq}u_{\rm eq}^2 + \frac{h_{\rm eq}^2}{2F_r^2}\right) + \mu_2\frac{\partial}{\partial x}\left(\frac{h_{\rm eq}^3}{3}\mathcal{D}(u_{\rm eq})\right) = O(\mu_2^2)\end{cases}$$

REFORMULATION : GENERALIZATION OF THE SGN EQUATIONS

$$\begin{cases} \frac{\partial}{\partial t}A_{\rm eq} + \frac{\partial}{\partial x}Q_{\rm eq} = 0\\ \frac{\partial}{\partial t}Q_{\rm eq} + \frac{\partial}{\partial x}\left(\frac{Q_{\rm eq}}{A_{\rm eq}}^2 + I_1(x, A_{\rm eq})\right) + \mu_2\frac{\partial}{\partial x}(\mathcal{D}(\bar{u}_{\rm eq})G(A_{\rm eq}, x)) = I_2(x, A_{\rm eq})\\ + \mu_2\mathcal{G}(\bar{u}_{\rm eq}, S, \sigma) + O(\mu_2^2) \end{cases}$$

Remark

Dispersive equation are usually characterized by third order term \Rightarrow may create high frequencies instabilities

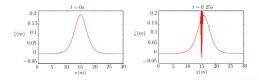


 FIGURE — Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283–304, 2017.

Derivation (based on Euler equations) 3D-2D

• 2D-1D

• 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

Conclusion and perspectives

DERIVATION (BASED ON EULER EQUATIONS)

- 3D-2D
- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

• Define the linear \mathcal{T} and the quadratic \mathcal{Q} operators

$$\mathcal{T}[A_{\rm eq}, d, \sigma, z](u) = \frac{\partial}{\partial x}(u) \int_{z}^{\eta_{\rm eq}} \frac{S(x, s)}{\sigma(x, s)} \, ds + u \int_{z}^{\eta_{\rm eq}} \frac{1}{\sigma(x, s)} \frac{\partial}{\partial x} S(x, s) \, ds \; ,$$

~

and

$$\begin{aligned} \mathcal{G}[A_{\rm eq}, d, \sigma, z](u) &= \int_{z}^{\eta_{\rm eq}} 2\left(\frac{\partial}{\partial x}u\right)^{2}\frac{S(x,s)}{\sigma(x,s)} + \\ & \frac{u^{2}}{\sigma(x,s)}\left(\frac{\frac{\partial}{\partial x}S(x,s)\frac{\partial}{\partial x}\sigma(x,s)}{\sigma(x,s)} - \frac{\partial}{\partial x}\frac{\partial}{\partial x}S(x,s)\right) \\ & + \frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)\frac{S(x,s)\frac{\partial}{\partial x}\sigma(x,s)}{\sigma(x,s)^{2}} ds \end{aligned}$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- \bullet Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators

$$\overline{\mathcal{T}}[A_{\mathrm{eq}}, d, \sigma](u, \psi) = \int_{d^*(x)}^{\eta_{\mathrm{eq}}} \psi \mathcal{T}[A_{\mathrm{eq}}, d, \sigma, z](u) \ dz$$

and

$$\overline{\mathcal{G}}[A_{\mathrm{eq}}, d, \sigma](u, \psi) = \int_{d^*(x)}^{\eta_{\mathrm{eq}}} \psi \mathcal{G}[A_{\mathrm{eq}}, d, \sigma, z](u) \, dz$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- \bullet Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- \bullet Define the operators ${\cal L}$ and ${\cal Q}$

$$\mathbb{L}[A_{\mathrm{eq}}, d, \sigma](u) = A_{\mathrm{eq}} \mathcal{L}[A_{\mathrm{eq}}, d, \sigma] \left(\frac{u}{A_{\mathrm{eq}}}\right)$$

and

$$\mathcal{Q}[A_{\rm eq}, d, \sigma](u) = \frac{1}{A_{\rm eq}} \left[\frac{\partial}{\partial x} \left(\overline{\mathcal{G}}[A_{\rm eq}, d, \sigma](u, \sigma) \right) - \overline{\mathcal{G}}[A_{\rm eq}, d, \sigma] \left(u, \frac{\partial}{\partial x} \sigma \right) \right]$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- \bullet Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- \bullet Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator \mathbbm{L}

$$\mathbb{L}[A_{\mathrm{eq}}, d, \sigma](u) = A_{\mathrm{eq}} \mathcal{L}[A_{\mathrm{eq}}, d, \sigma] \left(\frac{u}{A_{\mathrm{eq}}}\right)$$

- \bullet Define the linear ${\cal T}$ and the quadratic ${\cal Q}$ operators
- \bullet Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- \bullet Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator \mathbbm{L}
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}) = 0\\ (I_d - \mu_2 \mathbb{L}[A_{\rm eq}, d, \sigma]) \left(\frac{\partial}{\partial t} (A_{\rm eq} u_{\rm eq}) + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}^2) \right) + \frac{\partial}{\partial x} I_1(x, A_{\rm eq})\\ + \mu_2 A_{\rm eq} \mathcal{Q}[A_{\rm eq}, d, \sigma](u_{\rm eq}) = I_2(x, A_{\rm eq}) + O(\mu_2^2) \end{cases}$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- \bullet Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator \mathbbm{L}
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}) = 0\\ \left(I_d - \mu_2 \mathbb{L}[A_{\rm eq}, d, \sigma]\right) \left(\frac{\partial}{\partial t} (A_{\rm eq} u_{\rm eq}) + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}^2)\right) + \frac{\partial}{\partial x} I_1(x, A_{\rm eq})\\ + \mu_2 A_{\rm eq} \mathcal{Q}[A_{\rm eq}, d, \sigma](u_{\rm eq}) = I_2(x, A_{\rm eq}) + O(\mu_2^2) \end{cases}$$

Remark

Inverting $I_d - \mu_2 \mathbb{L}[A_{eq}, d, \sigma] \Rightarrow$ no third order term \Rightarrow more stable formulation

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- \bullet Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator $\mathbb L$
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}) = 0\\ \left(I_d - \mu_2 \mathbb{L}[A_{\rm eq}, d, \sigma]\right) \left(\frac{\partial}{\partial t} (A_{\rm eq} u_{\rm eq}) + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}^2)\right) + \frac{\partial}{\partial x} I_1(x, A_{\rm eq})\\ + \mu_2 A_{\rm eq} \mathcal{Q}[A_{\rm eq}, d, \sigma](u_{\rm eq}) = I_2(x, A_{\rm eq}) + O(\mu_2^2) \end{cases}$$

Remark

A consistent one-parameter family (up to order $O(\mu_2^2)$) can be introduced to improve the frequency dispersion.

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- \bullet Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator \mathbbm{L}
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t} A_{\rm eq} + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}) = 0\\ \left(I_d - \mu_2 \kappa \mathbb{L}[A_{\rm eq}, d, \sigma]\right) \left(\frac{\partial}{\partial t} (A_{\rm eq} u_{\rm eq}) + \frac{\partial}{\partial x} (A_{\rm eq} u_{\rm eq}^2) + \frac{\kappa - 1}{\kappa} \left(\frac{\partial}{\partial x} I_1 - I_2\right)\right)\\ + \frac{1}{\kappa} \left(\frac{\partial}{\partial x} I_1 - I_2\right) + \mu_2 A_{\rm eq} \mathcal{Q}[A_{\rm eq}, d, \sigma](u_{\rm eq}) = O(\mu_2^2)\end{cases}$$

Remark

A consistent one-parameter $\kappa > 0$ family (up to order $O(\mu_2^2)$) can be introduced to improve the frequency dispersion.

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

1 Derivation (based on Euler equations)

- 3D-2D
- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

INVERTIBILITY OF THE OPERATOR $\mathbb{T} = A(I_d - \mu_2 \mathbb{L}[A_{eq}, d, \sigma])$

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

INVERTIBILITY OF THE OPERATOR $\mathbb{T} = A(I_d - \mu_2 \mathbb{L}[A_{eq}, d, \sigma])$

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

• Let $\mu_2 \in (0,1)$. Define the space $H^1_{\mu_2}(\mathbb{R})$ the space $H^1(\mathbb{R})$ endowed with the norm

$$\| u \|_{\mu_2}^2 = \| u \|_2^2 + \mu_2 \| u_x \|_2^2$$

INVERTIBILITY OF THE OPERATOR $\mathbb{T} = A(I_d - \mu_2 \mathbb{L}[A_{eq}, d, \sigma])$

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

• Let $\mu_2 \in (0,1)$. Define the space $H^1_{\mu_2}(\mathbb{R})$

• Define the bilinear form a(u, v)

$$a(u,v) = (A\mathbb{T}u,v) = (Au,v) + \mu_2 \left(A\left(\frac{A}{\sqrt{3}u_x} - \frac{\sqrt{3}}{2}d_xu\right), \left(\frac{A}{\sqrt{3}v_x} - \frac{\sqrt{3}}{2}d_xv\right) \right) + (Ad_xu, d_xv)$$

THEOREM

Let α,β and $d \in C_b^\infty$ and $A \in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x \in \mathbb{R}} A \ge A_0 > 0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

- Let $\mu_2 \in (0,1)$. Define the space $H^1_{\mu_2}(\mathbb{R})$
- Define the bilinear form a(u,v)
- Lax-Milgram theorem

• From definition of \mathbb{T} , we get $u_{xx} = g(A, u, d, \sigma) \in L^2(\mathbb{R}) \Rightarrow u \in H^2(\mathbb{R})$.

Derivation (based on Euler equations) 3D-2D

- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

ONCLUSION AND PERSPECTIVES

• Derivation (based on Euler equations)

- 3D-2D
- 2D-1D
- 3D-1D

2 Improved model and stability

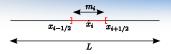
- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

NUMERICAL SCHEME : HYPERBOLIC PART



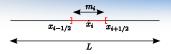
We consider a classical Finite Volume scheme, $\boldsymbol{U}=(A,Q)$

$$\begin{split} \boldsymbol{U}_{i}^{n+1} &= \boldsymbol{U}_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(\boldsymbol{F}_{i+1/2}(\boldsymbol{U}_{i}^{n},\boldsymbol{U}_{i+1}^{n}) - \boldsymbol{F}_{i-1/2}(\boldsymbol{U}_{i-1}^{n},\boldsymbol{U}_{i}^{n}) \right) \\ \text{where } \boldsymbol{F}_{i\pm 1/2} &\approx \frac{1}{\delta t^{n}} \int_{m_{i}} \boldsymbol{F}(\boldsymbol{U}(t,x_{i+1/2})) \ dx \text{ is a Finite volume solver,} \end{split}$$

with

$$\boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} Au \\ Au^2 + \frac{\kappa - 1}{\kappa} \left(I_1 - '' \int I_2'' \right) \end{pmatrix}$$

NUMERICAL SCHEME : HYPERBOLIC PART



We consider a classical Finite Volume scheme, U = (A, Q)

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(\boldsymbol{F}_{i+1/2}(\boldsymbol{U}_{i}^{n}, \boldsymbol{U}_{i+1}^{n}) - \boldsymbol{F}_{i-1/2}(\boldsymbol{U}_{i-1}^{n}, \boldsymbol{U}_{i}^{n}) \right)$$

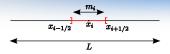
where $F_{i\pm 1/2} \approx \frac{1}{\delta t^n} \int_{m_i} F(U(t, x_{i+1/2})) dx$ is a Finite volume solver, for instance, with upwind technique to deal with source term

$$\boldsymbol{F}_{i\pm 1/2} = \frac{\boldsymbol{F}(\boldsymbol{U}) + \boldsymbol{F}(\boldsymbol{V})}{2} - \frac{s_i^n}{2} (\boldsymbol{V} - \boldsymbol{U})$$
$$\boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} Au \\ Au^2 + \frac{\kappa - 1}{\kappa} \left(I_1 - '' \int I_2'' \right) \end{pmatrix}$$

with

Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011

NUMERICAL SCHEME : DISPERSIVE PART



We consider a classical Finite Volume scheme, U = (A, Q)

$$U_{i}^{n+1} = U_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(F_{i+1/2}(U_{i}^{n}, U_{i+1}^{n}) - F_{i-1/2}(U_{i-1}^{n}, U_{i}^{n}) \right) \\ - \frac{\delta t^{n}}{\delta x} \left(\left[(I_{d} - \mu_{2} \mathbb{L})^{n} \right]^{-1} D^{n} \right)_{i}$$

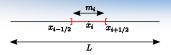
with

$$(\boldsymbol{D}^n)_i = \boldsymbol{D}_{i+1/2}(\boldsymbol{U}_{i-1}^n, \boldsymbol{U}_i^n, \boldsymbol{U}_{i+1}^n) - \boldsymbol{D}_{i-1/2}(\boldsymbol{U}_{i-2}^n, \boldsymbol{U}_{i-1}^n, \boldsymbol{U}_i^n)$$

where $oldsymbol{D}_{i\pm 1/2}$ and $\left[(I_d-\mu_2\mathbb{L})^n
ight]^{-1}$ are the centred approximation of

$$\mathcal{D} = \frac{1}{\kappa} \left(\frac{\partial}{\partial x} I_1 - I_2 \right) + \mu_2 A \mathcal{Q} \text{ and } \left[(I_d - \mu_2 \mathbb{L}) \right]^{-1}$$

NUMERICAL SCHEME :



We consider a classical Finite Volume scheme, $\boldsymbol{U} = (A, Q)$

$$U_{i}^{n+1} = U_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(F_{i+1/2}(U_{i}^{n}, U_{i+1}^{n}) - F_{i-1/2}(U_{i-1}^{n}, U_{i}^{n}) \right)$$

$$-\frac{\delta t^n}{\delta x}([(I_d-\mu_2\mathbb{L})^n]^{-1}\,\boldsymbol{D}^n)_d$$

THEOREM

The numerical scheme is stable under the classical CFL condition,

$$\max_{\lambda \in \operatorname{Sp}(D_{\boldsymbol{U}}\boldsymbol{F}(\boldsymbol{U}))} |\lambda| \frac{\delta t^n}{\delta x} \leq 1 \; .$$

Debyaoui, Ersoy. NumHyp, 2020

• Derivation (based on Euler equations)

- 3D-2D
- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

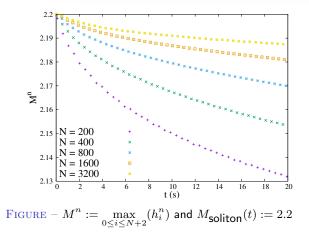
NUMERICAL ANALYSIS AND TEST CASE Finite Volume scheme

Numerical simulation

OCCUSION AND PERSPECTIVES

PROPAGATION OF A SOLITARY WAVE $(\kappa = 1)$

• Accuracy ($\sigma = d = 1$)

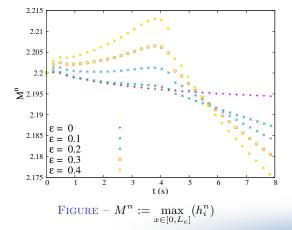


PROPAGATION OF A SOLITARY WAVE $(\kappa = 1)$

• Influence of the Section Variation (N = 5000 cells) :

$$\sigma(x;\varepsilon) = \beta(x;\varepsilon) - \alpha(x;\varepsilon) \text{ with}$$

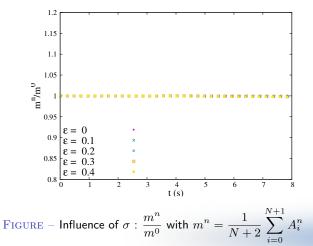
$$\beta = \frac{1}{2} - \frac{\varepsilon}{2} \exp\left(-\varepsilon^2 \left(x - L/2\right)^2\right) \text{ and } \alpha = -\beta$$



PROPAGATION OF A SOLITARY WAVE $(\kappa = 1)$

• Influence of the Section Variation (N = 5000 cells):

$$\begin{split} \sigma(x;\varepsilon) &= \beta(x;\varepsilon) - \alpha(x;\varepsilon) \text{ with} \\ \beta &= \frac{1}{2} - \frac{\varepsilon}{2} \exp\left(-\varepsilon^2 \left(x - L/2\right)^2\right) \right) \text{ and } \alpha = -\beta \end{split}$$



Propagation of a solitary wave $(\kappa = 1)$

• Numerical order for $\varepsilon = 0$

intumenteur oruc				
N	$\parallel \eta num - \eta_{exact} \parallel_2$	$\parallel \eta_{num} - \eta_{exact} \parallel_{\infty}$		
100	0.0789	0.0449		
200	0.0497	0.0288		
400	0.0304	0.0180		
800	0.0198	0.0116		
1600	0.0153	0.0081		
3200	0.0138	0.0062		
Order	0.53	0.58		

Propagation of a solitary wave $(\kappa = 1)$

• Numerical order for $\varepsilon=0.4$ (reference solution obtained with N=10000 cells)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $,		
200 0.02096 0.01082 400 0.01079 0.00554 800 0.00748 0.00503 1600 0.00635 0.00412 3200 0.00505 0.00300	N	$\parallel \eta_{num} - \eta_{ref} \parallel_2$	$\parallel \eta_{\sf num} - \eta_{\sf ref} \parallel_{\infty}$
4000.010790.005548000.007480.0050316000.006350.0041232000.005050.00300	100	0.05212	0.02533
800 0.00748 0.00503 1600 0.00635 0.00412 3200 0.00505 0.00300	200	0.02096	0.01082
16000.006350.0041232000.005050.00300	400	0.01079	0.00554
3200 0.00505 0.00300	800	0.00748	0.00503
	1600	0.00635	0.00412
Order 0.64 0.56	3200	0.00505	0.00300
	Order	0.64	0.56

TWO SOLITARY WAVES TEST CASE

Comparison with the NLSW and the exact solution

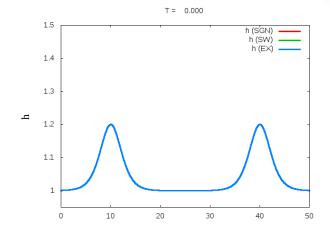
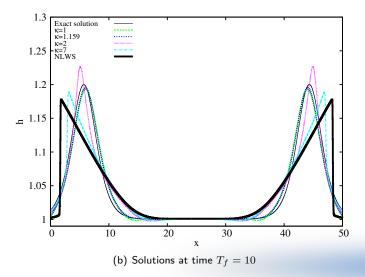


FIGURE – $\sigma = 1$, d = 1, N = 1000, CFL = 0.95, $T_f = 10$ and $\kappa = 1.159$

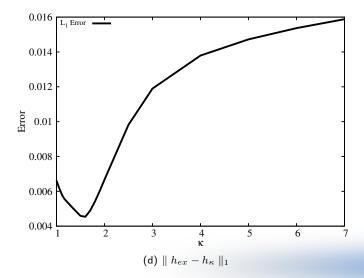
TWO SOLITARY WAVES TEST CASE

- Comparison with the NLSW and the exact solution
- \bullet Influence of κ



TWO SOLITARY WAVES TEST CASE

- Comparison with the NLSW and the exact solution
- \bullet Influence of κ



Derivation (based on Euler equations) 3D-2D

- 2D-1D
- 3D-1D

2 Improved model and stability

- Reformulated and stable models
- Invertible operator

3 NUMERICAL ANALYSIS AND TEST CASE

- Finite Volume scheme
- Numerical simulation

OCCUSION AND PERSPECTIVES

CONCLUSION

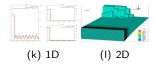
- Modeling
 - \longrightarrow Non-linear
 - \longrightarrow Dispersive
 - \longrightarrow Non trivial geometry

- Modeling
- Theoretical analysis
 - \longrightarrow Existence
 - \longrightarrow Special solutions
 - \longrightarrow Energy

- Modeling
- Theoretical analysis
- Numerical analysis & Simulation
 - \longrightarrow Implementation of the general case

- Modeling
- Theoretical analysis
- Numerical analysis & Simulation
 - \longrightarrow Implementation of the general case
 - \longrightarrow Implementation in adaptive framework

Tools already developed for 1D, 2D and 3D problems



- Pons, Ersoy, Golay, Marcer. Adaptive mesh refinement method. Application to tsunamis propagation, 2019
- Pons, Ersoy. Adaptive mesh refinement method. Automatic thresholding based on a distribution function, 2019
- Altazin, Ersoy, Golay, Sous, Yushchenko. Numerical investigation of BB-AMR scheme using entropy production as refinement criterion. International Journal of Computational Fluid Dynamics, Taylor & Francis, 2016,
- Golay, Ersoy, Yushchenko, Sous. Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows. International Journal of Computational Fluid Dynamics, Taylor & Francis, 2015,
- Yushchenko, Golay, Ersoy. Entropy production and mesh refinement Application to wave breaking. Mechanics & Industry, EDP Sciences, 2015
- Ersoy, Golay, Yushchenko. Adaptive multi scale scheme based on numerical density of entropy production for conservation laws. Central European Journal of Mathematics, Springer Verlag, 2013

- Modeling
- Theoretical analysis
- Numerical analysis & Simulation
 - \longrightarrow Implementation of the general case
 - \longrightarrow Implementation in adaptive framework
 - \longrightarrow Dissipative SGN (D-SGN) : switch from NLSW \leftrightarrow SGN dynamically

- Modeling
- Theoretical analysis
- Numerical analysis & Simulation
 - \longrightarrow Implementation of the general case
 - \longrightarrow Implementation in adaptive framework
 - \rightarrow Dissipative SGN (D-SGN) : switch from NLSW \leftrightarrow SGN dynamically
 - \longrightarrow 2D D-SGN 1D D-SGN coupling

Thank you

for your

NOU

attention