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PRESSURIZED FLOWS : OVERVIEWASSS

Simulation of pressurized flows
@ plays an important role in many engineering applications such as

» storm sewers
> waste
> or supply pipes in hydroelectric installations, ....

(a) Orange-Fish tunnel (b) Sewers ...in Paris (c) Forced pipe
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PRESSURIZED FLOWS : OVER_.
Simulation of pressurized flows
@ plays an important role in many engineering applications such as

> storm sewers
> waste
> or supply pipes in hydroelectric installations, ....

@ “geyser” effect — pressure can reach severe values and may cause
irreversible damage !
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PRESSURIZED FLOWS : OVERV.
Simulation of pressurized flows
@ plays an important role in many engineering applications such as

> storm sewers
> waste
> or supply pipes in hydroelectric installations, ....

@ “geyser” effect — pressure can reach severe values and may cause
irreversible damage !

@ requiring efficient mathematical models and accurate numerical schemes
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@ Friction law

F(u) = —k(us)ur, u, :tangential fluid flow
@ tangential constraint

o(u)n -1 = pk(u;)us, p:density,o : total stress tensor
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o Friction law

F(u) = —k(us)ur, u, :tangential fluid flow
@ tangential constraint

o(u)n -1 = pk(u;)us, p:density,o : total stress tensor

» empirical laws depending

* on the fluid flow : laminar, transient, turbulent
* on the material (roughness, geometry, hydraulic radius, ...)
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@ Friction law
F(u) = —k(us)ur, u, :tangential fluid flow
@ tangential constraint
o(u)n -1 = pk(u;)us, p:density,o : total stress tensor

k can be written
k(ur) = Cr 4 Cilur].

C; and C} are the so-called friction factor given by
» empirical laws depending

* on the fluid flow : laminar, transient, turbulent
* on the material (roughness, geometry, hydraulic radius, ...)
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@ Friction law
F(u) = —k(us)ur, u, :tangential fluid flow
@ tangential constraint
o(u)n -1 = pk(u;)us, p:density,o : total stress tensor

k can be written
k(ur) = Cr 4 Cilu,|.

C; and C} are the so-called friction factor given by
> empirical laws depending
* on the fluid flow : laminar, transient, turbulent
* on the material (roughness, geometry, hydraulic radius, ...)

» approximated and not always applicable
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PIPE FRICTION : DEFINITION _

@ Friction law
F(u) = —k(us)ur, u, :tangential fluid flow
@ tangential constraint

o(u)n -7 = pk(u,)ur, p:density,o : total stress tensor

k can be written
k(ur) = Cr 4 Cilu,|.

C) and C; are the so-called friction factor given by
» empirical laws depending

* on the fluid flow : laminar, transient, turbulent
* on the material (roughness, geometry, hydraulic radius, ...)

> approximated and not always applicable

e Hydraulic engineering applications : canal, irrigation, dam-break, sediment
transport, geyser, energy loss, failure pumping, fluid blockage, boundary layer,
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How TO DETERMINE

The friction factor is called m

shear stress) or Darcy friction factor (whenever it is related to the head loss = 4x
Fanning friction factor) and

C =C(R.,8,Ry,...).

M. Ersoy (IMATH)
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How TO DETERMINE T

' b
The friction factor is called Fm

shear stress) or Darcy friction factor (whenever it is related to the head loss = 4x
Fanning friction factor) and

C =C(R.,8,Ry,...).

Examples :
@ laminar flows
C
> Cl = Ri(e]
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How TO DETERMINE THE F

The friction factor is called Fanninthhe

shear stress) or Darcy friction factor (whenever it is related to the head loss = 4x
Fanning friction factor) and

C =C(Re,5,Rp,...).

Examples :
@ laminar flows
C

> Cl = R72

@ transient flows
» Colebrook (1939) formula : L —2log;, (L + p >

Ve Rn ~ R.NC

» or approximated Colebrook formula :

. Blasius, Haaland, Swamee-Jain,. ..
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How TO DETERMINE THE ERI

The friction factor is called Fanning frWo the

shear stress) or Darcy friction factor (whenever it is related to the head loss = 4x
Fanning friction factor) and

C =C(Re,5,Rp,...).

Examples :
@ laminar flows
C

> Cl = Rioe

@ transient flows
» Colebrook (1939) formula : L —2log;, (L + p >

Ve Rn ~ R.NC

» or approximated Colebrook formula :

. Blasius, Haaland, Swamee-Jain,. ..
@ turbulent flows
» Chézy (1776), Manning (1891), Strickler (1923) : C; = W
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How TO DETERMINE THE F
The friction factor is called Fanning frictio ed to the
shear stress) or Darcy friction factor (whenever it is related to the head loss = 4x
Fanning friction factor) and

C=C(Re,0,Rp,...).

These coefficients are determined through the Moody diagram.
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SCHEMATIC : CIRCULAR PIP-

u = mean + oscillation
=U+u
R, = poUL

o

i(s Relative roughness
-
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MATHEMATICAL MOTI
Mathematical motivations

@ to reduce Viscous Compressible 3D NS p(p) = ¢p — inviscid compressible 1D
SW-like model

J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1) :339-365, 2001

C. Bourdarias, M. Ersoy, S. Gerbi,

A model for unsteady mixed flows in non uniform closed water pipes : a Full Kinetic Approach.
Accepted in Numerische Mathematik, 2014.
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Mathematical motivations

o to reduce Viscous Compressible 3D NS p(p) = ¢p — inviscid compressible 1D

SW-like model
@ to obtain the “motion by slices” through a Neumann problem
> ult iy, 2) = ult,2) + ult,e,, ),

v

u(t,z,y,z)dydz =0,
Q

> u(t,z,y,z) = O(g) where ¢ is the aspect-ratio.
u(t,z)? = u(t, x)2

v

J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1) :339-365, 2001

C. Bourdarias, M. Ersoy, S. Gerbi,

A model for unsteady mixed flows in non uniform closed water pipes : a Full Kinetic Approach.
Accepted in Numerische Mathematik, 2014
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MATHEMATICAL MOTIVATIOQN
Mathematical motivations

o to reduce Viscous Compressible 3D NS p(p) = ¢p — inviscid compressible 1D

SW-like model
@ to obtain the “motion by slices” through a Neumann problem
> ult, @y, 2) = ult, 2) + ult, 7,9, 2)

> / u(t,z,y,2)dydz =0,
Q

> u(t,z,y,z) = O(g) where ¢ is the aspect-ratio.

u(t,z)? =~ u(t, z)

@ to include the friction with its geometrical dependency as well as other
geometrical source terms

v

Ij J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1) :339-365, 2001

ﬁ C. Bourdarias, M. Ersoy, S. Gerbi,

A model for unsteady mixed flows in non uniform closed water pipes : a Full Kinetic Approach.
Accepted in Numerische Mathematik, 2014,
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MATHEMATICAL MOTIVATION £ ON
Mathematical motivations

o to reduce Viscous Compressible 3D NS p(p) = ¢p — inviscid compressible 1D

SW-like model
@ to obtain the “motion by slices” through a Neumann problem
> u(tay,2) = ult2) +ultay,2),

> / u(t,z,y,2)dydz =0,
Q

> u(t,z,y,z) = O(g) where ¢ is the aspect-ratio.

u(t,z)? =~ u(t, z)

@ to include the friction with its geometrical dependency as well as other
geometrical source terms

v

@ general barotropic law p(p) = ¢p?, v # 1
o p7 ~p”

@ J.-F. Gerbeau, B. Perthame
Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1) :339-365, 2001

ﬁ C. Bourdarias, M. Ersoy, S. Gerbi,

A model for unsteady mixed flows in non uniform closed water pipes : a Full Kinetic Approach.
Accepted in Numerische Mathematik, 2014,
k2
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OUTLINE _
O

° DERIVATION OF THE MODEL INCLUDING FRICTION
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SETTINGS

Let us consider a compressible fluid confin main P, a

non deformable pipe of length L oriented following the i vector,

P = {(z,y,2) €R* w € [0,L], (y,2) € Az)}
where the section Q(z), = € [0, L], is

{(y.2) € R* y € [z, 2), B, 2)], 2 € [~R(z), R(x)]}

(d) Configuration

(e) Q-plane

FIGURE : Geometric characteristics of the pipe
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THE COMPRESSIBLE N/

velocity u:<
density : p,

gravity : F =g

M. Ersoy (IMATH)

Ocp + div(pu)
O¢(pu) + div(pu ® u) — dive — pF
p=p(p) = cp” with

Compressible pipe flow including friction




Op +div(pu) = 0,
O¢(pu) + div(pu @ u) —dive — pF = 0,
p=p(p) =cp” withy = 1,
: u
velocity : u= ( v ) ,
density : p,
sin 0(x)
gravity : F =g 0 ,
—cosf(x)
( —p+Miv(u) + 2u0,u R(u)*
tensor = o= < R(u) —ply + Miv(u)ly +2uD, ,(v) )’
dynamical viscosity : p,
volume viscosity DA
and R(u) = (Vy u+0v), Vy.,u= ( gzz > . Dy.(v)=Vy.v+ V! v
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o wall-law condition including a general fricti :

(O'(U)le) “To; = (pk(u)u) *Tpyy T E (OaL)7 (ya Z) € BQ(:I")

m(z,y,(x,y))
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BOUNDARY CONDITIONw
o wall-law condition including a general friction law & :

(U(u)nb) “To; = (pk(u)u) “Tp;, T E (OvL)’ (ya Z) € BQ('T)

where 73, is the i vector of the tangential basis. with

ny = S S (_8“0) where n = <_8y<‘0>
(Ozp)?+n-n n 1

is the outward normal vector in the Q-plane.

m(z,y,(x,y))
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BOUNDARY CONDITIONS :

o wall-law condition including a general friction law & :
(U(u)nb) *To; = (pk(u)u) “Thyy T E (OvL)’ (ya Z) € 39(&7)

where 73, is the i vector of the tangential basis. with

ny = S S (—&ggo) where n = (—8y<p>
(Ozp)?+n-n n 1

is the outward normal vector in the Q-plane.

@ completed with a no-penetration condition :

u-n, =0, z€(0,L), (y,2) € 9Q(z)

m(a,y,(x,y))
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THIN-LAYER ASSUM

“thin-I : tion:e=—=—=— land T = —
@ ‘thin-layer assumption : € i U U<< an U
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THIN-LAYER ASSUMPT

D W
“thin-layer” assumption : e = — = — = - << land T = —

@ “thin-lay p 7 i i n i
@ dimensionless quantities :

> timet = —,

. r U T Yy z
> coordinate (Z,9,2) = (f’ D’ B)
> velocity field (a, 9, w) = (%, %, %)

P
> density p = —
yo=
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THIN-LAYER ASSUMPTION AN-

D W Vv L
@ “thin-layer” assumption : e = — = — = - << land T = —
| Y umpti L U U 81 U
o dimensionless quantities : t, (%, 9, 2), (@, 0, W), p
@ non-dimensional numbers :
U
F, Froude number following the Q-plane : F= —,
\/lq]D
Fr Froude number following the i-direction : Fp = —,
i
R,  Reynolds numbers with respect to R, = £o ;
UL
Ry  Reynolds numbers with respect to A : Ry = po)\ ,
U
M, Mach number D My =—,
c
M, +/gD
C Oser number . C= - V97
F c
-

Bilbao, June 12-13, 2014 13 /23



THIN-LAYER ASSUMPTI

= — == 1 T=—
U U<< and i

o dimensionless quantities : t, (%, 9, 2), (@, 0, W), p

@ “thin-layer” assumption : € =

hIU

e non-dimensional numbers : Fy., Fr,, R, Ry, My, C
@ asymptotic ordering :

R;l = e, R;l =cpg, K=cKjp.
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THE NON-DIMENSIONAL _
Dropping the ~, the system becomes :

O¢p + Oz (pu) +divy .(pv) = 0,
P sin 0(x)

Or(pu) + 0, (pu?) + div,, . (puv) + 0= = — G
Y (p ) Mg p Fg P
R—l
+divy, (E%Vy,zu)
) 0
2 (O(pv) + 0 (puv) + div, . (pv @ v)) + Vy’zm = | pcosb(@) | +G,
a F2

where the source terms are

Gou = divy: (R;'0uv) + 0, (2R, '0pu + Ry 'div(u)) |
G o 0z (eRc(u)) + divy . (R 'div(u) + 2R, ' Dy .(v)) .
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THE NON-DIMENSIONAL _
Dropping the ~, the system becomes :

O¢p + Oz (pu) +divy .(pv) = 0,
P sin 0(x)

Or(pu) + 0, (pu?) + div,, . (puv) + 0= = — G
Y (p ) Mg p Fg P
R—l
+divy, (%Vy,zu)
) 0
2 (O(pv) + 0z (puv) + div, . (pv @ v)) + Vy’zm = | pcosb(@) | +G,
a F2

where the source terms are
Gou = divy: (R, '0uv) + 0, (2R, 0pu + Ry 'div(u)) |
G = 0y (eRc(u)) +divy. (R} 'div(u) + 2R, ' D, .(v)) .

keeping in mind :
R;l = e\, R;l = el
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The system becomes :

Op + Oz (pu) +divy .(pv) = 0,
. in 6
O (pu) + 0. (pu?) + divy » (puv) + BI% = —pssz(x) +Gpu

a L

. €

+divy (NOE—va,zu)
0
Vy,z p2 - p COos g(x) + Gpv 5
M2 ——FTQ
where the source terms are
Gpu = Hdivy . (0£0;V) + 0x (2p0£05u + Aoediv(u))

Gy = 0p(cRe(u)) +divy . (\oediv(u) + 20Dy . (v)) + O(£7) .

keeping in mind :
R;l =€\, R;l = el

Compressible pipe flow including friction
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The system becomes :

Op + Oz (pu) +divy .(pv) = 0,
. sin f(x
O (pu) + 0. (pu?) + divy » (puv) + aIMLGQ = —p FE( ) + G
. Ho
+divy ( . V%zu)
) 0
Voegp = | _peost@) |+ G,
a 2

where the source terms are
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THE FIRST ORDER APR”
Formally, dropping all terms of order O(e), we obtain the so-called hydrostatic

approximation :

O¢pe + Oz (peue) + diVy,z(pEUS) =0
. 1 sin 0 (x
Oy (psue) + 61?(/)611’3) + d“’y,z(psusvs) + mamps = —Pe F2( )
a L
vy, (2290 )
1 0
va,z/}s = _ pe c;‘sg@(w)
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THE FIRST ORDER APPROXI

Formally, dropping all terms of order O(¢), we obtain the so-called hydrostatic
approximation :

atpe + 0: (peus) + divy,z(pe'vs) =0
. 1 sin (x
8t(psus) + 81(/)5“2) + d"’y,z(psuevs) + Wazps = —Pe F2( )
a L

L B 0
2 y,zPe = _ Pe c;sze(w)

REMARK
Let us emphasize that even if this system results from a formal limit of Equations
as e goes to 0, we note its solution (pe,uc,v:) due to the explicit dependency on
E.
-
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THE BOUNDARY CO
e Boundary conditions : Vz € (0, L), (y, 2

%V%zue ‘n=p.Ko(u)+0() and poVy,u.=0(c).
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THE BOUNDARY CON
e Boundary conditions : Vz € (0, L), (y,2) € 0Q(z) :

%Vy,zue ‘n=p.Ko(u)+0() and poVy,u.=0(c).

e Momentum equation on p.u. :

sin 0(x)

O(peue) + 0z (peul) + divy . (peucv.) Oupe = —pe

L1
Mg
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THE BOUNDARY COND
e Boundary conditions : Vz € (0, L), (y,2) € 0Q(z) :

%Vy,zue ‘n=p.Ko(u)+0() and poVy,u.=0(c).

e Momentum equation on p.u, :
sin 0(x)
Ff
+divy, . (%Vy,zug)

O(peue) + 0z (peul) + divy . (peucv.) Oupe = —pe

L1
Mg

1
o Order — :
€

divy > (o Vy,2ue) = O(¢)
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THE BOUNDARY CONDI
e Boundary conditions : Vz € (0, L), (y,z2) € T) :
%Vy,zue ‘n=p.Ko(u)+0() and poVy,u.=0(c).

e Momentum equation on p.u. :

O(peue) + 0z (peul) + divy . (peucv.) Ope = —pe—srt

L1
Mg

1
o Order — :
€

divy > (o Vy,2ue) = O(¢)
@ Neumann condition

P2V, e -0 = peKo(w) + O(e) — #oVy.stie -0 = O(e)
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THE BOUNDARY CON
e Boundary conditions : Vz € (0, L), (y,2) € 0Q(z) :

%Vy,zue ‘n=p.Ko(u)+0() and poVy,u.=0(c).

@ Neumann problem

divy » (LoVy,ue) = O
1400n e = 0(g), (y,2)€0(x)
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THE BOUNDARY CON
e Boundary conditions : Vz € (0, L), (y,2) € 0Q(z) :

%Vy,zue ‘n=p.Ko(u)+0() and poVy.u.=0(c).

@ Neumann problem

divy . (oVyue) = O
140Ontie = 0(ge), (y,2)€0(x)

“motion by slices”
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@ “motion by slices”
ue(t, ,y,2) = U (t, x) + O(e) = uc(t, v, y,2) = uc(t, ) .

M. Ersoy (IMATH) Compressible pipe flow including friction



@ “motion by slices”
us(t7 z,Y, Z) - u_s(tv x) + 0(5) = us(ta z,Y, Z) = u_s(ta IE) 2

@ non-linearity : u2 = .2 .

M. Ersoy (IMATH) Compressible pipe flow including friction



@ “motion by slices”
ue(t, z,y, Z) = u_s(t) Il)) + 0(5) = ua(ta z,Y, Z) = u_s(ta (E) :
o non-linearity : u2 = w2 .

@ stratified structure of the density :

1 v = cc?s@(x) QP _ 0
] y,2Pe = _’)ET = \o.p. )= —p.C? cos ()

pe(t,x,y, 2) = E(t, x) exp (—C2 cos H(x)z) for some positive function &
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@ “motion by slices”
us(t7 z,y, Z) = u_s(tv x) + 0(5) = us(ta z,Y, Z) = u_s(ta IE) .
o non-linearity : u2 = ;2 .

@ stratified structure of the density :

1

0 ,p 0
R = L =
M2 Vy,2Pe _%S;)(x) = <3z,05) (—pEC’2 cos 9(3:))

pe(t,x,y,2) = E(t, x) exp (—02 cos 9(90)2) for some positive function &

U(x) = / exp(—C?cosf(x)z) dy dz : weighted pipe section ,

S(x) = / dydz physical pipe secti
Q(t,z) b
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@ “motion by slices”
ue(t, z,y, Z) = u_s(t7 Il)) + 0(5) = ua(ta z,Y, Z) = u_s(ta (E) :
o non-linearity : u2 = w2 .

o p.(t,z,y,2) = &(t,z) exp (—C? cosf(x)z) for some positive function &.
e Momentum :

1 v__
Pele = § A peue dydz = %us = Pe Ue

M. Ersoy (IMATH) Compressible pipe flow including friction



@ “motion by slices”

ue(t,z,y,2) = (t,z) + Oe) = uc(t, x,y,2) = uz(t, x) .
non-linearity : u2 = w2 .

pe(t,z,y,2) = &(t,z) exp (—C? cos f(x)z) for some positive function &.
Pelic = Pe Ue

2 52
pEug_pE ug
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@ “motion by slices”

ue(t,z,y,2) = (t,z) + Oe) = uc(t, x,y,2) = uz(t, x) .
non-linearity : u2 = 7 .

pe(t,z,y,2) = &(t,z) exp (—C? cos f(x)z) for some positive function &.
Pelic = Pe Ue

e
peug = Pe U? = Pe Ue
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THE AVERAGED MODEL :

@ Integration of the hydrostatic equations over the cross-section (2 :

h(=S) + 0, (72 5T)

/ pe (u0:m —v,) - nds
o8 0(z) 1 ds
1 sin0(x
2 = o9y - gt
04 (peSTz) + Oy (/)ESU€ + Y p€S> DS 72 e =S o

a

+/ Petie (UeOpm —v) - nds
oQ(x)

— @Vy,zua -nds

oQ(z) €
> Using Leibniz Formula
» m= (y,p(z,y)) € 0Q(x) : the vector wm
» n= — : the outward normal to 9Q(x) at m in the Q-plane

Im|

M. Ersoy (IMATH) Compressible pipe flow including friction



THE AVERAGED MODE“
o Integration of the hydrostatic equations over the cross-section (2 :

/ pe (u-0,m —v.) - nds
oQ(x)

e e 1 _ __sinf(z) 1 _.dS
04 (peSTz) + Oy <p55u62+mp65> = —pESF—g mpsS%

a

h(=S) + 0, (72 5T)

+ / petie (Ue0pm —v) -nds
oQ(x)

— @Vy,zua -nds
aQ(z) €

@ no-penetration condition = (u.0,m —v.) -n =0
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THE AVERAGED MODEL :

@ Integration of the hydrostatic equations over the cross-section (2 :

Oh(7=S) + 0, (p.572) =0

1
0y (pSuz) + O <m5u—£ + Wp—sS) = —pS

sin@(m)+ 1 ds
F2 TP

o Friction term : / @V%ZUE -nds = / peKo(ue) ds =
o0 (z) € a0 (z)

£ ¥ (x) @) —
< S S Ko(ue)qj(x) =pSK (z,u:)
1 : the curvilinear integral of z — exp(—C? cos §(x)z) along 9Q(z) called
weighted wet perimeter.
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@ Integration of the hydrostatic equations over the cross-section (2 :

9¢(p=5) + 0. (p=Suc) =0
1 sin 0(x) 1 ds
—— —2 L _ b
0y (peStz) + 0y <Pssus + M‘%pss> p=S F[% Mg pS d
_ESK (I,U_E)
Y@\
@ 1) : weighted wet perimeter of ) — <W> : weighted hydraulic radius

> Meaning that the friction is also a function of the Oser number
> Neglected by engineers since 1) = wet perimeter.
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o Integration of the hydrostatic equations over the cross-section (2 :

0 (p=S) + 0z (p=STuz) =0 is
O (p=ST2) + 0, (pSU> + p=S) = —gp=Ssind(z) + cQES%
poDU?

e multiply Equations by
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THE AVERAGED MODm
o Integration of the hydrostatic equations over the cross-section (2 :

0y (A) + 0, (Atc) =0
_ 5 s _ 2 AdS
O(AT) + 0, (Au® + ?A) = —gAsinf(z) + ¢ S d
poDU?

e multiply Equations by

@ set A =p.S : the wet area
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THE AVERAGED MODE“
o Integration of the hydrostatic équations over the cross-section (2 : .

0 (Q) + 0x <% + c2A> = —gAsinf(z) + CQg%
—gAK (x,%)
poDU?

e multiply Equations by

L
o set A =p:S : the wet area

@ set () = Au; : the discharge

M. Ersoy (IMATH) Compressible pipe flow including friction



OUTLINE
ool

o NUMERICAL EXPERIMENT AND CONCLUDING REMARKS
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A “DAM-BREAK” LIKE EXPER

o Generalized kinetic scheme introduced by Bourdarias, Ersoy and Gerbi (2014)

e Manning-Strickler friction law (K, =

o We consider :

1
n)

Horizontal circular pipe : L =100m, D =1 m.

T= 0000

Eau
Ligne piezometrique

3
g
£
0 10 20 30 4 50 6 70 8 9
m
Debit
02
debit ——
015
z 01
E o0s
0
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A “DAM-BREAK” LIKE

T= 1.000

Frictionless
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FIGURE : Influence of the friction ‘
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o the case p(p) = p?, v =1 : second order approximation

(¢ =1073,C = 1)— paraboloid profile
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o the case p(p) = p?, v =1 : second order approximation

(¢ =1073,C = 1)— paraboloid profile

e thecase p(p) =p”, v # 1
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@ the case p(p) = p”?, v =1 : second order approximation

(¢ =1073,C = 1)— paraboloid profile

e thecase p(p) =p”, v # 1

> hydrostatic equation — p.(t, z,y, z) = & (¢, 2)N(t, z, z) where
1

_ 2 1—7 71
N(t,z,z) = (1 + zC” cos ¢9(3c)—7€S @ m)“f—1>
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CONCLUDING REMAR

@ the case p(p) = p”?, v =1 : second order approximation
(¢ =1073,C = 1)— paraboloid profile

e thecase p(p) =p”, v # 1

> hydrostatic equation — p. (¢, z,y, z) = &(¢, 2) N (t, z, z) where
1

N(t,z,z) = (1 + 207 cos@(:c)l_—w> o
[ad} - 'Y&S(tv m)'y—l
» the assumption p7 =~ p” is wrong!!!
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CONCLUDING REMARK

@ the case p(p) = p”?, v =1 : second order approximation
(¢ =1073,C = 1)— paraboloid profile

e thecase p(p) =p”, v # 1
> hydrostatic equation — p. (¢, z,y, z) = &(¢, 2) N (t, z, z) where

N(th)—(1+z02cos(9(x) 1=y )ﬁ

o Ve (t, )71

> the assumption p7 =~ p” is wrong!!!

» except if the Oser number C' < 1 — a class of low Oser compressible v
models. This occurs when the gravity has no influence.
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CONCLUDING REMAR

@ the case p(p) = p”?, v =1 : second order approximation
(¢ =1073,C = 1)— paraboloid profile

e thecase p(p) =p”, v # 1
> First order Pressurized v model can be derived in a similar way :
8t(§65) + O (faSﬂ)

1
(65 + 0, (6.57° + 575 )

0

sin 6(z) 1 .,dS
657" + gty
_§EK($,U_5)
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o the case p(p) = p?, v =1 : second order approximation

(¢ =1073,C = 1)— paraboloid profile

e thecase p(p) =p”, v # 1

» Second order approximation (¢ = 10™°,C = 10~?) : paraboloid profile
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PERSPECTIVES
Main objectives are '

@ make the asymptotic analysis rigorous for v > 0

M. Ersoy (IMATH) Compressible pipe flow including friction



PERSPECTIVES -

Main objectives are
@ make the asymptotic analysis rigorous for v > 0

@ applications dealing with the impact of sediment transport during flooding
based on

» Pressurised v models for the hydrodynamics
» Exner like equations for the morphodynamics (derived from Vlasov equations)

(C) what happen inside the pipe (d) This is not a river!!!
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PERSPECTIVES -

Main objectives are
@ make the asymptotic analysis rigorous for v > 0
@ applications dealing with the impact of sediment transport during flooding
based on
> Pressurised v models for the hydrodynamics
» Exner like equations for the morphodynamics (derived from Vlasov equations)
@ to find
» optimal pipe shape
» including variable rugosity

(e) what happen inside the pipe (f) This is not a river!!!
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