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SAINT-VENANT EQUATIONS

e Introducing characteristic scales :
o length L
« width /
« height H
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SAINT-VENANT EQUATIONS

e Introducing characteristic scales : L, [ and H

e Introducing aspect ratio numbers :

H
ce= following the depth

o £y = % following the width
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SAINT-VENANT EQUATIONS

e Introducing characteristic scales : L, [ and H

l

L

e One can reduce the initial model (Navier-Stokes or Euler equations)

e Introducing aspect ratio numbers : ¢, = T and g, =

« 3D-2D depth averaged model reduction if

e.<Kland gy =1

« 3D-1D section averaged model reduction if

ey K1
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e Introducing aspect ratio numbers :

e One can reduce the initial model (Navier-Stokes or Euler equations)
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SAINT-VENANT EQUATIONS & APPLICATIONS

e Introducing characteristic scales : L, [ and H

e Introducing aspect ratio numbers :

One can reduce the initial model (Navier-Stokes or Euler equations)

Opposite to DNS, model reduction — to decrease the computational cost

Some applications :
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APPLICATIONS OF SAINT-VENANT EQUATIONS

SV equations
o 3D-1D model reduction for closed water pipes/channels/rivers

M aire mouillée A(t,z)
A+ 0,Q =0,
Q2 (A
0:Q + 0z A +g[1($,A) :gIQ(va)
v
At z), Q(t,x), g, h=n—d : wet area, discharge, gravity
n
with Ii(z, A) = / o(x,z)(n—z)dz : hydrostatic pressure
70
Iz, A) = —o(x,z)(n—z)dz : hydrostatic pressure source
4 Ox
@ C. Bourdarias, M. Ersoy, S. Gerbi @ C. Bourdarias, M. Ersoy, S. Gerbi
A model for unsteady mixed flows in non uniform closed water pipes Unsteady mixed flows in non uniform closed water pipes : a Full
and a well-balanced finite volume scheme. Kinetic Appraoch.
@ C. Bourdarias, M. Ersoy, S. Gerbi @ M. Ersoy
A kinetic scheme for transient mixed flows in non uniform closed Dimension reduction for incompressible pipe and open channel flow

pipes : a global manner to upwind all the source terms. including friction.




APPLICATIONS OF SAINT-VENANT EQUATIONS

SV equations
e 3D-1D model reduction for closed water pipes/channels/rivers
e 2D-1D reduction for urban/overland flows including precipitation and
recharge

ath—|—8wq:S::R—I,

2

Brq + s (q2 +gh2 ) = —ghd.Z + 5T (e (R) + k(1) + ko (%))

>

with h(t,x), q(t,z) : water height, discharge
k4 friction generated from precipitation and infiltration
where I can be driven by the solution of the Richards’ equation.
@ M. Ersoy, O. Lakkis, P. Townsend @ J.-B. Clément, M. Ersoy, F. Golay, and D. Sous
A Saint-Venant shallow water model for overland flows with Wave-driven Ground- water Flows in Sandy Beaches : A Richards
precipitation and recharge. Equation-based Model.
Mathematical and Computational Applications, Natural Sciences, 2020 Journal of Coastal Research, 202(
Ia J.-B. Clément, M. Ersoy, F. Golay, and D. Sous. Ia J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.
Adaptive discontinuous galerkin method for richards equation. An adaptive strategy for discontinuous Galerkin simulations of
Topical Problems of Fluid Mechanics, 2020 Richards’ equation : application to multi-materials dam wetting.

Advances in Water Resources, 2021
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APPLICATIONS OF SAINT-VENANT EQUATIONS

SV equations
e 3D-1D model reduction for closed water pipes/channels/rivers

e 2D-1D reduction for urban/overland flows including precipitation and
recharge

e 3D-2D reduction for tsunamis propagation
Och + div(hu) = 0,
h2
O (hu) + div <hﬂ U+ g?I) = —ghVZ,

with @(t,z) € R® : depth averaged velocity

@ K. Pons, M. Ersoy @ K. Pons, M. Ersoy , F. Golay and R. Marcer
Adaptive mesh refi method. Part 1 : Automatic thresholdin, Adaptive mesh refi method. Part 2 : Application to tsunamis
based on a distribution function. propagation.
MA SIMAT Springer Partial Differential Equations SEMA SIMAI Springer Series, Partial Differential Equations
ious Mathematics for Real-Life Applications, D. Donatelli and C Ambitious Mathematics for Real-Life Applications, D. Donatelli and C

Simeoni Editors, 2020 Simeoni Editors, 2020
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SAINT-VENANT EQUATIONS FOR CERTAINS TSUNAMIS 7 7 7

e Tsunamis are water waves that start in the deep ocean : H is huge
e But, the wavelength A of the tsunami is huge as well (200 km)
« Dynamics of tsunamis are "essentially” governed by the shallow water

equations.

« Phase speed of propagation vy ~ \/gH (H ocean depth)
« Use X instead of L in the derivation — shallow water models : justify the use

of Saint-Venant equations for some tsunamis.
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SAINT-VENANT EQUATIONS FOR CERTAINS TSUNAMIS 7 7 7

e Tsunamis are water waves that start in the deep ocean : H is huge

o But, the wavelength A of the tsunami is huge as well (200 km)

e Tsunami runup onto a complex three dimensional Monai Valley :

w7318
Adap. sim. Unif. sim. '?ng
Ty 30s 30s
Nb. blocks 240 240
Nb. cells 8  000-40 62000
000
Re-mesh. dt 0.25s X . .
CFL 05 0.5 Numerlcal.wat.er. height
(coloration is issue
T N el . from the kinetic energy)
ABLE umerical parameters att — 1125 s
BEG12] K. Pons, M. Ersoy [BEG13] K. Pons, M. Ersoy , F. Golay and R. Marcer.

Adaptive mesh refinement method. Part 1 : Automatic thresholding

based on a distribution function.

MEHMET ERSOY

Adaptive mesh refinement method. Part 2 : Application to tsunamis
propagation.

2021, 16 NOVEMBER 4/21



SAINT-VENANT EQUATIONS FOR CERTAINS TSUNAMIS 7 7 7

e Tsunamis are water waves that start in the deep ocean : H is huge
o But, the wavelength A of the tsunami is huge as well (200 km)

e Tsunami runup onto a complex three dimensional Monai Valley :

7 7 7
Experiment j—— Experiment j— Experiment ju—
6 [Numerical (uniform) —_— 6 'Numerical (uniform) —_ 6 Numerical (uniform) —_
5 Numerical (adaptive) _— 5 [Numerical (adaptive) B — 5 [Numerical (adaptive) —_—
E E E
54 Sa S
& g3 &
N H N
22 22 22
£ £ £
0 of 0
-1 -1 -1
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0
time [s] time [s] time [s]
(a) Gauge 1 (b) Gauge 2 (c) Gauge 3

F1GUrE — Free surface results at different positions : experimental data versus
numerical simulation with and without mesh adaptivity
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« Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).
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COMING BACK TO THE MODELLING PROBLEM : "SVE FOR CERTAIN TSUNAMIS”

e Are the SVE are pertinent for all Tsunamis? No!

« Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

o Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models!

— Glimsdal, Pedersen, Harbitz, Lovholt, Dutykh, Bonneton, etc.

« dispersions are expected

)

(6) o)

Parisot and Ersoy's experimental wave generator ék“fé
(Malaga, NumHyp 2019)

MEHMET ERSOY 2021, 16 NOVEMBER



COMING BACK TO THE MODELLING PROBLEM : "SVE FOR CERTAIN TSUNAMIS”

e Are the SVE are pertinent for all Tsunamis? No!

« Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

o Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models!

« dispersions are expected

MEHMET ERSOY Y 2021, 16 NOVEMBER



COMING BACK TO THE MODELLING PROBLEM : "SVE FOR CERTAIN TSUNAMIS”

e Are the SVE are pertinent for all Tsunamis? No!

« Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

o Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models!

« dispersions are expected

 Fr=145

"Strong” bore undular bore
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COMING BACK TO THE MODELLING PROBLEM : "SVE FOR CERTAIN TSUNAMIS”

e Are the SVE are pertinent for all Tsunamis? No!

« Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

o Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models!

« dispersions are expected

Fr=1.2

 Fr=145

undular bore
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COMING BACK TO THE MODELLING PROBLEM : "SVE FOR CERTAIN TSUNAMIS”

e Are the SVE are pertinent for all Tsunamis? No!

e Dispersive wave model are also required
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COMING BACK TO THE MODELLING PROBLEM : "SVE FOR CERTAIN TSUNAMIS”

e Are the SVE are pertinent for all Tsunamis? No!
e Dispersive wave model are also required

o Of course, Navier-Stokes equation can deal for both but too costly !
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e NON-HYDROSTATIC MODELS AND APPLICATIONS
o Historical background and motivations
o Toward the first dispersive section-averaged model
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DISPERSIVE WAVES

2 2
Let w = =~ be the angular frequency (pulsation) and k = ZT wavenumber.

A

e A wave ¢(kxz — wt) is characterised by two different characteristic speeds

. w . .
« phase velocity C, = — which corresponds to the displacement of the wave

fronts 5
« group velocity Cy = a—: which corresponds to the displacement of the wave's
envelope

« dispersion relation is given by w = Cpk

e If C, is constant then the wave is not dispersive.

"

Dispersive wave Non dispersive wave
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DISPERSIVE WAVES

2 2
Let w = % be the angular frequency (pulsation) and k = TW wavenumber.

e A wave ¢(kx — wt) is characterised by two different characteristic speeds
e If C} is constant then the wave is not dispersive.

e According to linear Stokes' theory, noting H the depth, the dispersion
relation is

w? = gk tanh(kH)

H
Formally, Y < 1,

« at order 1, (%)2 ~ gH ~~ SVE
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DISPERSIVE WAVES AND STOKES LINEAR THEORY

2 2
Let w = % be the angular frequency (pulsation) and k = TW wavenumber.

e A wave ¢(kx — wt) is characterised by two different characteristic speeds
e If C} is constant then the wave is not dispersive.

e According to linear Stokes' theory, noting H the depth, the dispersion
relation is

w? = gk tanh(kH)

H
Formally, Y < 1,

« at order 1, (%)2 ~ gH -~ SVE

w2

« at order > 1, (k‘) ~gH — glcQH3 + ... ~> Dispersive models
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HISTORICAL BACKGROUND : SOLITON AND DISPERSIVE WATER WAVES

e Everything starts with Russell's "Wave of translation”

"l was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped - not so
the mass of water in the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles | lost it in
the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which | have
called the Wave of Translation”. John Scott Russell

MEHMET ERSOY ACSIOM 2021, 16 NOVEMBER 7/21



HISTORICAL BACKGROUND : SOLITON AND DISPERSIVE WATER WAVES

e Everything starts with Russell's "Wave of translation”

e Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation :
a perfect equilibrium between non-linearities and the dispersive terms

U + 6uUy + Uggr =0
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e Everything starts with Russell's "Wave of translation”

e Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.

e On the basis of this work, several models have been proposed :

e 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.
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e Everything starts with Russell's "Wave of translation”

e Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.
e On the basis of this work, several models have been proposed :
« 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.
« 1984 : a first method to improve the frequency dispersion Boussinesq type's
model was proposed by Witting.
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e On the basis of this work, several models have been proposed :
« 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.
« 1984 : a first method to improve the frequency dispersion Boussinesq type's
model was proposed by Witting.
« 1953 : A first 1D fully non-linear (¢ = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre motivated by the fact that wave dynamics
is strongly nonlinear close to shoaling zone.
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HISTORICAL BACKGROUND : SOLITON AND DISPERSIVE WATER WAVES

e Everything starts with Russell's "Wave of translation”

e Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.

e On the basis of this work, several models have been proposed :

« 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.

« 1984 : a first method to improve the frequency dispersion Boussinesq type's
model was proposed by Witting.

« 1953 : A first 1D fully non-linear (¢ = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre motivated by the fact that wave dynamics
is strongly nonlinear close to shoaling zone.

e 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom (1D below)

9+ 9 thuy =0

ot ox ith

9 O (12 I o (h° 5\ o wit
9\ 90 9 0
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HISTORICAL BACKGROUND : SOLITON AND DISPERSIVE WATER WAVES

e Everything starts with Russell's "Wave of translation”

e Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.

e On the basis of this work, several models have been proposed :

« 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.

« 1984 : a first method to improve the frequency dispersion Boussinesq type's
model was proposed by Witting.

« 1953 : A first 1D fully non-linear (¢ = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre motivated by the fact that wave dynamics
is strongly nonlinear close to shoaling zone.

« 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom.

« Nowadays : Marche, Lannes, Bonneton, Durand, Cienfuegos, Dutykh,
Gavrilyuk, Richard, Sainte-Marie, ... proposed several improvements
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COMING BACK TO TSUNAMI PROPAGATION : TOWARD A NEW NON-HYDROSTATIC
MODEL

e SGN based models are certainly the most appropriate ones for dispersive
a
waves.

a. Lannes, Marche, Durand, Bonneton, Cienfuegos, Dutykh, Gavrilyuk,. ..
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COMING BACK TO TSUNAMI PROPAGATION : TOWARD A NEW NON-HYDROSTATIC
MODEL

e SGN based models are certainly the most appropriate ones for dispersive
waves.
e But, dispersive and non dispersive waves can coexist during the Tsunami's
life ...
o Deep water zone : Depth-averaged models hydrostatic and non-hydrostatic
models are valid but dispersive codes boosts the CPU times and memory
requirements

Deep water zone  Shoaling zone Breaking zone Inner surf zone Swash zone ,
oave hoieht grows Vave onpray dissipafiondighly acrated and turbulont bore  ban-up and run-down
creasing steepness of the wave front productiolof turbulent turbulent bore

Yortices




COMING BACK TO TSUNAMI PROPAGATION : TOWARD A NEW NON-HYDROSTATIC
MODEL

e SGN based models are certainly the most appropriate ones for dispersive
waves.

e But, dispersive and non dispersive waves can coexist during the Tsunami's
life ...

« Shoaling zone : hydrostatic models are (often) not valid in this zone, leading
to an incorrect growth of the wave, yielding to an incorrect prediction of the
location of wave breaking

Deep water zone  Shoaling zone Breaking zone [nuer surf zone Swash zone }
Toave heieht grows Vave onpray dissipationkughly acrated and turbulont bore  barup and run-down
Thercasing Steepness of the wave front productioiof turbulent turbutont bore
Voriices
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COMING BACK TO TSUNAMI PROPAGATION : TOWARD A NEW NON-HYDROSTATIC
MODEL

e SGN based models are certainly the most appropriate ones for dispersive
waves.

e But, dispersive and non dispersive waves can coexist during the Tsunami's
life ...

« Breaking zone : hydrostatic models (SVE) can accurately reproduce broken
wave dissipation and swash oscillations without any ad-hoc parametrisation

Deep water zone IShoaling zone IBreaking zone Inner surf zone Swash zone
Tiave height. grows. Te ciergy disipationkighly aerated and trbulent bore . hunoup and run-down
reasiag Shsbpnees of the wave front Droductionof tarbalent

turbulent bore
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JOMING BACK TO TSUNAMI PROPAGATION : TOWARD A NEW NON-HYDROSTATIC
MODEL

e SGN based models are certainly the most appropriate ones for dispersive
waves.

e But, dispersive and non dispersive waves can coexist during the Tsunami's
life ...

o Inner surf and swash zones : predominant non-linearities (SVE)

Deep water zone  Shoaling zone Breaking zone Inner surf zone Swash zone }
Tiave height zrows \vavf enerey aTionhighl_\' actated and turbulent bore . ¥umup and run-down,
increasing stéepness of the wave front production o turbulent turbulent bore
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JOMING BACK TO TSUNAMI PROPAGATION : TOWARD A NEW NON-HYDROSTATIC
MODEL

e SGN based models are certainly the most appropriate ones for dispersive
waves.

e But, dispersive and non dispersive waves can coexist during the Tsunami's
life ...

e Dissipative models are required # : "switching from one model to an other”

a. Lannes, Marche, Durand, Bonneton, Cienfuegos, Dutykh, Gavrilyuk, Pons, ...
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OTHER IMPACTS : CHANNEL/RIVER AS TSUNAMI HIGHWAYS

e Waves may penetrate through rivers/channel much faster inland than the
coastal inundation reaches over the ground, and may lead flooding in
low-lying areas located several km away from the coastline !

2021, 16 NOVEMBER 9/21
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« same problems as before between dispersive and non dispersive waves
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« 2D models for rivers/channels can be used but costly in the large scale
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e Waves may penetrate through rivers/channel much faster inland than the
coastal inundation reaches over the ground, and may lead flooding in
low-lying areas located several km away from the coastline!

e How to model ?

« same problems as before between dispersive and non dispersive waves

o 2D models for rivers/channels can be used but costly in the large scale
simulation

« Hydrostatic 1D section-averaged models are well-mastered
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OTHER IMPACTS : (TIIANA\'EL/RIVER, AS TSUNAMI HIGHWAYS

e Waves may penetrate through rivers/channel much faster inland than the
coastal inundation reaches over the ground, and may lead flooding in
low-lying areas located several km away from the coastline!

e How to model ?

« same problems as before between dispersive and non dispersive waves

o 2D models for rivers/channels can be used but costly in the large scale
simulation

« Hydrostatic 1D section-averaged models are well-mastered

o Non-hydrostatic 1D section-averaged have not yet been derived
— toward the first full non-linear and weakly dispersive section-averaged model

MEHMET ERSOY
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OUTLINE

o HYDROSTATIC MODELS, APPLICATIONS AND LIMITS

9 NON-HYDROSTATIC MODELS AND APPLICATIONS

o Toward the first dispersive section-averaged model

© CONCLUDING REMARKS AND PERSPECTIVES
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OUTLINE OF THE DERIVATION

Incompressible Euler equations #
div(pou) = 0,
0 .
a(pgu) +div(pou @u)+Vp—poF = 0
with
u = (u,v,w) : velocity field
00 . density
F =(0,0,—g) : external force
D . pressure
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OUTLINE OF THE DERIVATION

Incompressible Euler equations

div(pou)
0 .
a(pg’&) + div(pou @ u) + Vp — po F

with

u = (u,v,w) : velocity field
00 . density

F =(0,0,—g) : external force
P . pressure

MEHMET ERSOY

ACSIOM

z
= 07
=0
Vaci 2=0
x v u’ vt Y
completed with the irrotational relations
Ou Ov Ov  Ow Ou Ow
oy 0x’ 0z Oy 0z Oz’
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OUTLINE OF THE DERIVATION

Incompressible and irrotational Euler

equations
d(w,y)
div(pou) = 0, o
8 a(, &) Bz, 2)
5 (Pow) +div(pou ®u) +Vp —poF' = 0 e i L
x v y* vt Y

e free surface kinematic boundary condition,

0
U-Ngs = am'nfs and p(t7 m) = Do, vm(ta Z, y) = (.Z‘, Y, n(tﬂ €, y)) € FfS(t7 l‘)
e no-penetration condition on the wet boundary

U - Nyb = 07 Vm(a:, y) = (xvya d(m7y)) € wa(Z‘)

MEHMET ERSOY ACSIOM 2021, 16 NOVEMBER 10/21



OUTLINE OF THE DERIVATION

Let us define the dispersive parameters

h
® /i1 = ﬁ
Hj
® [lg = F’ x V
such that
hi < HH = Hy < Li,ie. < /j,%
where
Hy . characteristic scale of channel width
hy . characteristic wave-length in the transversal direction
H . characteristic water depth
U
F, = = . Froude's number
gli2
L L
T= i characteristic time
P=U? characteristic pressure
X characteristic length of x
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OUTLINE OF THE DERIVATION

Then, define the dimensionless variables

JUR _
P:— = —
P, 80 hl,
u ~ d
U= — d:—
Yo Hy’
sV _ v ~ M
v umu " H,
~ w
w = =

, 16 NOVEMBER



OUTLINE OF THE DERIVATION

We get
% + @ + a_w =0
Jor Oy 0z
ou ou ou ou  OP
a+u%+va—y+w$+a—xzo
v v v v oP
Ml(a—i-ua——kva—y—i-w&) 8_y:0
ow ow ow ow oP 1
u2<§+u%+va—y+w$> EZ_F_,?
and

11/21

MEHMET ERSOY ACSIOM 2021, 16 NOVEMBER



REMARK I : WHY g1 # po ?

11 = po = no analytical expression of the asymptotic terms.




REMARK I : WHY g1 # po ?

{1 = ft2 = no analytical expression of the asymptotic terms.
Indeed, in 2D-1D reduction, we proceed as follows

o u, +w, =0
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REMARK I : WHY g1 # po ?

[41 = fo = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o uy +w, =0+BC= w(t,z,z) =— (/ u(t,z,z) dz)
d T
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REMARK I : WHY g1 # po ?

[41 = fo = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o uy +w, =0+BC= w(t,z,2) =— (/ u(t,z,z) dz)
d T

® U, = W,
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REMARK I : WHY 1 # po ?

[41 = fo = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o uy +w, =0+BC= w(t,z,2) =— (/ u(t,z,z) dz)
d T

o u, = pw, = u(t,r,z)=u.—q(t x) —|—,u/ wy(t, x,2)dz
d
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REMARK I : WHY 1 # po ?

[41 = fo = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o uy +w, =0+BC= w(t,z,2) =— (/ u(t,z,z) dz)
d T

z
o= = ult) = uealtn) [ wntaz) ds
d

= wt,a,2) = — (/d woalt, ) dz>x + 0
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REMARK I : WHY 1 # po ?

[41 = fo = no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

o uy +w, =0+BC= w(t,z,2) =— (/ u(t,z,z) dz)
d
. x
o u, = pw, = u(t,x,2) =u—q( ) —|—,u/ wy(t,x, 2) dz
d

= wt, @, 2) = — (/dzzqz:d(t, 2) dz>x + 0

o = u(t,x,2) = (_( ) + pfo(z, u(t, ), d(x)) + O(n*) where
u(t,r) = f3(uz=q) - -
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REMARK I : WHY g1 # po ?

[41 = fo = no analytical expression of the asymptotic terms.
Indeed, in 3D-1D reduction, we proceed as follows

° um+vy+wz=O:>/vy—|—wz dydz ...
Q
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REMARK I : WHY 1 # po ?

141 = p2 = no analytical expression of the asymptotic terms.
Indeed, in 3D-1D reduction, we proceed as follows

° um+vy+wz=O:>/vy+wz dydz ...
Q

Therefore, we assume 11 < pio.
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REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V"< W < U where

(U.V = iU, W = \/iizU)




REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V< W < U where
(U, V =y/mUW = /uU)
e As a consequence, we proceed as follows
« 3D-2D reduction (width averaging) :

U‘(t7ma Y, 2:) = <u>(t5x7 Z) + O(:u‘l)

MEHMET ERSOY ACSIOM 2021, 16 NOVEMBER



REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V< W < U where
(U, V =y/mUW = /uU)
e As a consequence, we proceed as follows
« 3D-2D reduction (width averaging) :

U‘(t7ma Y, Z) = <u>(t5x7 Z) + O(/L1)

« 2D-1D reduction (depth averaging) :
(u)(t, . 2) = ult, =) + paf (u(t, 2), t, ) + O(u3)

where (¢, z) is the section-averaged velocity
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REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V< W < U where
(U, V =y/mUW = /uU)
e As a consequence, we proceed as follows
« 3D-2D reduction (width averaging) :

ult,z,y,2) = (u)(t, 2, 2) + O(p)

« 2D-1D reduction (depth averaging) :
<u>(t7 T, Z) = H(t7 m) + NQf(E(t7 CE), Q(t7 x)) + O(/J,g)

where (¢, z) is the section-averaged velocity
« 3D-1D reduction (section averaging) :

u(t7 z, Y, Z) = ﬂ(tv m) + /L2f(ﬂ(t7 :L‘), Q(t7 JJ)) + O(/J'g)
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REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V< W < U where
U,V =/mUW = /nU)
e Outline of 3D-1D reduction :

« Euler equations + boundary conditions :

0 1o} )
—m+tu—m-—v) -nds=0
/BQ(t,z) <3t Ox
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REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V< W < U where
(U, V =y/mUW = /uU)
e Qutline of 3D-1D reduction :
« Euler equations + boundary conditions :

0 0 )
—m+tu—m-—v) -nds=0
/BQ(t,z) <8t Ox

« Introduce wet region indicator function ® which satisfies

d d .
52+ 5 (@) + divy, - [2v] = 0 on O(t) = U a2

where v = (v, w).
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REMARK II : ORDER OF INTEGRATION

e Remark Il naturally yields to V< W < U where
(U, V =y/mUW = /uU)
e Qutline of 3D-1D reduction :
« Euler equations + boundary conditions :

0 0 )
—m+tu—m-—v) -nds=0
/Bﬂ(t,z) <3t Ox

« Introduce wet region indicator function ® which satisfies

d d .
52+ 5 (@) + divy, - [2v] = 0 on O(t) = 0<LxJ<1 Q(t, x)

where v = (v, w).
« Section-average equations using the approximation

u(t7m7y7 Z) = ’l](t,CC)"-/J/zBO(ﬁ,;C,Z) +O(M§)
77(157 z, y) = ﬁ(t,(l?) + O(:ul)
P(t,z,y,2) = Pu(t,z,2)+ paPun(t, 2, 2) + O(u3)

2021, 16 NOVEMBER
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THE NEW MODEL : GENERALIZATION OF THE SGN AND FREE SURFACE FLOWS
EQUATIONS

0 0
a0 0=
gt 5@ =0
0 2D ne ) + e (DE)G(A, ) = (e, )
o1 A 1Ty K2 o U x)) = L2(T
+M2g<uv Sv 0) + O(IU’Z)
where
A= dy dz © wet area
Q(t,x)
Q= A(t, z)u(t, ) . discharge
I :/ M)Q_Zo(m,z) dydz : hydro. press.
Q(t w}r Fr
v () bt z) 9
I, = —/ —d(x,y)dy : hydro. press. source
y~ (t,x) Fr2 Ox ( )
> Debyaoui, Ersoy. Asymptotic Analysis, 2020
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THE NEW MODEL : GENERALIZATION OF THE SGN AND FREE SURFACE FLOWS
EQUATIONS

0 0
8 — A+ e —Q=0
0 Q2 0
Q+ — T (@A) ) +pg (Du)G(A,2)) = Iz, 4)

+M2g<uv‘gv J) + O(MZ)

where )
0 0 0 o 0

and

G(A,z) = /1 " o, 2) / TS@S) g

I* (x) O—(:Ev 5)
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THE NEW MODEL : GENERALIZATION OF THE SGN AND FREE SURFACE FLOWS

EQUATIONS
0 0
20+ (Lt n )+ DG ) = B, 4
ot o\ AT H2 g TNV
+M2g(u7 57 0) + O(,UQ)
where
2 aS(x s)=—o(z,s)
_ [ 02"\ 90 0 0
G(w,5,0) = /Zcr(:c,s) o(x, ) %%S(a@s)
0
0 /u2 S(m,s)%a(x,s)
+7 J—
8:10( > o(x,s)?
6S(ac s)
0 0 o\
<8tu+u8xu> o(z3) ds

2021, 16 NOVEMBER

ACSIOM

MEHMET ERSOY



THE NEW MODEL : GENERALIZATION OF THE SGN AND FREE SURFACE FLOWS

EQUATIONS
0 0
o agl ) )
s+ o (Frnea) + el

+M2g<u7 Sv 0) + O(,UQ)

Settingo=1,d =1,

e A=h

e S(z,2)=85(2)=G=0and I, =0
h3

QG:?
h2

*h=5m

MEHMET ERSOY ACSIOM

(P(w)G(A, x)) = Ir(x, A)

2021, 16 NOVEMBER
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THE NEW MODEL : GENERALIZATION OF THE SGN AND FREE SURFACE FLOWS
EQUATIONS

§A+ 83 Q=0
0 Q2 0
50+ e (& + Do) 4 pa g (DIG(A ) = (o, 1)

+M2g<uv Sv 0) + O(IU’Z)
we recover the classical SGN equations on flat bottom

. 0
h+ = (hu) = 0

F) a( o I o (13 o,
ot (hu) + (97 (hu + QF;?) + Mz% (3D(u)) = O(/,L2)

o \° 00 o 0
D(“)(()TU) *agufud—qd—qu

where
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THE NEW MODEL : GENERALIZATION OF THE SGN AND FREE SURFACE FLOWS
EQUATIONS

0 0
8 — A+ e —Q=0
0 Q2 0
S0+ 2 (Line A)) + i (D(0)G(A, 7)) = I, 4)

+M2g<uv Sv 0) + O(:u’g)

REMARK

Dispersive equation are usually characterised by third order term

I

time step restriction and may create high frequencies instabilities

t=0s t=0.2
02 02
0.15) 0.15
(m) 01 (m) 01
0.05 0.05
[L) S— _— L) E—
—0.0 —0.0

510 520 % 30 5 10 1520 % 80
2(m) (m)

Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283-304, 2017.
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

e Define the linear 7 and the quadratic Q operators

TIA, d, o, 2] (u) = %(u)/n S, ) ds—i—u/n L9 6(a.s) ds,

o(x,s) o(x,s) Ox

and

o(z,s) o(z,s) eI S, s)
0
9 [ u2 S(x,s)%a(x,s)
+% (?) o(x,s)? ds
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

e Define the linear 7 and the quadratic Q operators
o Define the averaged linear 7 and the quadratic Q operators

o n
Tiadolwe) = [ vTldolw d:

and

ClA.do)(u,y) = i’WM%mM@W
d*(xz
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

e Define the linear 7 and the quadratic Q operators
o Define the averaged linear 7 and the quadratic O operators
e Define the operators £ and Q

L[A,d,o](u) = AL[A,d,o] (%)

and

1[0

Q[A, d, o](u) 7172 (G[A.d, 0] (u,0)) — G[A,d, 0] <u %aﬂ

MEHMET ERSOY ACSIOM 2021, 16 NOVEMBER



A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

e Define the linear 7 and the quadratic Q operators

o Define the averaged linear 7 and the quadratic O operators
e Define the operators £ and Q

e and finally the operator IL

LiA.d,ol(w) = ALAdo] (%)
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic Q operators

Define the operators £ and Q

and finally the operator L
o Reformulated model
0 A4 0

ot ox 5
(Ia — p2lL[A, d, o)) <§(Au) + %(Au2)> + all(:lf,A)

+12AQIA, d,0](w) = L(z, A) + O(i3)

(Au) =0
0

0
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

e Define the linear 7 and the quadratic Q operators

Define the averaged linear 7 and the quadratic Q operators

Define the operators £ and Q

and finally the operator L
e Reformulated model

9] 9]
EA-F 7(14“) , ,
(Ia — p2lL[A, d, o) <a— (Au) + —(Au )) + %Il(x,A)

+12AQ[A, d, o] (u) = Iz(z, A) + O(u3)

@

REMARK
Inverting Iy — psL[A, d, o] = no third order term = more stable formulation

> Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

> Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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A MORE STABLE FORMULATION— USEFUL FOR NUMERICAL PURPOSE

e Define the linear 7 and the quadratic Q operators
Define the averaged linear 7 and the quadratic Q operators

Define the operators £ and Q

and finally the operator L
o Reformulated model
0 0

(Ia — p2rlL[A, d, o]) (a(Au) + %(Aﬁ) + 8 ; ! (a%h - 12>>

L (ﬁh - 12) + 12 AQIA,d, 7)(u) = O(u3)

ox

REMARK

A consistent one-parameter x > 0 family (up to order O(p3)) can be introduced
to improve the frequency dispersion.

> Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

> Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021

MEHMET ERsoy ACS 2021, 16 NOVEMBER 15 /21



INVERTIBILITY OF THE OPERATOR T = A(I4 — pu2L[A, d, o))

THEOREM

Let a,3 and d € C5° and A € W (R) such that inf A > Ay > 0. Then the
A
operator

T: H*(R) — L*(R)

is well-defined, one-to-one and onto.

> Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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INVERTIBILITY OF THE OPERATOR T = A(I4 — pu2L[A, d, o))

THEOREM

Let a,3 and d € C5° and A € W (R) such that inf A > Ay > 0. Then the
A
operator

T: H*(R) — L*(R)

is well-defined, one-to-one and onto.

o Let pp € (0,1). Define the space le (R) the space H'(R) endowed with the
norm

Il 5=l w13 +pe | e 113

MEHMET ERSOY ACSIOM
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INVERTIBILITY OF THE OPERATOR T = A(I4 — pu2L[A, d, o))

THEOREM

Let a,3 and d € C5° and A € W (R) such that inf A > Ay > 0. Then the
A
operator

T: H*(R) — L*(R)

is well-defined, one-to-one and onto.

e Let iy € (0,1). Define the space H,,, (R)
e Define the bilinear form a(u,v)

a(u,v) = (ATu,v) = (Au,v)+

1o (A (ﬁiu - ?dxu> , (\/‘_;U - %gdxu» + (Adyu, dyv)

MEHMET ERSOY ACSIOM

2021, 16 NOVEMBER
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INVERTIBILITY OF THE OPERATOR T = A(I4 — pu2L[A, d, o))

THEOREM

Let a,3 and d € C5° and A € W (R) such that inf A > Ay > 0. Then the
A
operator
T: H*(R) — L*(R)

is well-defined, one-to-one and onto.
e Let iy € (0,1). Define the space H,,, (R)
e Define the bilinear form a(u,v)
e Lax-Milgram theorem
HNue H, (R); a(u,v) = (f,v), Vv e H,,(R), feL*R)
¢
NueH,(R); Tu=f

e From definition of T, we get u,, = g(4A,u,d,0) € L*(R) = u € H*(R).

MEHMET ERSOY ACSIOM

2021, 16 NOVEMBER
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NUMERICAL SCHEME : HYPERBOLIC PART

L] bzi = i)

»
>

]
Ti-1/2 ! Tiv1/2

We consider a classical Finite Volume scheme, U = (4, Q)

n n 61;” n n n n
U, A U — oz (Fi+l/2(Ui UL ) — Fifl/Z(UiflﬂUi ))

1
where F; )5 ~ &—n/ F(U(t,7;41/2)) dx is a Finite volume solver,

with
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NUMERICAL SCHEME : HYPERBOLIC PART

m;

We consider a classical Finite Volume scheme, U = (4, Q)

" ot"
Ui = Uz‘n - E (E’+1/2(U?7U¢n+1) - Fi—l/Q(Uﬁu Uzn))

1
where F; )5 ~ &—n/ F(U(t,7;41/2)) dx is a Finite volume solver, for

instance, with upwind technique to deal with source term

FU)+F(V) s

i+1/2 9 2 ( )
. Au
with
f— - 1
O
K
> Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011
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NUMERICAL SCHEME : DISPERSIVE PART

m;

]
Ti-1/2 ! Tiv1/2

We consider a classical Finite Volume scheme, U = (4, Q)

ot"

Uz'nH = Uz‘n - E (E’+1/2(U?7U¢n+1) - Fi—l/Q(Uﬁu Uzn))
ot" 1
I — uoll D™);
—55 (g = pl)"] 7 D");i

with
(D")i = D1 o(U UM Uy ) — Dy 2 (U5, U, U

where D; 11 /5 and [(1g — ,ug]L)”]_1 are the centred approximation of

1/0 -
D==- <—I1 - 12) + 112AQ and [(Ig — poll)] ™"
Kk \ Oz
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NUMERICAL SCHEME :

L] bzi = i)

>
] »>
Ti-1/2 ! Tiv1/2

We consider a classical Finite Volume scheme, U = (A4, Q)

ot
Ut =U) = (Fra 2(U] ULy = Fiop (U, U))
ot —1
——([(Ig — po)"] " D™,
5o (Lo — p2l)") 7 D™,

THEOREM

The numerical scheme is stable under the classical CFL condition,

ot"
max [Al— < 1.
\eSp(Dy F(U)) 0x

> Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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PROPAGATION OF A SOLITARY WAVE (k = 1)

o Influence of the Section Variation (N = 5000 cells) :
o(x;e) = B(x;e) — ax; ) with

5= % — Sexp (=2 (v - L/2)?)) and a = —

2215 ‘ ‘ ‘ ‘ ‘ ‘ ‘
221 1
o
2205 |- Lem®®’ %o 1
DDDDDDDDD
Y AL ]
X x x x
- (AR RS EETILE
S 2195 LR S FRERERP,.
“ia
219t Frra 1
) Trx,,
€= 0 . St %
2185 (¢ = (.1 N "o %«
o
e= 02 - LI
2A18*€=0.3 o 1
2,175 e= 04 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8
t(s)
n n
Fieure — M™ := max (h}")
z€[0,Lc]
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PROPAGATION OF A SOLITARY WAVE (k = 1)

o Influence of the Section Variation (N = 5000 cells) :
o(x;e) = B(x;e) — ax; ) with

5= % — Sexp (=2 (v - L/2)?)) and a = —

e Numerical order for e =0

|| TTnum — TNezact ||2 || Tnum — TNezact ”oo
Order 0.53 0.58
o Numerical order for ¢ = 0.4 (reference solution obtained with N = 10000
cells)
[ 7inum = et ll2 || num — ref [loo
Order 0.64 0.56

MEHMET ERSOY ACSIOM 2021, 16 NOVEMBER
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TWO SOLITARY WAVES TEST CASE

e Comparison with the NLSW and the exact solution

T= 0000
1.5 T
h (SGN)
h(SW) ——
h (EX)
1.4 r
13 ¢

FicGure ~0=1,d=1, N =1000, CFL =0.95, Ty = 10 and x = 1.159
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TWO SOLITARY WAVES TEST CASE

e Comparison with the NLSW and the exact solution

e Influence of x : toward a dissipative shallow water model

1.3 T T T T

Exact solution —_—
K= R
x=1.159
®=2

125 :

1.2

= L15

1.1

1.05
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OUTLINE

© CONCLUDING REMARKS AND PERSPECTIVES
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