

nstitut de Mathématiques de Toulon

ON A NEW MATHEMATICAL MODEL FOR OPEN CHANNEL AND RIVER HYDRAULICS

Mehmet Ersoy

2021, 16 NOVEMBER, ACSIOM, MONTPELLIER, FRANCE

Hydrostatic models, applications and limits

- Examples of hydrostatic model
- Application to tsunamis propagation

2 Non-hydrostatic models and applications

- Historical background and motivations
- Toward the first dispersive section-averaged model

③ Concluding remarks and perspectives

Hydrostatic models, applications and limits

- Examples of hydrostatic model
- Application to tsunamis propagation

2 Non-hydrostatic models and applications

- Historical background and motivations
- Toward the first dispersive section-averaged model

3 Concluding remarks and perspectives

SAINT-VENANT EQUATIONS

- Introducing characteristic scales :
 - length \underline{L}
 - width l
 - height H

SAINT-VENANT EQUATIONS

- Introducing characteristic scales : L, l and H
- Introducing aspect ratio numbers :
 - $\varepsilon_z = \frac{H}{L}$ following the depth • $\varepsilon_y = \frac{l}{L}$ following the width

SAINT-VENANT EQUATIONS

- Introducing characteristic scales : L, l and H
- Introducing aspect ratio numbers : $\varepsilon_z = \frac{H}{L}$ and $\varepsilon_y = \frac{l}{L}$
- One can reduce the initial model (Navier-Stokes or Euler equations)
 - 3D-2D depth averaged model reduction if

 $\varepsilon_z \ll 1 \text{ and } \varepsilon_y \approx 1$

• 3D-1D section averaged model reduction if

 $\varepsilon_z \approx \varepsilon_y \ll 1$

- Introducing characteristic scales : L, l and H
- Introducing aspect ratio numbers :
- One can reduce the initial model (Navier-Stokes or Euler equations)
- Opposite to DNS, model reduction \rightarrow to decrease the computational cost

SAINT-VENANT EQUATIONS & APPLICATIONS

- Introducing characteristic scales : L, l and H
- Introducing aspect ratio numbers :
- One can reduce the initial model (Navier-Stokes or Euler equations)
- Opposite to DNS, model reduction \rightarrow to decrease the computational cost
- Some applications :

Hydrostatic models, applications and limits

• Examples of hydrostatic model

• Application to tsunamis propagation

2 Non-hydrostatic models and applications

- Historical background and motivations
- Toward the first dispersive section-averaged model

③ Concluding remarks and perspectives

Applications of Saint-Venant equations

SV equations

• 3D-1D model reduction for closed water pipes/channels/rivers

$$\begin{cases} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + gI_1(x, A)\right) = gI_2(x, A) \end{cases}$$

$$A(t,x), Q(t,x), g, h = \eta - d$$

$$I_1(x,A) = \int_{-\eta}^{\eta} \sigma(x,z)(\eta - z)dz$$

with

$$I_2(x,A) = \int_d^{J_d} \frac{\partial}{\partial x} \sigma(x,z)(\eta-z)dz$$

- wet area, discharge, gravity
- hydrostatic pressure
- hydrostatic pressure source

C. Bourdarias, M. Ersoy, S. Gerbi and a well-balanced finite volume scheme.

C. Bourdarias, M. Ersov, S. Gerbi,

International Journal on Finite Volumes, 2009.

C. Bourdarias, M. Ersoy, S. Gerbi.

Unsteady mixed flows in non uniform closed water pipes : a Full A model for unsteady mixed flows in non uniform closed water pipes Kinetic Appraoch. Numerische Mathematik. 2014.

A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms.

M. Ersov.

Dimension reduction for incompressible pipe and open channel flow including friction. Applications of Mathematics, 2015.

Applications of Saint-Venant equations

SV equations

- 3D-1D model reduction for closed water pipes/channels/rivers
- 2D-1D reduction for urban/overland flows including precipitation and recharge

$$\begin{pmatrix} \partial_t h + \partial_x q = \mathbf{S} := R - I, \\ \partial_t q + \partial_x \left(\frac{q^2}{A} + g\frac{h^2}{2}\right) = -gh\partial_x Z + \mathbf{S}\frac{q}{h} - \left(\mathbf{k}_+(R) + \mathbf{k}_-(I) + k_0\left(\frac{q}{h}\right)\right)\frac{q}{h}$$

with $\begin{array}{c} h(t,x), q(t,x) \\ k \end{array}$: water height, discharge friction generated from the second secon

will k_{\pm} : friction generated from precipitation and infiltration where I can be driven by the solution of the Richards' equation.

M. Ersoy, O. Lakkis, P. Townsend.

A Saint-Venant shallow water model for overland flows with precipitation and recharge. Mathematical and Computational Applications, Natural Sciences, 2020

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

Adaptive discontinuous galerkin method for richards equation. Topical Problems of Fluid Mechanics, 2020

Wa	ve-driven Ground- water Flows in Sandy Beaches : A Richa	ards
Equ	ation-based Model.	
Jou	rnal of Coastal Research, 2020	
JE	B. Clément, M. Ersoy, F. Golay, and D. Sous.	
An	adaptive strategy for discontinuous Galerkin simulations of	f

Richards' equation : application to multi-materials dam wetting Advances in Water Resources, 2021

Applications of Saint-Venant equations

SV equations

- 3D-1D model reduction for closed water pipes/channels/rivers
- 2D-1D reduction for urban/overland flows including precipitation and recharge
- 3D-2D reduction for tsunamis propagation

$$\begin{cases} \partial_t h + \operatorname{div}(h\overline{u}) = 0, \\ \partial_t(h\overline{u}) + \operatorname{div}\left(h\overline{u} \otimes \overline{u} + g\frac{h^2}{2}I\right) = -gh\nabla Z, \end{cases}$$

with $\overline{u}(t,x) \in \mathbb{R}^2$: depth averaged velocity

K. Pons, M. Ersoy.

 $\frac{\mbox{Adaptive mesh refinement method. Part 1: Automatic thresholding}}{\mbox{based on a distribution function.}}$

SEMA SIMAI Springer Series, Partial Differential Equations : Ambitious Mathematics for Real-Life Applications, D. Donatelli and C. Simeoni Editors, 2020 K. Pons, M. Ersoy , F. Golay and R. Marcer.

Adaptive mesh refinement method. Part 2 : Application to tsunamis propagation.

SEMA SIMAI Springer Series, Partial Differential Equations : Ambitious Mathematics for Real-Life Applications, D. Donatelli and C Simeoni Editors, 2020

HYDROSTATIC MODELS, APPLICATIONS AND LIMITS Examples of hydrostatic model

• Application to tsunamis propagation

2 Non-hydrostatic models and applications

- Historical background and motivations
- Toward the first dispersive section-averaged model

③ Concluding remarks and perspectives

• Tsunamis are water waves that start in the deep ocean : *H* is huge

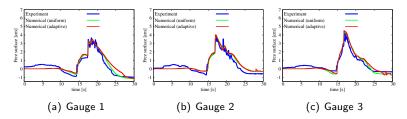
- Tsunamis are water waves that start in the deep ocean : H is huge
- But, the wavelength λ of the tsunami is huge as well (200 km)
 - Dynamics of tsunamis are "<u>essentially</u>" governed by the shallow water equations.
 - Phase speed of propagation $v_{\phi} \approx \sqrt{gH}$ (*H* ocean depth)
 - Use λ instead of L in the derivation \rightarrow shallow water models : justify the use of Saint-Venant equations for some tsunamis.

- Tsunamis are water waves that start in the deep ocean : H is huge
- But, the wavelength λ of the tsunami is huge as well (200 km)
- Tsunami runup onto a complex three dimensional Monai Valley :

			73.18
	Adap. sim.	Unif. sim.	36.59 18.30 0.000
T_f Nb. blocks Nb. cells	30 s 240 8 000-40 000	30 s 240 62 000	
Re-mesh. δt CFL	0.25 s 0.5	X 0.5	Numerical water heigh (coloration is issue
Table –	Numerical parame	from the kinetic energy at $t = 11.25$ s	

[BEG12]			K. Pons, M. Ersoy , F. Golay and R. Marcer.	
	Adaptive mesh refinement method. Part 1 : Automatic threshold	ding	Adaptive mesh refinement method. Part 2 : Application to tsunamis	
	based on a distribution function.		propagation.	
	SEMA SIMAI Springer Series, Partial Differential Equations :		SEMA SIMAI Springer Series, Partial Differential Equations :	
	Ambitious Mathematics for Real-Life Applications, D. Donatelli	and C.	Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.	
	Simeoni Editors, 2020		Simeoni Editors, 2020	
	Mehmet Ersoy	ACSIOM	2021. 16 November 4 / 2	

- Tsunamis are water waves that start in the deep ocean : \boldsymbol{H} is huge
- But, the wavelength λ of the tsunami is huge as well (200 km)
- Tsunami runup onto a complex three dimensional Monai Valley :



 $\label{eq:Figure} Figure - Free surface results at different positions: experimental data versus numerical simulation with and without mesh adaptivity$

Coming back to the modelling problem : "SVE for certain tsunamis"

• Are the SVE are pertinent for all Tsunamis?

- Are the SVE are pertinent for all Tsunamis? No!
 - Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic models are accurate. Monai Valley flooding is an example (Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

- Are the SVE are pertinent for all Tsunamis? No!
 - Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic models are accurate. Monai Valley flooding is an example (Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).
 - Land-slide/subaerial landslide generated tsunamis (depending on landslide thickness, water depth) cannot be represented by hydrostatic models !
 - \rightarrow Glimsdal, Pedersen, Harbitz, Lovholt, Dutykh, Bonneton, etc.
 - dispersions are expected

Parisot and Ersoy's experimental wave generator (Malaga, NumHyp 2019)

- Are the SVE are pertinent for all Tsunamis? No!
 - Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic models are accurate. Monai Valley flooding is an example (Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).
 - Land-slide/subaerial landslide generated tsunamis (depending on landslide thickness, water depth) cannot be represented by hydrostatic models!
 - dispersions are expected

"Strong" bore

- Are the SVE are pertinent for all Tsunamis? No!
 - Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic models are accurate. Monai Valley flooding is an example (Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).
 - Land-slide/subaerial landslide generated tsunamis (depending on landslide thickness, water depth) cannot be represented by hydrostatic models!
 - dispersions are expected

"Strong" bore

undular bore

- Are the SVE are pertinent for all Tsunamis? No!
 - Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic models are accurate. Monai Valley flooding is an example (Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).
 - Land-slide/subaerial landslide generated tsunamis (depending on landslide thickness, water depth) cannot be represented by hydrostatic models!
 - dispersions are expected

"Strong" bore

undular bore

undular bore

- Are the SVE are pertinent for all Tsunamis? No!
 - Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic models are accurate. Monai Valley flooding is an example (Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).
 - Land-slide/subaerial landslide generated tsunamis (depending on landslide thickness, water depth) cannot be represented by hydrostatic models!
 - dispersions are expected

"Strong" bore

undular bore

undular bore

undular bore

Coming back to the modelling problem : "SVE for certain tsunamis"

- Are the SVE are pertinent for all Tsunamis? No!
- Dispersive wave model are also required

- Are the SVE are pertinent for all Tsunamis? No!
- Dispersive wave model are also required
- Of course, Navier-Stokes equation can deal for both but too costly!

D Hydrostatic models, applications and limits

- Examples of hydrostatic model
- Application to tsunamis propagation

NON-HYDROSTATIC MODELS AND APPLICATIONS

- Historical background and motivations
- Toward the first dispersive section-averaged model

3 Concluding remarks and perspectives

Hydrostatic models, applications and limits

- Examples of hydrostatic model
- Application to tsunamis propagation

2 Non-hydrostatic models and applications

• Historical background and motivations

• Toward the first dispersive section-averaged model

③ Concluding remarks and perspectives

DISPERSIVE WAVES

- Let $\omega = \frac{2\pi}{T}$ be the angular frequency (pulsation) and $k = \frac{2\pi}{\lambda}$ wavenumber.
 - A wave $\phi(kx-\omega t)$ is characterised by two different characteristic speeds
 - phase velocity $C_p = \frac{\omega}{k}$ which corresponds to the displacement of the wave fronts
 - group velocity $C_g=\frac{\partial\omega}{\partial k}$ which corresponds to the displacement of the wave's envelope
 - dispersion relation is given by $\omega = C_p k$
 - If C_p is constant then the wave is not dispersive.

Dispersive wave

Non dispersive wave

DISPERSIVE WAVES

- Let $\omega = \frac{2\pi}{T}$ be the angular frequency (pulsation) and $k = \frac{2\pi}{\lambda}$ wavenumber.
 - A wave $\phi(kx-\omega t)$ is characterised by two different characteristic speeds
 - If C_p is constant then the wave is not dispersive.
 - \bullet According to linear Stokes' theory, noting H the depth, the dispersion relation is

 $\omega^2 = gk \tanh(kH)$

Formally,
$$rac{H}{\lambda} \ll 1$$
,
• at order 1, $\left(rac{\omega}{k}
ight)^2 pprox gH \rightsquigarrow \underline{\mathsf{SVE}}$

DISPERSIVE WAVES AND STOKES LINEAR THEORY

- Let $\omega = \frac{2\pi}{T}$ be the angular frequency (pulsation) and $k = \frac{2\pi}{\lambda}$ wavenumber.
 - A wave $\phi(kx-\omega t)$ is characterised by two different characteristic speeds
 - If C_p is constant then the wave is not dispersive.
 - \bullet According to linear Stokes' theory, noting H the depth, the dispersion relation is

 $\omega^2 = gk \tanh(kH)$

Formally,
$$\frac{H}{\lambda} \ll 1$$
,
• at order 1, $\left(\frac{\omega}{k}\right)^2 \approx gH \rightsquigarrow \underline{SVE}$
• at order > 1, $\left(\frac{\omega}{k}\right)^2 \approx gH - gk^2H^3 + \dots \rightsquigarrow \underline{Dispersive models}$

• Everything starts with Russell's "Wave of translation"

"I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation". John Scott Russell

HISTORICAL BACKGROUND : SOLITON AND DISPERSIVE WATER WAVES

- Everything starts with Russell's "Wave of translation"
- Proof of the stability of the solitary wave given by Boussinesq (1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation : a perfect equilibrium between non-linearities and the dispersive terms

 $u_t + 6uu_x + u_{xxx} = 0$

- Everything starts with Russell's "Wave of translation"
- Proof of the stability of the solitary wave given by Boussinesq (1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.
- On the basis of this work, several models have been proposed :
 - **1967** : a first 2D formulation for non flat weakly dispersive and weakly non linear model of Boussinesq type was proposed by Peregrine.

- Everything starts with Russell's "Wave of translation"
- Proof of the stability of the solitary wave given by Boussinesq (1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.
- On the basis of this work, several models have been proposed :
 - 1967 : a first 2D formulation for non flat weakly dispersive and weakly non linear model of Boussinesq type was proposed by Peregrine.
 - **1984** : a first method to improve the frequency dispersion Boussinesq type's model was proposed by Witting.

- Everything starts with Russell's "Wave of translation"
- Proof of the stability of the solitary wave given by Boussinesq (1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.
- On the basis of this work, several models have been proposed :
 - 1967 : a first 2D formulation for non flat weakly dispersive and weakly non linear model of Boussinesq type was proposed by Peregrine.
 - 1984 : a first method to improve the frequency dispersion Boussinesq type's model was proposed by Witting.
 - 1953 : A first 1D fully non-linear ($\varepsilon = O(1)$) and weakly dispersive equation for flat bottom was derived by Serre motivated by the fact that wave dynamics is strongly nonlinear close to shoaling zone.

- Everything starts with Russell's "Wave of translation"
- Proof of the stability of the solitary wave given by Boussinesq (1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.
- On the basis of this work, several models have been proposed :
 - 1967 : a first 2D formulation for non flat weakly dispersive and weakly non linear model of Boussinesq type was proposed by Peregrine.
 - 1984 : a first method to improve the frequency dispersion Boussinesq type's model was proposed by Witting.
 - 1953 : A first 1D fully non-linear ($\varepsilon = O(1)$) and weakly dispersive equation for flat bottom was derived by Serre motivated by the fact that wave dynamics is strongly nonlinear close to shoaling zone.
 - **1976** : Green and Naghdi derived the famous 2D fully nonlinear dispersive equations for uneven bottom (1D below)

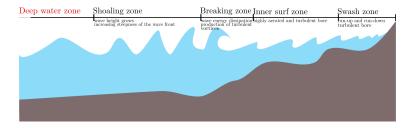
$$\begin{cases} \frac{\partial}{\partial t}h + \frac{\partial}{\partial x}(hu) = 0\\ \frac{\partial}{\partial t}(hu) + \frac{\partial}{\partial x}\left(hu^{2} + \frac{h^{2}}{2F_{r}^{2}}\right) + \mu\frac{\partial}{\partial x}\left(\frac{h^{3}}{3}\mathcal{D}(u)\right) = 0\\ \mathcal{D}(u) = \left(\frac{\partial}{\partial x}u\right)^{2} - \frac{\partial}{\partial t}\frac{\partial}{\partial x}u - u\frac{\partial}{\partial x}\frac{\partial}{\partial x}u \end{cases}$$
with

- Everything starts with Russell's "Wave of translation"
- Proof of the stability of the solitary wave given by Boussinesq (1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.
- On the basis of this work, several models have been proposed :
 - 1967 : a first 2D formulation for non flat weakly dispersive and weakly non linear model of Boussinesq type was proposed by Peregrine.
 - 1984 : a first method to improve the frequency dispersion Boussinesq type's model was proposed by Witting.
 - 1953 : A first 1D fully non-linear ($\varepsilon = O(1)$) and weakly dispersive equation for flat bottom was derived by Serre motivated by the fact that wave dynamics is strongly nonlinear close to shoaling zone.
 - 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive equations for uneven bottom.
 - Nowadays : Marche, Lannes, Bonneton, Durand, Cienfuegos, Dutykh, Gavrilyuk, Richard, Sainte-Marie, ... proposed several improvements

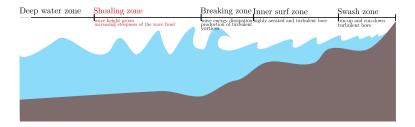
• SGN based models are certainly the most appropriate ones for dispersive waves.^a

a. Lannes, Marche, Durand, Bonneton, Cienfuegos, Dutykh, Gavrilyuk,...

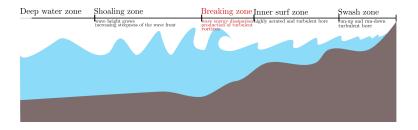
- SGN based models are certainly the most appropriate ones for dispersive waves.
- But, dispersive and non dispersive waves can coexist during the Tsunami's life . . .
 - Deep water zone : Depth-averaged models hydrostatic and non-hydrostatic models are valid but dispersive codes boosts the CPU times and memory requirements



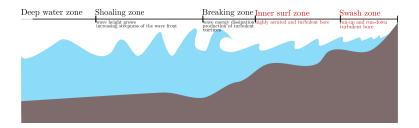
- SGN based models are certainly the most appropriate ones for dispersive waves.
- But, dispersive and non dispersive waves can coexist during the Tsunami's life . . .
 - <u>Shoaling zone</u> : hydrostatic models are (often) not valid in this zone, leading to an incorrect growth of the wave, yielding to an incorrect prediction of the location of wave breaking



- SGN based models are certainly the most appropriate ones for dispersive waves.
- But, dispersive and non dispersive waves can coexist during the Tsunami's life . . .
 - Breaking zone : hydrostatic models (SVE) can accurately reproduce broken wave dissipation and swash oscillations without any ad-hoc parametrisation



- SGN based models are certainly the most appropriate ones for dispersive waves.
- But, dispersive and non dispersive waves can coexist during the Tsunami's life . . .
 - Inner surf and swash zones : predominant non-linearities (SVE)



- SGN based models are certainly the most appropriate ones for dispersive waves.
- But, dispersive and non dispersive waves can coexist during the Tsunami's life . . .
- Dissipative models are required ^a : "switching from one model to an other"

a. Lannes, Marche, Durand, Bonneton, Cienfuegos, Dutykh, Gavrilyuk, Pons, ...

OTHER IMPACTS : CHANNEL/RIVER AS TSUNAMI HIGHWAYS

• Waves may penetrate through rivers/channel much faster inland than the coastal inundation reaches over the ground, and may lead flooding in low-lying areas located several km away from the coastline !

- Waves may penetrate through rivers/channel much faster inland than the coastal inundation reaches over the ground, and may lead flooding in low-lying areas located several km away from the coastline !
- How to model?
 - same problems as before between dispersive and non dispersive waves

- Waves may penetrate through rivers/channel much faster inland than the coastal inundation reaches over the ground, and may lead flooding in low-lying areas located several km away from the coastline !
- How to model?
 - · same problems as before between dispersive and non dispersive waves
 - 2D models for rivers/channels can be used but costly in the large scale simulation

- Waves may penetrate through rivers/channel much faster inland than the coastal inundation reaches over the ground, and may lead flooding in low-lying areas located several km away from the coastline !
- How to model?
 - same problems as before between dispersive and non dispersive waves
 - 2D models for rivers/channels can be used but costly in the large scale simulation
 - Hydrostatic 1D section-averaged models are well-mastered

- Waves may penetrate through rivers/channel much faster inland than the coastal inundation reaches over the ground, and may lead flooding in low-lying areas located several km away from the coastline !
- How to model?
 - · same problems as before between dispersive and non dispersive waves
 - 2D models for rivers/channels can be used but costly in the large scale simulation
 - Hydrostatic 1D section-averaged models are well-mastered
 - Non-hydrostatic 1D section-averaged have not yet been derived
 → toward the first full non-linear and weakly dispersive section-averaged model

Hydrostatic models, applications and limits

- Examples of hydrostatic model
- Application to tsunamis propagation

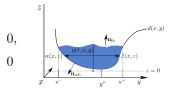
2 Non-hydrostatic models and applications

- Historical background and motivations
- Toward the first dispersive section-averaged model

③ Concluding remarks and perspectives

Incompressible Euler equations

$$\begin{aligned} &\operatorname{div}(\rho_0 \boldsymbol{u}) &= \\ &\frac{\partial}{\partial t}(\rho_0 \boldsymbol{u}) + \operatorname{div}(\rho_0 \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p - \rho_0 \boldsymbol{F} \end{aligned} =$$

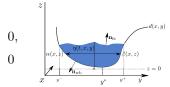


with

$\boldsymbol{u} = (u, v, w)$:	velocity field
$ ho_0$:	density
$\boldsymbol{F} = (0, 0, -g)$:	external force
p	:	pressure

Incompressible Euler equations

$$\operatorname{div}(
ho_0 oldsymbol{u}) \ rac{\partial}{\partial t}(
ho_0 oldsymbol{u}) + \operatorname{div}(
ho_0 oldsymbol{u} \otimes oldsymbol{u}) +
abla p -
ho_0 oldsymbol{F}$$



with

- $\boldsymbol{u} = (u, v, w)$: velocity field $\begin{array}{cc}
 ho_0 & dots \\ oldsymbol{F} = (0,0,-g) & dots \end{array}$ p
 - density

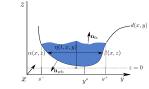
 - : external force
 - pressure

completed with the irrotational relations

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}, \ \frac{\partial v}{\partial z} = \ \frac{\partial w}{\partial y}, \ \frac{\partial u}{\partial z} = \frac{\partial w}{\partial x}$$

Incompressible and irrotational Euler equations

$$\begin{aligned} &\operatorname{div}(\rho_0 \boldsymbol{u}) &= 0, \\ &\frac{\partial}{\partial t}(\rho_0 \boldsymbol{u}) + \operatorname{div}(\rho_0 \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p - \rho_0 \boldsymbol{F} &= 0 \end{aligned}$$



• free surface kinematic boundary condition,

$$\boldsymbol{u} \cdot \boldsymbol{n}_{\mathrm{fs}} = \frac{\partial}{\partial t} \boldsymbol{m} \cdot \boldsymbol{n}_{\mathrm{fs}} \text{ and } p(t, \boldsymbol{m}) = p_0, \ \forall \boldsymbol{m}(t, x, y) = (x, y, \eta(t, x, y)) \in \Gamma_{\mathrm{fs}}(t, x)$$

• no-penetration condition on the wet boundary

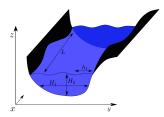
$$\boldsymbol{u} \cdot \boldsymbol{n}_{\mathrm{wb}} = 0, \ \forall \boldsymbol{m}(x, y) = (x, y, d(x, y)) \in \Gamma_{\mathrm{wb}}(x)$$

OUTLINE OF THE DERIVATION

Let us define the dispersive parameters

•
$$\mu_1 = \frac{h_1^2}{L^2}$$

•
$$\mu_2 = \frac{H_2^2}{L^2}$$



such that

$h_1 < H_1 = H_2 \ll L$, i.e. $\mu_1 < \mu_2^2$

where

 H_1 h_1 H_2 $F_r = -\sqrt{2}$

- : characteristic scale of channel width
 - characteristic wave-length in the transversal direction
 - characteristic water depth
 - Froude's number
 - characteristic time
 - characteristic pressure
 - characteristic length of x

•

OUTLINE OF THE DERIVATION

Then, define the dimensionless variables

$$\begin{split} \widetilde{x} &= \frac{x}{L}, \quad \widetilde{P} = \frac{P}{\mathcal{P}}, \qquad \qquad \widetilde{\varphi} = \frac{\varphi}{h_1}, \\ \widetilde{y} &= \frac{y}{h_1}, \quad \widetilde{u} = \frac{u}{U}, \qquad \qquad \widetilde{d} = \frac{d}{H_2}, \\ \widetilde{z} &= \frac{z}{H_2}, \quad \widetilde{v} = \frac{v}{V} = \frac{v}{\sqrt{\mu_1}U}, \qquad \qquad \widetilde{\eta} = \frac{\eta}{H_2}. \\ \widetilde{t} &= \frac{t}{T}, \qquad \qquad \widetilde{w} = \frac{w}{W} = \frac{w}{\sqrt{\mu_2}U}. \end{split}$$

OUTLINE OF THE DERIVATION

We get

$$\begin{aligned} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0\\ \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} + \frac{\partial P}{\partial x} &= 0\\ \mu_1 \left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) + \frac{\partial P}{\partial y} &= 0\\ \mu_2 \left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) + \frac{\partial P}{\partial z} &= -\frac{1}{F_r^2}\end{aligned}$$

 and

$$\frac{\partial u}{\partial y} = \mu_1 \frac{\partial v}{\partial x}, \ \mu_1 \frac{\partial v}{\partial z} = \mu_2 \frac{\partial w}{\partial y}, \ \frac{\partial u}{\partial z} = \mu_2 \frac{\partial w}{\partial x} \ .$$

Remark I : why $\mu_1 \neq \mu_2$?

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Remark I : Why $\mu_1 \neq \mu_2$?

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

• $u_x + w_z = 0$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x \Rightarrow u(t, x, z) = u_{|z=d}(t, x) + \mu \int_d^z w_x(t, x, z) \, dz$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x \Rightarrow u(t, x, z) = u_{|z=d}(t, x) + \mu \int_d^z w_x(t, x, z) \, dz$
 $\Rightarrow w(t, x, z) = -\left(\int_d^z u_{|z=d}(t, x) \, dz\right)_x + O(\mu)$

Remark I : Why $\mu_1 \neq \mu_2$?

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

•
$$u_x + w_z = 0 + \mathsf{BC} \Rightarrow w(t, x, z) = -\left(\int_d^z u(t, x, z) \, dz\right)_x$$

• $u_z = \mu w_x \Rightarrow u(t, x, z) = u_{|z=d}(t, x) + \mu \int_d^z w_x(t, x, z) \, dz$
 $\Rightarrow w(t, x, z) = -\left(\int_d^z u_{|z=d}(t, x) \, dz\right)_x + O(\mu)$

• $\Rightarrow u(t, x, z) = f_1(\bar{u}(t, x)) + \mu f_2(z, \bar{u}(t, x), d(x)) + O(\mu^2)$ where $\bar{u}(t, x) = f_3(u_{|z=d}) \dots$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

•
$$u_x + v_y + w_z = 0 \Rightarrow \int_{\Omega} v_y + w_z \, dy dz \dots$$

 $\mu_1 = \mu_2 \Rightarrow$ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

•
$$u_x + v_y + w_z = 0 \Rightarrow \int_{\Omega} v_y + w_z \, dy dz \dots$$

Therefore, we assume $\mu_1 < \mu_2$.

Remark II : order of integration

• Remark II naturally yields to V < W < U where $(U, V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$

- Remark II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - 3D-2D reduction (width averaging) :

$$u(t, x, y, z) = \langle u \rangle(t, x, z) + O(\mu_1)$$

- Remark II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - 3D-2D reduction (width averaging) :

$$u(t, x, y, z) = \langle u \rangle(t, x, z) + O(\mu_1)$$

• 2D-1D reduction (depth averaging) :

 $\langle u \rangle(t, x, z) = \overline{u}(t, x) + \mu_2 f(\overline{u}(t, x), \Omega(t, x)) + O(\mu_2^2)$

where $\overline{u}(t,x)$ is the section-averaged velocity

- Remark II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- As a consequence, we proceed as follows
 - 3D-2D reduction (width averaging) :

$$u(t, x, y, z) = \langle u \rangle(t, x, z) + O(\mu_1)$$

• 2D-1D reduction (depth averaging) :

$$\langle u \rangle(t,x,z) = \overline{u}(t,x) + \mu_2 f(\overline{u}(t,x),\Omega(t,x)) + O(\mu_2^2)$$

where $\overline{u}(t,x)$ is the section-averaged velocity

• 3D-1D reduction (section averaging) :

$$u(t, x, y, z) = \overline{u}(t, x) + \mu_2 f(\overline{u}(t, x), \Omega(t, x)) + O(\mu_2^2)$$

Remark II : order of integration

- Remark II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- Outline of 3D-1D reduction :
 - Euler equations + boundary conditions :

$$\int_{\partial\Omega(t,x)} \left(\frac{\partial}{\partial t} \boldsymbol{m} + u \frac{\partial}{\partial x} \boldsymbol{m} - \boldsymbol{v} \right) \cdot \boldsymbol{n} \, ds = 0$$

- Remark II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- Outline of 3D-1D reduction :
 - Euler equations + boundary conditions :

$$\int_{\partial\Omega(t,x)} \left(\frac{\partial}{\partial t} \boldsymbol{m} + u \frac{\partial}{\partial x} \boldsymbol{m} - \boldsymbol{v} \right) \cdot \boldsymbol{n} \, ds = 0$$

- Introduce wet region indicator function Φ which satisfies

$$\frac{\partial}{\partial t} \Phi + \frac{\partial}{\partial x} (\Phi u) + \operatorname{div}_{y,z} \left[\Phi v \right] = 0 \text{ on } \Omega(t) = \bigcup_{0 \leq x \leq 1} \Omega(t,x)$$

where $\boldsymbol{v} = (v, w)$.

- Remark II naturally yields to V < W < U where $(U,V = \sqrt{\mu_1}U, W = \sqrt{\mu_2}U)$
- Outline of 3D-1D reduction :
 - Euler equations + boundary conditions :

$$\int_{\partial\Omega(t,x)} \left(\frac{\partial}{\partial t} \boldsymbol{m} + u \frac{\partial}{\partial x} \boldsymbol{m} - \boldsymbol{v} \right) \cdot \boldsymbol{n} \, ds = 0$$

- Introduce wet region indicator function $\boldsymbol{\Phi}$ which satisfies

$$\frac{\partial}{\partial t} \Phi + \frac{\partial}{\partial x} (\Phi u) + \operatorname{div}_{y,z} \left[\Phi \boldsymbol{v} \right] = 0 \text{ on } \Omega(t) = \bigcup_{0 \leq x \leq 1} \Omega(t,x)$$

where $\boldsymbol{v} = (v, w)$.

Section-average equations using the approximation

$$\begin{array}{lll} u(t,x,y,z) &=& \bar{u}(t,x) + \mu_2 B_0(\bar{u},x,z) + O(\mu_2^2) \\ \eta(t,x,y) &=& \bar{\eta}(t,x) + O(\mu_1) \\ P(t,x,y,z) &=& P_{\rm h}(t,x,z) + \mu_2 P_{\rm nh}(t,x,z) + O(\mu_2^2) \end{array}$$

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = 0\\ \frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left(\frac{Q^2}{A} + I_1(x, A)\right) + \mu_2 \frac{\partial}{\partial x}(\mathcal{D}(u)G(A, x)) = I_2(x, A)\\ + \mu_2 \mathcal{G}(u, S, \sigma) + O(\mu_2^2) \end{cases}$$

where
$$A = \int_{\Omega(t,x)} dy \, dz \qquad :$$
$$Q = A(t,x)u(t,x) \qquad :$$
$$I_1 = \int_{\Omega(t,x)} \frac{\eta(t,x) - z}{F_r^2} \sigma(x,z) \, dy \, dz \qquad :$$
$$I_2 = -\int_{y^-(t,x)}^{y^+(t,x)} \frac{h(t,x)}{F_r^2} \frac{\partial}{\partial x} d(x,y) \, dy \qquad :$$

- : wet area
- : discharge
- hydro. press.
- : hydro. press. source

Debyaoui, Ersoy. Asymptotic Analysis, 2020

.....

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = 0\\ \frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left(\frac{Q^2}{A} + I_1(x, A)\right) + \mu_2 \frac{\partial}{\partial x}(\mathcal{D}(u)G(A, x)) = I_2(x, A)\\ + \mu_2 \mathcal{G}(u, S, \sigma) + O(\mu_2^2) \end{cases}$$

where

$$\mathcal{D}(u) = \left(\frac{\partial}{\partial x}u\right)^2 - \frac{\partial}{\partial t}\frac{\partial}{\partial x}u - u\frac{\partial}{\partial x}\frac{\partial}{\partial x}u$$

$$G(A,x) = \int_{d^*(x)}^{\eta} \sigma(x,z) \int_{z}^{\eta} \frac{S(x,s)}{\sigma(x,s)} \ ds \ dz$$

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = 0\\ \frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left(\frac{Q^2}{A} + I_1(x, A)\right) + \mu_2\frac{\partial}{\partial x}(\mathcal{D}(u)G(A, x)) = I_2(x, A)\\ + \mu_2\mathcal{G}(u, S, \sigma) + O(\mu_2^2) \end{cases}$$

where

$$\begin{aligned} \mathcal{G}(u,S,\sigma) &= \int_{z}^{\eta} \frac{u^{2}}{\sigma(x,s)} \left(\frac{\frac{\partial}{\partial x} S(x,s) \frac{\partial}{\partial x} \sigma(x,s)}{\sigma(x,s)} - \frac{\partial}{\partial x} \frac{\partial}{\partial x} S(x,s) \right) \\ &+ \frac{\partial}{\partial x} \left(\frac{u^{2}}{2} \right) \frac{S(x,s) \frac{\partial}{\partial x} \sigma(x,s)}{\sigma(x,s)^{2}} \\ &- \left(\frac{\partial}{\partial t} u + u \frac{\partial}{\partial x} u \right) \frac{\frac{\partial}{\partial x} S(x,s)}{\sigma(x,s)} ds \end{aligned}$$

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = 0\\ \frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left(\frac{Q^2}{A} + I_1(x, A)\right) + \mu_2 \frac{\partial}{\partial x}(\mathcal{D}(u)G(A, x)) = I_2(x, A)\\ + \mu_2 \mathcal{G}(u, S, \sigma) + O(\mu_2^2) \end{cases}$$

Setting $\sigma = 1$, d = 1,

• A = h

•
$$S(x,z) \equiv S(z) \Rightarrow \mathcal{G} = 0$$
 and $I_2 = 0$
• $G = \frac{h^3}{3}$

•
$$I_1 = \frac{h^2}{2F_r^2}$$

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = 0\\ \frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left(\frac{Q^2}{A} + I_1(x, A)\right) + \mu_2\frac{\partial}{\partial x}(\mathcal{D}(u)G(A, x)) = I_2(x, A)\\ +\mu_2\mathcal{G}(u, S, \sigma) + O(\mu_2^2) \end{cases}$$

we recover the classical SGN equations on flat bottom

$$\begin{cases} \frac{\partial}{\partial t}h + \frac{\partial}{\partial x}(hu) = 0\\ \frac{\partial}{\partial t}(hu) + \frac{\partial}{\partial x}\left(hu^2 + \frac{h^2}{2F_r^2}\right) + \mu_2 \frac{\partial}{\partial x}\left(\frac{h^3}{3}\mathcal{D}(u)\right) = O(\mu_2^2)\end{cases}$$

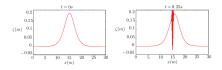
where

$$\mathcal{D}(u) = \left(\frac{\partial}{\partial x}u\right)^2 - \frac{\partial}{\partial t}\frac{\partial}{\partial x}u - u\frac{\partial}{\partial x}\frac{\partial}{\partial x}u$$

$$\begin{pmatrix}
\frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = 0 \\
\frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left(\frac{Q^2}{A} + I_1(x, A)\right) + \mu_2 \frac{\partial}{\partial x}(\mathcal{D}(u)G(A, x)) = I_2(x, A) \\
+ \mu_2 \mathcal{G}(u, S, \sigma) + O(\mu_2^2)$$

Remark

Dispersive equation are usually characterised by third order term $\downarrow\downarrow$ time step restriction and may create high frequencies instabilities



Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283-304, 2017.

• Define the linear \mathcal{T} and the quadratic \mathcal{Q} operators

$$\mathcal{T}[A, d, \sigma, z](u) = \frac{\partial}{\partial x}(u) \int_{z}^{\eta} \frac{S(x, s)}{\sigma(x, s)} \ ds + u \int_{z}^{\eta} \frac{1}{\sigma(x, s)} \frac{\partial}{\partial x} S(x, s) \ ds \ ,$$

$$\begin{split} \mathcal{G}[A,d,\sigma,z](u) &= \int_{z}^{\eta} 2\left(\frac{\partial}{\partial x}u\right)^{2}\frac{S(x,s)}{\sigma(x,s)} + \\ &\quad \frac{u^{2}}{\sigma(x,s)}\left(\frac{\frac{\partial}{\partial x}S(x,s)\frac{\partial}{\partial x}\sigma(x,s)}{\sigma(x,s)} - \frac{\partial}{\partial x}\frac{\partial}{\partial x}S(x,s)\right) \\ &\quad + \frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)\frac{S(x,s)\frac{\partial}{\partial x}\sigma(x,s)}{\sigma(x,s)^{2}} \ ds \end{split}$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators

$$\overline{\mathcal{T}}[A,d,\sigma](u,\psi) = \int_{d^*(x)}^{\eta} \psi \mathcal{T}[A,d,\sigma,z](u) \ dz$$

$$\overline{\mathcal{G}}[A, d, \sigma](u, \psi) = \int_{d^*(x)}^{\eta} \psi \mathcal{G}[A, d, \sigma, z](u) \ dz$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- Define the operators ${\cal L}$ and ${\cal Q}$

$$\mathbb{L}[A, d, \sigma](u) = A\mathcal{L}[A, d, \sigma]\left(\frac{u}{A}\right)$$

$$\mathcal{Q}[A,d,\sigma](u) = \frac{1}{A} \left[\frac{\partial}{\partial x} \left(\overline{\mathcal{G}}[A,d,\sigma](u,\sigma) \right) - \overline{\mathcal{G}}[A,d,\sigma] \left(u, \frac{\partial}{\partial x} \sigma \right) \right]$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator $\mathbb L$

$$\mathbb{L}[A, d, \sigma](u) = A\mathcal{L}[A, d, \sigma]\left(\frac{u}{A}\right)$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator $\mathbb L$
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}(Au) = 0\\ \left(I_d - \mu_2 \mathbb{L}[A, d, \sigma]\right) \left(\frac{\partial}{\partial t}(Au) + \frac{\partial}{\partial x}(Au^2)\right) + \frac{\partial}{\partial x}I_1(x, A)\\ + \mu_2 A \mathcal{Q}[A, d, \sigma](u) = I_2(x, A) + O(\mu_2^2) \end{cases}$$

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator \mathbbm{L}
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}(Au) = 0\\ \left(I_d - \mu_2 \mathbb{L}[A, d, \sigma]\right) \left(\frac{\partial}{\partial t}(Au) + \frac{\partial}{\partial x}(Au^2)\right) + \frac{\partial}{\partial x}I_1(x, A)\\ + \mu_2 A \mathcal{Q}[A, d, \sigma](u) = I_2(x, A) + O(\mu_2^2) \end{cases}$$

Remark

Inverting $I_d - \mu_2 \mathbb{L}[A, d, \sigma] \Rightarrow$ no third order term \Rightarrow more stable formulation

Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021

- Define the linear ${\mathcal T}$ and the quadratic ${\mathcal Q}$ operators
- Define the averaged linear $\overline{\mathcal{T}}$ and the quadratic $\overline{\mathcal{Q}}$ operators
- Define the operators ${\cal L}$ and ${\cal Q}$
- $\bullet\,$ and finally the operator \mathbbm{L}
- Reformulated model

$$\begin{cases} \frac{\partial}{\partial t}A + \frac{\partial}{\partial x}(Au) = 0\\ \left(I_d - \mu_2 \kappa \mathbb{L}[A, d, \sigma]\right) \left(\frac{\partial}{\partial t}(Au) + \frac{\partial}{\partial x}(Au^2) + \frac{\kappa - 1}{\kappa} \left(\frac{\partial}{\partial x}I_1 - I_2\right)\right)\\ + \frac{1}{\kappa} \left(\frac{\partial}{\partial x}I_1 - I_2\right) + \mu_2 A \mathcal{Q}[A, d, \sigma](u) = O(\mu_2^2) \end{cases}$$

Remark

A consistent one-parameter $\kappa > 0$ family (up to order $O(\mu_2^2)$) can be introduced to improve the frequency dispersion.

- Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011
- Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

• Let $\mu_2 \in (0,1)$. Define the space $H^1_{\mu_2}(\mathbb{R})$ the space $H^1(\mathbb{R})$ endowed with the norm

$$|| u ||_{\mu_2}^2 = || u ||_2^2 + \mu_2 || u_x ||_2^2$$

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

is well-defined, one-to-one and onto.

- Let $\mu_2 \in (0,1)$. Define the space $H^1_{\mu_2}(\mathbb{R})$
- Define the bilinear form a(u, v)

$$a(u,v) = (A\mathbb{T}u,v) = (Au,v) +$$
$$\mu_2\left(A\left(\frac{A}{\sqrt{3}u_x} - \frac{\sqrt{3}}{2}d_xu\right), \left(\frac{A}{\sqrt{3}v_x} - \frac{\sqrt{3}}{2}d_xv\right)\right) + (Ad_xu, d_xv)$$

THEOREM

Let α,β and $d\in C_b^\infty$ and $A\in W^{1,\infty}(\mathbb{R})$ such that $\inf_{x\in\mathbb{R}}A\geq A_0>0$. Then the operator

$$\mathbb{T}: H^2(\mathbb{R}) \to L^2(\mathbb{R})$$

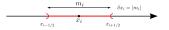
is well-defined, one-to-one and onto.

- Let $\mu_2 \in (0,1)$. Define the space $H^1_{\mu_2}(\mathbb{R})$
- Define the bilinear form a(u, v)
- Lax-Milgram theorem

$$\begin{split} \exists! \ u \in H^1_{\mu_2}(\mathbb{R}) \ ; \ a(u,v) = (f,v), \ \forall v \in H^1_{\mu_2}(\mathbb{R}), \ f \in L^2(\mathbb{R}) \\ & \downarrow \\ \exists! \ u \in H^1_{\mu_2}(\mathbb{R}) \ ; \ \mathbb{T}u = f \end{split}$$

• From definition of \mathbb{T} , we get $u_{xx} = g(A, u, d, \sigma) \in L^2(\mathbb{R}) \Rightarrow u \in H^2(\mathbb{R}).$

NUMERICAL SCHEME : HYPERBOLIC PART



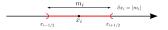
We consider a classical Finite Volume scheme, $\boldsymbol{U}=(A,Q)$

$$\begin{split} \boldsymbol{U}_{i}^{n+1} &= \boldsymbol{U}_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(\boldsymbol{F}_{i+1/2}(\boldsymbol{U}_{i}^{n},\boldsymbol{U}_{i+1}^{n}) - \boldsymbol{F}_{i-1/2}(\boldsymbol{U}_{i-1}^{n},\boldsymbol{U}_{i}^{n}) \right) \\ \text{where } \boldsymbol{F}_{i\pm 1/2} &\approx \frac{1}{\delta t^{n}} \int_{m_{i}} \boldsymbol{F}(\boldsymbol{U}(t,x_{i+1/2})) \ dx \text{ is a Finite volume solver,} \end{split}$$

with

$$\boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} Au \\ Au^2 + \frac{\kappa - 1}{\kappa} \left(I_1 - '' \int I_2'' \right) \end{pmatrix}$$

NUMERICAL SCHEME : HYPERBOLIC PART



We consider a classical Finite Volume scheme, $\boldsymbol{U} = (A, Q)$

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(\boldsymbol{F}_{i+1/2}(\boldsymbol{U}_{i}^{n}, \boldsymbol{U}_{i+1}^{n}) - \boldsymbol{F}_{i-1/2}(\boldsymbol{U}_{i-1}^{n}, \boldsymbol{U}_{i}^{n}) \right)$$

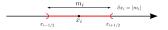
where $F_{i\pm 1/2} \approx \frac{1}{\delta t^n} \int_{m_i} F(U(t, x_{i+1/2})) \ dx$ is a Finite volume solver, for instance, with upwind technique to deal with source term

$$egin{aligned} egin{aligned} egi$$

with

Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011

NUMERICAL SCHEME : DISPERSIVE PART



We consider a classical Finite Volume scheme, $\boldsymbol{U}=(A,Q)$

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(\boldsymbol{F}_{i+1/2}(\boldsymbol{U}_{i}^{n}, \boldsymbol{U}_{i+1}^{n}) - \boldsymbol{F}_{i-1/2}(\boldsymbol{U}_{i-1}^{n}, \boldsymbol{U}_{i}^{n}) \right)$$
$$- \frac{\delta t^{n}}{\delta x} \left(\left[(I_{d} - \mu_{2} \mathbb{L})^{n} \right]^{-1} \boldsymbol{D}^{n} \right)_{i}$$

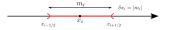
with

$$(\boldsymbol{D}^n)_i = \boldsymbol{D}_{i+1/2}(\boldsymbol{U}_{i-1}^n, \boldsymbol{U}_i^n, \boldsymbol{U}_{i+1}^n) - \boldsymbol{D}_{i-1/2}(\boldsymbol{U}_{i-2}^n, \boldsymbol{U}_{i-1}^n, \boldsymbol{U}_i^n)$$

where $oldsymbol{D}_{i\pm 1/2}$ and $\left[(I_d-\mu_2\mathbb{L})^n
ight]^{-1}$ are the centred approximation of

$$\mathcal{D} = \frac{1}{\kappa} \left(\frac{\partial}{\partial x} I_1 - I_2 \right) + \mu_2 A \mathcal{Q} \text{ and } \left[(I_d - \mu_2 \mathbb{L}) \right]^{-1}$$

NUMERICAL SCHEME :



We consider a classical Finite Volume scheme, U = (A, Q)

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\delta t^{n}}{\delta x} \left(\boldsymbol{F}_{i+1/2}(\boldsymbol{U}_{i}^{n}, \boldsymbol{U}_{i+1}^{n}) - \boldsymbol{F}_{i-1/2}(\boldsymbol{U}_{i-1}^{n}, \boldsymbol{U}_{i}^{n}) \right)$$
$$- \frac{\delta t^{n}}{\delta x} \left(\left[(I_{d} - \mu_{2} \mathbb{L})^{n} \right]^{-1} \boldsymbol{D}^{n} \right)_{i}$$

THEOREM

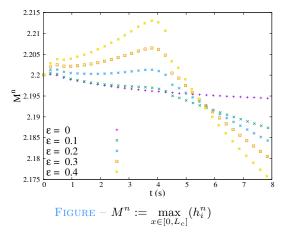
The numerical scheme is stable under the classical CFL condition,

$$\max_{\lambda \in \operatorname{Sp}(D_{\boldsymbol{U}}\boldsymbol{F}(\boldsymbol{U}))} |\lambda| \frac{\delta t^n}{\delta x} \leq 1 \; .$$

Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021

Propagation of a solitary wave ($\kappa = 1$)

• Influence of the Section Variation (N = 5000 cells) : $\sigma(x; \varepsilon) = \beta(x; \varepsilon) - \alpha(x; \varepsilon)$ with $\beta = \frac{1}{2} - \frac{\varepsilon}{2} \exp(-\varepsilon^2 (x - L/2)^2))$ and $\alpha = -\beta$



Propagation of a solitary wave $(\kappa = 1)$

- Influence of the Section Variation (N = 5000 cells) : $\sigma(x;\varepsilon) = \beta(x;\varepsilon) - \alpha(x;\varepsilon)$ with $\beta = \frac{1}{2} - \frac{\varepsilon}{2} \exp\left(-\varepsilon^2 \left(x - L/2\right)^2\right)$ and $\alpha = -\beta$
- Numerical order for $\varepsilon = 0$

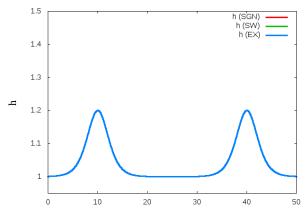
	$\parallel \eta_{num} - \eta_{exact} \parallel_2$	$\parallel \eta_{num} - \eta_{exact} \parallel_{\infty}$
Order	0.53	0.58

• Numerical order for $\varepsilon = 0.4$ (reference solution obtained with N = 10000 cells)

	$\parallel \eta_{\sf num} - \eta_{\sf ref} \parallel_2$	$\ \eta_{num} - \eta_{ref} \ _{\infty}$
Order	0.64	0.56

Two solitary waves test case

• Comparison with the NLSW and the exact solution

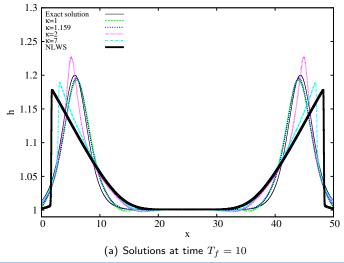


T = 0.000

FIGURE – $\sigma = 1$, d = 1, N = 1000, CFL = 0.95, $T_f = 10$ and $\kappa = 1.159$

TWO SOLITARY WAVES TEST CASE

- Comparison with the NLSW and the exact solution
- Influence of κ : toward a dissipative shallow water model



D Hydrostatic models, applications and limits

- Examples of hydrostatic model
- Application to tsunamis propagation

2 Non-hydrostatic models and applications

- Historical background and motivations
- Toward the first dispersive section-averaged model

③ Concluding remarks and perspectives

THANK YOU

FOR YOUR

ATTENTION VLLENLION