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Saint-Venant equations

& Applications

• Introducing characteristic scales :

L, l and H

• length L
• width l
• height H

• Introducing aspect ratio numbers :

εz =
H

L
and εy =

l

L

• One can reduce the initial model (Navier-Stokes or Euler equations)

• Opposite to DNS, model reduction → to decrease the computational cost

• Some applications :
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• Introducing characteristic scales : L, l and H

• Introducing aspect ratio numbers : εz =
H

L
and εy =

l

L
• One can reduce the initial model (Navier-Stokes or Euler equations)

• 3D-2D depth averaged model reduction if

εz � 1 and εy ≈ 1

• 3D-1D section averaged model reduction if

εz ≈ εy � 1

• Opposite to DNS, model reduction → to decrease the computational cost

• Some applications :
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Applications of Saint-Venant equations

SV equations

• 3D-1D model reduction for closed water pipes/channels/rivers


∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(x,A)

)
= gI2(x,A)

− gAK(x,Q/A)

with

A(t, x), Q(t, x), g, h = η − d : wet area, discharge, gravity

I1(x,A) =

∫ η

d

σ(x, z)(η − z)dz : hydrostatic pressure

I2(x,A) =

∫ η

d

∂

∂x
σ(x, z)(η − z)dz : hydrostatic pressure source

• 2D-1D reduction for urban/overland flows including precipitation and recharge

C. Bourdarias, M. Ersoy, S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes
and a well-balanced finite volume scheme.
International Journal on Finite Volumes, 2009.

C. Bourdarias, M. Ersoy, S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed
pipes : a global manner to upwind all the source terms.
Journal of Scientific Computing, 2011.

C. Bourdarias, M. Ersoy, S. Gerbi.

Unsteady mixed flows in non uniform closed water pipes : a Full
Kinetic Appraoch.
Numerische Mathematik, 2014.

M. Ersoy.

Dimension reduction for incompressible pipe and open channel flow
including friction.
Applications of Mathematics, 2015.
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Applications of Saint-Venant equations

SV equations

• 3D-1D model reduction for closed water pipes/channels/rivers

• 2D-1D reduction for urban/overland flows including precipitation and
recharge

∂th+ ∂xq = S := R− I,

∂tq + ∂x

(
q2

A
+ g

h2

2

)
= −gh∂xZ + S

q

h
−
(
k+(R) + k−(I) + k0

( q
h

)) q
h

with
h(t, x), q(t, x) : water height, discharge
k± : friction generated from precipitation and infiltration

where I can be driven by the solution of the Richards’ equation.

M. Ersoy, O. Lakkis, P. Townsend.

A Saint-Venant shallow water model for overland flows with
precipitation and recharge.
Mathematical and Computational Applications, Natural Sciences, 2020.

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

Adaptive discontinuous galerkin method for richards equation.
Topical Problems of Fluid Mechanics, 2020

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

Wave-driven Ground- water Flows in Sandy Beaches : A Richards
Equation-based Model.
Journal of Coastal Research, 2020

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

An adaptive strategy for discontinuous Galerkin simulations of
Richards’ equation : application to multi-materials dam wetting.
Advances in Water Resources, 2021
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Applications of Saint-Venant equations

SV equations

• 3D-1D model reduction for closed water pipes/channels/rivers

• 2D-1D reduction for urban/overland flows including precipitation and
recharge

• 3D-2D reduction for tsunamis propagation
∂th+ div(hu) = 0,

∂t(hu) + div

(
hu⊗ u+ g

h2

2
I

)
= −gh∇Z,

with u(t, x) ∈ R2 : depth averaged velocity

K. Pons, M. Ersoy.

Adaptive mesh refinement method. Part 1 : Automatic thresholding
based on a distribution function.
SEMA SIMAI Springer Series, Partial Differential Equations :
Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.
Simeoni Editors, 2020

K. Pons, M. Ersoy , F. Golay and R. Marcer.

Adaptive mesh refinement method. Part 2 : Application to tsunamis
propagation.
SEMA SIMAI Springer Series, Partial Differential Equations :
Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.
Simeoni Editors, 2020
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

• Tsunami runup onto a complex three dimensional Monai Valley :
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

• Dynamics of tsunamis are ”essentially” governed by the shallow water
equations.

• Phase speed of propagation vφ ≈
√
gH (H ocean depth)

• Use λ instead of L in the derivation → shallow water models : justify the use
of Saint-Venant equations for some tsunamis.

• Tsunami runup onto a complex three dimensional Monai Valley :
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

• Tsunami runup onto a complex three dimensional Monai Valley :

Adap. sim. Unif. sim.

Tf 30 s 30 s
Nb. blocks 240 240
Nb. cells 8 000-40

000
62 000

Re-mesh. δt 0.25 s X
CFL 0.5 0.5

Table – Numerical parameters

Numerical water height
(coloration is issue

from the kinetic energy)
at t = 11.25 s

[BEG12] K. Pons, M. Ersoy.
Adaptive mesh refinement method. Part 1 : Automatic thresholding
based on a distribution function.
SEMA SIMAI Springer Series, Partial Differential Equations :
Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.
Simeoni Editors, 2020

[BEG13] K. Pons, M. Ersoy , F. Golay and R. Marcer.
Adaptive mesh refinement method. Part 2 : Application to tsunamis
propagation.
SEMA SIMAI Springer Series, Partial Differential Equations :
Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.
Simeoni Editors, 2020
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

• Tsunami runup onto a complex three dimensional Monai Valley :
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Figure – Free surface results at different positions : experimental data versus
numerical simulation with and without mesh adaptivity
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Coming back to the modelling problem : ”SVE for certain tsunamis”

• Are the SVE are pertinent for all Tsunamis ?

No !

• Dispersive wave model are also required

• Of course, Navier-Stokes equation can deal for both but too costly !
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• Are the SVE are pertinent for all Tsunamis ? No !

• Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

• Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models !

• dispersions are expected

”Strong” bore

• Dispersive wave model are also required

• Of course, Navier-Stokes equation can deal for both but too costly !

Mehmet Ersoy ACSIOM 2021, 16 November 5 / 21



Coming back to the modelling problem : ”SVE for certain tsunamis”

• Are the SVE are pertinent for all Tsunamis ? No !

• Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai Valley flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

• Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models !
→ Glimsdal, Pedersen, Harbitz, Lovholt, Dutykh, Bonneton, etc.

• dispersions are expected

Parisot and Ersoy’s experimental wave generator
(Malaga, NumHyp 2019)

”Strong” bore

• Dispersive wave model are also required

• Of course, Navier-Stokes equation can deal for both but too costly !
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Dispersive waves

and Stokes linear theory

Let ω =
2π

T
be the angular frequency (pulsation) and k =

2π

λ
wavenumber.

• A wave φ(kx− ωt) is characterised by two different characteristic speeds

• phase velocity Cp =
ω

k
which corresponds to the displacement of the wave

fronts

• group velocity Cg =
∂ω

∂k
which corresponds to the displacement of the wave’s

envelope
• dispersion relation is given by ω = Cpk

• If Cp is constant then the wave is not dispersive.

Dispersive wave Non dispersive wave

• According to linear Stokes’ theory, noting H the depth, the dispersion
relation is

ω2 = gk tanh(kH)

Formally,
H

λ
� 1,

• at order 1,
(ω
k

)2

≈ gH  SVE

• at order > 1,
(ω
k

)2

≈ gH − gk2H3 + . . .  Dispersive models
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

”I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped - not so
the mass of water in the channel which it had put in motion ; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still

rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in
the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which I have

called the Wave of Translation”. John Scott Russell
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

• Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation :
a perfect equilibrium between non-linearities and the dispersive terms

ut + 6uux + uxxx = 0
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

• Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.

• On the basis of this work, several models have been proposed :

• 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.

• 1984 : a first method to improve the frequency dispersion Boussinesq type’s
model was proposed by Witting.

• 1953 : A first 1D fully non-linear (ε = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre motivated by the fact that wave dynamics
is strongly nonlinear close to shoaling zone.

• 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom

• Nowadays : Marche, Lannes, Bonneton, Durand, Cienfuegos, Dutykh,
Gavrilyuk, Richard, Sainte-Marie, . . . proposed several improvements
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• Everything starts with Russell’s ”Wave of translation”

• Proof of the stability of the solitary wave given by Boussinesq
(1872)/Korteweg and Gustav de Vries (1895) through a 1D scalar equation.

• On the basis of this work, several models have been proposed :

• 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine.

• 1984 : a first method to improve the frequency dispersion Boussinesq type’s
model was proposed by Witting.

• 1953 : A first 1D fully non-linear (ε = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre motivated by the fact that wave dynamics
is strongly nonlinear close to shoaling zone.

• 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom (1D below)

∂

∂t
h+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂

∂x

(
hu2 +

h2

2F 2
r

)
+ µ

∂

∂x

(
h3

3
D(u)

)
= 0

with

D(u) =

(
∂

∂x
u

)2

− ∂

∂t

∂

∂x
u− u ∂

∂x

∂

∂x
u

• Nowadays : Marche, Lannes, Bonneton, Durand, Cienfuegos, Dutykh,
Gavrilyuk, Richard, Sainte-Marie, . . . proposed several improvements
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Coming back to Tsunami propagation : toward a new non-hydrostatic
model

• SGN based models are certainly the most appropriate ones for dispersive
waves. a

• But, dispersive and non dispersive waves can coexist during the Tsunami’s
life . . .

• Dissipative models are required : ”switching from one model to an other”

a. Lannes, Marche, Durand, Bonneton, Cienfuegos, Dutykh, Gavrilyuk,. . .
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Coming back to Tsunami propagation : toward a new non-hydrostatic
model

• SGN based models are certainly the most appropriate ones for dispersive
waves.

• But, dispersive and non dispersive waves can coexist during the Tsunami’s
life . . .

• Deep water zone : Depth-averaged models hydrostatic and non-hydrostatic
models are valid but dispersive codes boosts the CPU times and memory
requirements

• Dissipative models are required : ”switching from one model to an other”
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Coming back to Tsunami propagation : toward a new non-hydrostatic
model

• SGN based models are certainly the most appropriate ones for dispersive
waves.

• But, dispersive and non dispersive waves can coexist during the Tsunami’s
life . . .

• Shoaling zone : hydrostatic models are (often) not valid in this zone, leading
to an incorrect growth of the wave, yielding to an incorrect prediction of the
location of wave breaking

• Dissipative models are required : ”switching from one model to an other”
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Coming back to Tsunami propagation : toward a new non-hydrostatic
model

• SGN based models are certainly the most appropriate ones for dispersive
waves.

• But, dispersive and non dispersive waves can coexist during the Tsunami’s
life . . .

• Breaking zone : hydrostatic models (SVE) can accurately reproduce broken
wave dissipation and swash oscillations without any ad-hoc parametrisation

• Dissipative models are required : ”switching from one model to an other”
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Coming back to Tsunami propagation : toward a new non-hydrostatic
model

• SGN based models are certainly the most appropriate ones for dispersive
waves.

• But, dispersive and non dispersive waves can coexist during the Tsunami’s
life . . .

• Dissipative models are required a : ”switching from one model to an other”

a. Lannes, Marche, Durand, Bonneton, Cienfuegos, Dutykh, Gavrilyuk, Pons, . . .
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Other impacts : channel/river as tsunami highways

• Waves may penetrate through rivers/channel much faster inland than the
coastal inundation reaches over the ground, and may lead flooding in
low-lying areas located several km away from the coastline !

• How to model ?

• same problems as before between dispersive and non dispersive waves
• 2D models for rivers/channels can be used but costly in the large scale

simulation
• Hydrostatic 1D section-averaged models are well-mastered
• Non-hydrostatic 1D section-averaged have not yet been derived
→ toward the first full non-linear and weakly dispersive section-averaged model
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Outline
Outline

1 Hydrostatic models, applications and limits
Examples of hydrostatic model
Application to tsunamis propagation

2 Non-hydrostatic models and applications
Historical background and motivations
Toward the first dispersive section-averaged model

3 Concluding remarks and perspectives
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Outline of the derivation

Incompressible Euler equations

div(ρ0u) = 0,
∂

∂t
(ρ0u) + div(ρ0u⊗ u) +∇p− ρ0F = 0

with
u = (u, v, w) : velocity field
ρ0 : density
F = (0, 0,−g) : external force
p : pressure

completed with the irrotational relations

∂u

∂y
=
∂v

∂x
,
∂v

∂z
=

∂w

∂y
,
∂u

∂z
=
∂w

∂x
.
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Outline of the derivation

Incompressible and irrotational Euler
equations

div(ρ0u) = 0,
∂

∂t
(ρ0u) + div(ρ0u⊗ u) +∇p− ρ0F = 0

• free surface kinematic boundary condition,

u·nfs =
∂

∂t
m·nfs and p(t,m) = p0, ∀m(t, x, y) = (x, y, η(t, x, y)) ∈ Γfs(t, x)

• no-penetration condition on the wet boundary

u · nwb = 0, ∀m(x, y) = (x, y, d(x, y)) ∈ Γwb(x)
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Outline of the derivation

Let us define the dispersive parameters

• µ1 =
h2

1

L2

• µ2 =
H2

2

L2
,

such that
h1 < H1 = H2 � L, i.e. µ1 < µ2

2

where
H1 : characteristic scale of channel width
h1 : characteristic wave-length in the transversal direction
H2 : characteristic water depth

Fr =
U√
gH2

: Froude’s number

T =
L

U
: characteristic time

P = U2 : characteristic pressure
X : characteristic length of x

Mehmet Ersoy ACSIOM 2021, 16 November 11 / 21



Outline of the derivation

Then, define the dimensionless variables

x̃ =
x

L
, P̃ =

P

P
, ϕ̃ =

ϕ

h1
,

ỹ =
y

h1
, ũ =

u

U
, d̃ =

d

H2
,

z̃ =
z

H2
, ṽ =

v

V
=

v
√
µ1U

, η̃ =
η

H2
.

t̃ =
t

T
, w̃ =

w

W
=

w
√
µ2U

.
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Outline of the derivation

We get

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂P

∂x
= 0

µ1

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+
∂P

∂y
= 0

µ2

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+
∂P

∂z
= − 1

Fr
2

and
∂u

∂y
= µ1

∂v

∂x
, µ1

∂v

∂z
= µ2

∂w

∂y
,
∂u

∂z
= µ2

∂w

∂x
.
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Remark I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in , we proceed as follows

Therefore, we assume µ1 < µ2.
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Remark I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in 2D-1D reduction, we proceed as follows

• ux + wz = 0

+BC⇒ w(t, x, z) = −
(∫ z

d

u(t, x, z) dz

)
x

• uz = µwx ⇒ u(t, x, z) = u|z=d(t, x) + µ

∫ z

d

wx(t, x, z) dz

⇒ w(t, x, z) = −
(∫ z

d

u|z=d(t, x) dz

)
x

+O(µ)

• ⇒ u(t, x, z) = f1(ū(t, x)) + µf2(z, ū(t, x), d(x)) +O(µ2) where
ū(t, x) = f3(u|z=d) . . .

Therefore, we assume µ1 < µ2.
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Remark I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

• ux + vy + wz = 0 ⇒
∫

Ω

vy + wz dydz . . .

Therefore, we assume µ1 < µ2.
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Remark I : why µ1 6= µ2 ?

µ1 = µ2 ⇒ no analytical expression of the asymptotic terms.

Indeed, in 3D-1D reduction, we proceed as follows

• ux + vy + wz = 0 ⇒
∫

Ω

vy + wz dydz . . .

Therefore, we assume µ1 < µ2.
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Remark II : order of integration

• Remark II naturally yields to V < W < U where
(U, V =

√
µ1U,W =

√
µ2U)
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Remark II : order of integration

• Remark II naturally yields to V < W < U where
(U, V =

√
µ1U,W =

√
µ2U)

• As a consequence, we proceed as follows

• 3D-2D reduction (width averaging) :

u(t, x, y, z) = 〈u〉(t, x, z) +O(µ1)

• 2D-1D reduction (depth averaging) :

〈u〉(t, x, z) = u(t, x) + µ2f(u(t, x),Ω(t, x)) +O(µ2
2)

where u(t, x) is the section-averaged velocity
• 3D-1D reduction (section averaging) :

u(t, x, y, z) = u(t, x) + µ2f(u(t, x),Ω(t, x)) +O(µ2
2)
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Remark II : order of integration

• Remark II naturally yields to V < W < U where
(U, V =

√
µ1U,W =

√
µ2U)

• Outline of 3D-1D reduction :

• Euler equations + boundary conditions :∫
∂Ω(t,x)

(
∂

∂t
m + u

∂

∂x
m− v

)
· n ds = 0

• Introduce wet region indicator function Φ which satisfies

∂

∂t
Φ +

∂

∂x
(Φu) + divy,z [Φv] = 0 on Ω(t) =

⋃
0≤x≤1

Ω(t, x)

where v = (v, w).
• Section-average equations using the approximation

u(t, x, y, z) = ū(t, x) + µ2B0(ū, x, z) +O(µ2
2)

η(t, x, y) = η̄(t, x) +O(µ1)

P (t, x, y, z) = Ph(t, x, z) + µ2Pnh(t, x, z) +O(µ2
2)
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2)

η(t, x, y) = η̄(t, x) +O(µ1)

P (t, x, y, z) = Ph(t, x, z) + µ2Pnh(t, x, z) +O(µ2
2)

Mehmet Ersoy ACSIOM 2021, 16 November 13 / 21



Remark II : order of integration

• Remark II naturally yields to V < W < U where
(U, V =

√
µ1U,W =

√
µ2U)

• Outline of 3D-1D reduction :

• Euler equations + boundary conditions :∫
∂Ω(t,x)

(
∂

∂t
m + u

∂

∂x
m− v

)
· n ds = 0

• Introduce wet region indicator function Φ which satisfies

∂

∂t
Φ +

∂

∂x
(Φu) + divy,z [Φv] = 0 on Ω(t) =

⋃
0≤x≤1

Ω(t, x)

where v = (v, w).
• Section-average equations using the approximation
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

where

A =

∫
Ω(t,x)

dy dz : wet area

Q = A(t, x)u(t, x) : discharge

I1 =

∫
Ω(t,x)

η(t, x)− z
F 2
r

σ(x, z) dy dz : hydro. press.

I2 = −
∫ y+(t,x)

y−(t,x)

h(t, x)

Fr
2

∂

∂x
d(x, y) dy : hydro. press. source

I Debyaoui, Ersoy. Asymptotic Analysis, 2020
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

where

D(u) =

(
∂

∂x
u

)2

− ∂

∂t

∂

∂x
u− u ∂

∂x

∂

∂x
u

and

G(A, x) =

∫ η

d∗(x)

σ(x, z)

∫ η

z

S(x, s)

σ(x, s)
ds dz
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The new model : generalization of the SGN and Free surface flows
equations
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A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

where

G(u, S, σ) =

∫ η

z

u2

σ(x, s)

 ∂

∂x
S(x, s)

∂

∂x
σ(x, s)

σ(x, s)
− ∂

∂x

∂

∂x
S(x, s)


+
∂

∂x

(
u2

2

)S(x, s)
∂

∂x
σ(x, s)

σ(x, s)2

−
(
∂

∂t
u+ u

∂

∂x
u

) ∂

∂x
S(x, s)

σ(x, s)
ds

.
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

Setting σ = 1, d = 1,

• A = h

• S(x, z) ≡ S(z) ⇒ G = 0 and I2 = 0

• G =
h3

3

• I1 =
h2

2F 2
r
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

we recover the classical SGN equations on flat bottom
∂

∂t
h+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂

∂x

(
hu2 +

h2

2F 2
r

)
+ µ2

∂

∂x

(
h3

3
D(u)

)
= O(µ2

2)

where

D(u) =

(
∂

∂x
u

)2

− ∂

∂t

∂

∂x
u− u ∂

∂x

∂

∂x
u
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

Remark

Dispersive equation are usually characterised by third order term
⇓

time step restriction and may create high frequencies instabilities

Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283–304, 2017.
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A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

T [A, d, σ, z](u) =
∂

∂x
(u)

∫ η

z

S(x, s)

σ(x, s)
ds+ u

∫ η

z

1

σ(x, s)

∂

∂x
S(x, s) ds ,

and

G[A, d, σ, z](u) =

∫ η

z

2

(
∂

∂x
u

)2
S(x, s)

σ(x, s)
+

u2

σ(x, s)

 ∂

∂x
S(x, s)

∂

∂x
σ(x, s)

σ(x, s)
− ∂

∂x

∂

∂x
S(x, s)


+
∂

∂x

(
u2

2

)S(x, s)
∂

∂x
σ(x, s)

σ(x, s)2
ds

• Define the averaged linear T and the quadratic Q operators

• Define the operators L and Q
• and finally the operator L
• Reformulated model

∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2L[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2))

+µ2AQ[A, d, σ](u) = O(µ2
2)

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

• Define the averaged linear T and the quadratic Q operators

T [A, d, σ](u, ψ) =

∫ η

d∗(x)

ψT [A, d, σ, z](u) dz

and

G[A, d, σ](u, ψ) =

∫ η

d∗(x)

ψG[A, d, σ, z](u) dz

• Define the operators L and Q
• and finally the operator L
• Reformulated model

∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2L[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2))

+µ2AQ[A, d, σ](u) = O(µ2
2)

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

• Define the averaged linear T and the quadratic Q operators

• Define the operators L and Q

L[A, d, σ](u) = AL[A, d, σ]
( u
A

)
and

Q[A, d, σ](u) =
1

A

[
∂

∂x

(
G[A, d, σ] (u, σ)

)
− G[A, d, σ]

(
u,

∂

∂x
σ

)]

• and finally the operator L
• Reformulated model

∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2L[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2))

+µ2AQ[A, d, σ](u) = O(µ2
2)

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

• Define the averaged linear T and the quadratic Q operators

• Define the operators L and Q
• and finally the operator L

L[A, d, σ](u) = AL[A, d, σ]
( u
A

)

• Reformulated model
∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2L[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2))

+µ2AQ[A, d, σ](u) = O(µ2
2)

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

• Define the averaged linear T and the quadratic Q operators

• Define the operators L and Q
• and finally the operator L
• Reformulated model

∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2L[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2))+

∂

∂x
I1(x,A)

+µ2AQ[A, d, σ](u) = I2(x,A) +O(µ2
2)

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021

Mehmet Ersoy ACSIOM 2021, 16 November 15 / 21



A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

• Define the averaged linear T and the quadratic Q operators

• Define the operators L and Q
• and finally the operator L
• Reformulated model

∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2L[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2))+

∂

∂x
I1(x,A)

+µ2AQ[A, d, σ](u) = I2(x,A) +O(µ2
2)

Remark

Inverting Id − µ2L[A, d, σ] ⇒ no third order term ⇒ more stable formulation

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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A more stable formulation→ useful for numerical purpose

• Define the linear T and the quadratic Q operators

• Define the averaged linear T and the quadratic Q operators

• Define the operators L and Q
• and finally the operator L
• Reformulated model

∂

∂t
A+

∂

∂x
(Au) = 0(

Id − µ2κL[A, d, σ]
)( ∂

∂t
(Au) +

∂

∂x

(
Au2)+

κ− 1

κ

(
∂

∂x
I1 − I2

))
+

1

κ

(
∂

∂x
I1 − I2

)
+ µ2AQ[A, d, σ](u) = O(µ2

2)

Remark

A consistent one-parameter κ > 0 family (up to order O(µ2
2)) can be introduced

to improve the frequency dispersion.

I Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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Invertibility of the operator T = A(Id − µ2L[A, d, σ])

Theorem

Let α,β and d ∈ C∞b and A ∈W 1,∞(R) such that inf
x∈R

A ≥ A0 > 0. Then the

operator
T : H2(R)→ L2(R)

is well-defined, one-to-one and onto.

• Let µ2 ∈ (0, 1). Define the space H1
µ2

(R)

• Define the bilinear form a(u, v)

• Lax-Milgram theorem

∃! u ∈ H1
µ2

(R) ; a(u, v) = (f, v), ∀v ∈ H1
µ2

(R), f ∈ L2(R)

⇓

∃! u ∈ H1
µ2

(R) ; Tu = f

• From definition of T, we get uxx = g(A, u, d, σ) ∈ L2(R) ⇒ u ∈ H2(R).

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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x∈R
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operator
T : H2(R)→ L2(R)

is well-defined, one-to-one and onto.

• Let µ2 ∈ (0, 1). Define the space H1
µ2

(R) the space H1(R) endowed with the
norm

‖ u ‖2µ2
=‖ u ‖22 +µ2 ‖ ux ‖22
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Let α,β and d ∈ C∞b and A ∈W 1,∞(R) such that inf
x∈R

A ≥ A0 > 0. Then the

operator
T : H2(R)→ L2(R)

is well-defined, one-to-one and onto.

• Let µ2 ∈ (0, 1). Define the space H1
µ2

(R)

• Define the bilinear form a(u, v)

a(u, v) = (ATu, v) = (Au, v)+

µ2

(
A

(
A√
3ux
−
√

3

2
dxu

)
,

(
A√
3vx
−
√

3

2
dxv

))
+ (Adxu, dxv)

• Lax-Milgram theorem
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⇓

∃! u ∈ H1
µ2

(R) ; Tu = f
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operator
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Numerical scheme : hyperbolic part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

where Fi±1/2 ≈
1

δtn

∫
mi

F (U(t, xi+1/2)) dx is a Finite volume solver,

for

instance, with upwind technique to deal with source term

Fi±1/2 =
F (U) + F (V )

2
− sni

2
(V −U)

with
F (U) =

 Au

Au2 +
κ− 1

κ

(
I1 −′′

∫
I2
′′
)
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Numerical scheme : hyperbolic part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

where Fi±1/2 ≈
1

δtn

∫
mi

F (U(t, xi+1/2)) dx is a Finite volume solver, for

instance, with upwind technique to deal with source term

Fi±1/2 =
F (U) + F (V )

2
− sni

2
(V −U)

with
F (U) =

 Au

Au2 +
κ− 1

κ

(
I1 −′′

∫
I2
′′
)

I Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011
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Numerical scheme : dispersive part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

−δt
n

δx
([(Id − µ2L)n]

−1
Dn)i

with

(Dn)i = Di+1/2(Un
i−1,U

n
i ,U

n
i+1)−Di−1/2(Un

i−2,U
n
i−1,U

n
i )

where Di±1/2 and [(Id − µ2L)n]
−1 are the centred approximation of

D =
1

κ

(
∂

∂x
I1 − I2

)
+ µ2AQ and [(Id − µ2L)]

−1
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Numerical scheme :

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

−δt
n

δx
([(Id − µ2L)n]

−1
Dn)i

Theorem

The numerical scheme is stable under the classical CFL condition,

max
λ∈Sp(DUF (U))

|λ|δt
n

δx
6 1 .

I Debyaoui, Ersoy. Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, 2021
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Propagation of a solitary wave (κ = 1)

• Influence of the Section Variation (N = 5000 cells) :
σ(x; ε) = β(x; ε)− α(x; ε) with

β =
1

2
− ε

2
exp

(
−ε2

(
x− L/2)2

))
and α = −β

 2.175

 2.18

 2.185

 2.19

 2.195

 2.2
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 2.21

 2.215

 0  1  2  3  4  5  6  7  8

M
n

t (s)

ε =  0
ε =  0.1
ε =  0.2
ε =  0.3
ε =  0.4

Figure – Mn := max
x∈[0,Lc]

(hni )
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Propagation of a solitary wave (κ = 1)

• Influence of the Section Variation (N = 5000 cells) :
σ(x; ε) = β(x; ε)− α(x; ε) with

β =
1

2
− ε

2
exp

(
−ε2

(
x− L/2)2

))
and α = −β

• Numerical order for ε = 0

‖ ηnum − ηexact ‖2 ‖ ηnum − ηexact ‖∞
Order 0.53 0.58

• Numerical order for ε = 0.4 (reference solution obtained with N = 10000
cells)

‖ ηnum − ηref ‖2 ‖ ηnum − ηref ‖∞
Order 0.64 0.56
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Two solitary waves test case

• Comparison with the NLSW and the exact solution

Figure – σ = 1, d = 1, N = 1000, CFL = 0.95, Tf = 10 and κ = 1.159

• Influence of κ : toward a dissipative shallow water model
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Two solitary waves test case

• Comparison with the NLSW and the exact solution

• Influence of κ : toward a dissipative shallow water model

 1
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(a) Solutions at time Tf = 10
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Toward the first dispersive section-averaged model

3 Concluding remarks and perspectives
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