Unsteady mixed flows in closed water pipes. A well-balanced finite volume scheme

Christian Bourdarias, Mehmet Ersoy and Stéphane Gerbi

LAMA, Université de Savoie, Chambéry, France

2nd Workshop Mathematics and Oceanography Montpellier, 1-2-3 february 2010.

Outline of the talk

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation
 - Discretisation of the space domain

Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

Numerical experiments

Outline

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

- Discretisation of the space domain
- Explicit first order VFRoe scheme
 - The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - Approximation of the convection matrix.

3 Numerical experiments

• Free surface (FS) area : only a part of the section is filled. Incompressible?...

IVERSITE SAVOID

- Free surface (FS) area : only a part of the section is filled. Incompressible?...
- Pressurized (P) area : the section is completely filled. Compressible? Incompressible?...

Some closed pipes

a forced pipe

a sewer in Paris

The Orange-Fish Tunnel Storm Water Overflow, Minnesota http://www.sewerhistory.org/grfx/misc/disaster.htm

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

$$\frac{\partial P}{\partial t} + \frac{c^2}{gA} \frac{\partial Q}{\partial x} = 0$$
$$\frac{\partial Q}{\partial t} + gA \frac{\partial P}{\partial x} = -\alpha Q |Q|$$

A lot of terms have been neglected: no conservative form **Goal :**

Montpellier 2010

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

$$\frac{\partial P}{\partial t} + \frac{c^2}{g A} \frac{\partial Q}{\partial x} = 0$$
$$\frac{\partial Q}{\partial t} + g A \frac{\partial P}{\partial x} = -\alpha Q |Q|$$

A lot of terms have been neglected: no conservative form Goal:

1-to write a model for pressurized flows "close to" Saint-Venant equations

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

$$\frac{\partial P}{\partial t} + \frac{c^2}{g A} \frac{\partial Q}{\partial x} = 0$$
$$\frac{\partial Q}{\partial t} + g A \frac{\partial P}{\partial x} = -\alpha Q |Q|$$

A lot of terms have been neglected: no conservative form Goal :

2-to get a single model for pressurized and free surface flows

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

$$\frac{\partial P}{\partial t} + \frac{c^2}{g A} \frac{\partial Q}{\partial x} = 0$$
$$\frac{\partial Q}{\partial t} + g A \frac{\partial P}{\partial x} = -\alpha Q |Q|$$

A lot of terms have been neglected: no conservative form **Goal:**

3-to take into account depression phenomena

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

$$\frac{\partial P}{\partial t} + \frac{c^2}{gA} \frac{\partial Q}{\partial x} = 0$$
$$\frac{\partial Q}{\partial t} + gA \frac{\partial P}{\partial x} = -\alpha Q |Q|$$

A lot of terms have been neglected: no conservative form Goal : as follows : I click

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface mode
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

- Discretisation of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

- Preissmann (1961), Cunge and Wenger (1965), Song and Cardle (1983)
- Garcia-Navarro *et al.* (1994), Zech *et al.* (1997): finite difference and characteristics method or Roe's method
- Baines et al. (1992), Tseng (1999): Roe scheme on finite volume

- Preissmann (1961), Cunge and Wenger (1965), Song and Cardle (1983)
- Garcia-Navarro *et al.* (1994), Zech *et al.* (1997): finite difference and characteristics method or Roe's method
- Baines et al. (1992), Tseng (1999): Roe scheme on finite volume

Good behavior

We used only Saint-Venant equations, very easy to solve ...

- Preissmann (1961), Cunge and Wenger (1965), Song and Cardle (1983)
- Garcia-Navarro *et al.* (1994), Zech *et al.* (1997): finite difference and characteristics method or Roe's method
- Baines et al. (1992), Tseng (1999): Roe scheme on finite volume

Bad behavior

- sound speed $\simeq \sqrt{S/T_{slot}}$
- water-hammer are not well computed
- depression in pressurized flows : free surface transition

- Hamam et McCorquodale (82): "rigid water column approach"; a water column follows a dilatation-compression process.
- Trieu Dong (1991) Finite difference method : on each cell conservativity of mass and momentum are written depending on the state.
- Musandji Fuamba (2002) : Saint-Venant (free surface) and compressible fluid (pressurized flow); finite difference and characteristics method.
- Vasconcelos, Wright and Roe (2006). Two Pressure Approach and Roe scheme; the overpressure or depression computed via the dilatation of the pipe.

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

- Discretisation of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

<ロ><日><日><日><日><日<<

The domain $\Omega_F(t)$ of the flow at time t: the union of sections $\Omega(t, x)$ orthogonal to some plane curve C lying in $(O, \mathbf{i}, \mathbf{k})$ following main flow axis. $\omega = (x, 0, b(x))$ in the cartesian reference frame $(O, \mathbf{i}, \mathbf{j}, \mathbf{k})$ where \mathbf{k} follows the vertical direction; b(x) is then the elevation of the point $\omega(x, 0, b(x))$ over the plane $(O, \mathbf{i}, \mathbf{j})$

Curvilinear variable defined by:

$$X=\int_{x_0}^x\sqrt{1+(b'(\xi))^2}d\xi$$

where x_0 is an arbitrary abscissa. Y = y and we denote by Z the **B**-coordinate of any fluid particle *M* in the Serret-Frenet reference frame $(\mathbf{T}, \mathbf{N}, \mathbf{B})$ at point $\omega(x, 0, b(x))$.

write the Euler equations in a curvilinear reference frame,

$$A(t,X) = \int_{\Omega(t,X)} dY dZ, \quad Q(t,X) = A(t,X)\overline{U}$$

$$\overline{U}(t,X) = \frac{1}{A(t,X)} \int_{\Omega(t,X)} U(t,X) \, dY dZ.$$

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with *H* (the height) and *L* (the length) and take $\epsilon = 0$ in the Euler curvilinear equations,
- (approximation : $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{UV}$.
- the conservative variables A(t, X): the wet area, Q(t, X) the discharge defined by

$$A(t,X) = \int_{\Omega(t,X)} dY dZ, \quad Q(t,X) = A(t,X)\overline{U}$$

$$\overline{U}(t,X) = \frac{1}{A(t,X)} \int_{\Omega(t,X)} U(t,X) \, dY dZ.$$

- [GP01] J.-F. Gerbeau, B. Perthame Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.
- [F07] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B / Fluid, 26 (2007), 49–63.

FABFAB

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with *H* (the height) and *L* (the length) and take $\epsilon = 0$ in the Euler curvilinear equations,
- **(**) approximation : $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{UV}$.
- the conservative variables A(t, X): the wet area, Q(t, X) the discharge defined by

$$A(t,X) = \int_{\Omega(t,X)} dY dZ, \quad Q(t,X) = A(t,X)\overline{U}$$

$$\overline{U}(t,X) = \frac{1}{A(t,X)} \int_{\Omega(t,X)} U(t,X) \, dY dZ.$$

- [GP01] J.-F. Gerbeau, B. Perthame Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.
- [F07] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B / Fluid, 26 (2007), 49–63.

- 3 >

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with *H* (the height) and *L* (the length) and take $\epsilon = 0$ in the Euler curvilinear equations,
- approximation : $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- the conservative variables A(t, X): the wet area, Q(t, X) the discharge defined by

$$egin{aligned} & \mathsf{A}(t,X) = \int_{\Omega(t,X)} dY dZ, \quad \mathcal{Q}(t,X) = \mathsf{A}(t,X) \overline{U} \ & \overline{U}(t,X) = rac{1}{\mathsf{A}(t,X)} \int_{\Omega(t,X)} U(t,X) \; dY dZ. \end{aligned}$$

- [GP01] J.-F. Gerbeau, B. Perthame Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.
- [F07] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B / Fluid, 26 (2007), 49–63.

< ∃ >

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with *H* (the height) and *L* (the length) and take $\epsilon = 0$ in the Euler curvilinear equations,
- approximation : $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- the conservative variables A(t, X): the wet area, Q(t, X) the discharge defined by

$$A(t,X) = \int_{\Omega(t,X)} dY dZ, \quad Q(t,X) = A(t,X)\overline{U}$$

$$\overline{U}(t,X) = \frac{1}{A(t,X)} \int_{\Omega(t,X)} U(t,X) \, dY dZ.$$

- [GP01] J.-F. Gerbeau, B. Perthame Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.
- [F07] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B / Fluid, 26 (2007), 49–63.

M. Ersoy (LAMA, UdS, Chambéry)

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with *H* (the height) and *L* (the length) and take $\epsilon = 0$ in the Euler curvilinear equations,
- approximation : $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{UV}$.
- the conservative variables A(t, X): the wet area, Q(t, X) the discharge defined by

$$A(t,X) = \int_{\Omega(t,X)} dY dZ, \quad Q(t,X) = A(t,X)\overline{U}$$

$$\overline{U}(t,X) = \frac{1}{A(t,X)} \int_{\Omega(t,X)} U(t,X) \, dY dZ.$$

- [GP01] J.-F. Gerbeau, B. Perthame Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.
- [F07] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B / Fluid, 26 (2007), 49–63.

$$\begin{cases} \partial_t A + \partial_X Q = 0 \\ \partial_t Q + \partial_X \left(\frac{Q^2}{A} + g l_1(X, A) \cos \theta \right) &= g l_2(X, A) \cos \theta - g A \sin \theta \\ -g A \overline{Z}(X, A) (\cos \theta)' \end{cases}$$
(1)

 $l_1(X, A) = \int_{-R}^{h} (h - Z)\sigma \, dZ : \text{the hydrostatic pressure term}$ $l_2(X, A) = \int_{-R}^{h} (h - Z)\partial_X\sigma \, dZ : \text{the pressure source term}$ $\overline{Z} = \int_{\Omega(t, X)} Z \, dY \, dZ : \text{the center of mass}$ We add the Manning-Strickler friction term of the form

 $S_f(A, U) = K(A)U|U|.$

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface mode
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

- Discretisation of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{U}) = \mathbf{0}, \qquad (2)$$
$$\partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla \boldsymbol{p} = \rho \mathbf{F}, \qquad (3)$$

Linearized pressure law:

$$p = p_a + rac{
ho -
ho_0}{eta
ho_0}$$
 $c = rac{1}{\sqrt{eta
ho_0}} \simeq 1400 m/s$

-

write the Euler equations in a curvilinear reference frame,

- 2 $\epsilon = H/L$ with H (the height) and L (the length) and takes $\epsilon = 0$ in the Euler curvilinear equations,
- (a) Approximation : $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- the conservative variables A(t, X): the wet equivalent area, Q(t, X) the equivalent discharge defined by

$$A = \frac{\rho}{\rho_0} S, \ Q = A\overline{U}$$
$$\overline{U}(t, X) = \frac{1}{S(X)} \int_{S(X)} U(t, X) \ dY dZ$$

• □ ▶ • □ ▶ • □ ▶ •

write the Euler equations in a curvilinear reference frame,

- 2 $\epsilon = H/L$ with H (the height) and L (the length) and takes $\epsilon = 0$ in the Euler curvilinear equations,
- ③ Approximation : $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- the conservative variables A(t, X): the wet equivalent area, Q(t, X) the equivalent discharge defined by

$$A=\frac{\rho}{\rho_0}S\,,\ Q=A\overline{U}$$

$$\overline{U}(t,X) = \frac{1}{S(X)} \int_{S(X)} U(t,X) \, dY dZ.$$

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with H (the height) and L (the length) and takes $\epsilon = 0$ in the Euler curvilinear equations,
- Approximation : $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- the conservative variables A(t, X): the wet equivalent area, Q(t, X) the equivalent discharge defined by

$$A = \frac{\rho}{\rho_0} S, \ Q = A\overline{U}$$
$$\overline{U}(t, X) = \frac{1}{S(X)} \int_{S(X)} U(t, X) \ dY dZ$$

- write the Euler equations in a curvilinear reference frame,
- 2 $\epsilon = H/L$ with H (the height) and L (the length) and takes $\epsilon = 0$ in the Euler curvilinear equations,
- Approximation : $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- the conservative variables A(t, X): the wet equivalent area, Q(t, X) the equivalent discharge defined by

$$egin{aligned} &A = rac{\overline{
ho}}{
ho_0} S\,,\ Q = A\overline{U} \ &ar{U}(t,X) = rac{1}{S(X)} \int_{S(X)} U(t,X) \ dYdZ \end{aligned}$$

$$\begin{cases} \partial_t(A) + \partial_X(Q) = 0\\ \partial_t(Q) + \partial_X\left(\frac{Q^2}{A} + c^2A\right) = -gA\sin\theta - gA\overline{Z}(X,S)(\cos\theta)' \quad (4)\\ + c^2A\frac{S'}{S} \end{cases}$$

 c^2A : the pressure term

 $c^2 A \frac{S'}{S}$: the pressure source term due to geometry changes

 $gA\overline{Z}(X,S)(\cos\theta)'$: the pressure source term due to the curvature

 \overline{Z} : the center of mass

We add the Manning-Strickler friction term of the form

$$S_f(A, U) = K(A)U|U|$$

Let *E* the state variable and
$$\mathbf{S} = \mathbf{S}(A, E)$$
 the physical wet area such that:
 $\mathbf{S} = \begin{cases} S & \text{if } E = 1(P) \\ A & \text{if } E = 0(FS) \end{cases}$

ъ

▶ ★ 臣

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface mode
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

- Discretisation of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

$$\begin{cases} \partial_t(A) + \partial_x(Q) &= 0\\ \partial_t(Q) + \partial_x \left(\frac{Q^2}{A} + p(x, A, E)\right) &= -g A \frac{d}{dx} Z(x) \\ &+ Pr(x, A, E) \\ -G(x, A, E) \\ -g A K(x, \mathbf{S}) u |u| \end{cases}$$

• $A = \frac{\rho}{\rho_0} S$: wet equivalent area,

- Q = Au: discharge,
- S the physical wet area.

The pressure is $p(x, A, E) = c^2 (A - \mathbf{S}) + g I_1(x, \mathbf{S}) \cos \theta$.

• The pressure source term:

$$Pr(x, A, E) = \left(c^2 \left(A/\mathbf{S} - 1\right)\right) \frac{d}{dx}S + g I_2(x, \mathbf{S}) \cos \theta,$$

the z-coordinate of the center of mass term:

$$G(x, A, E) = g A \overline{Z}(x, \mathbf{S}) \frac{d}{dx} \cos \theta,$$

• the friction term:

$$K(x,\mathbf{S}) = \frac{1}{K_s^2 R_h(\mathbf{S})^{4/3}}$$

- $K_s > 0$ is the Strickler coefficient,
- $R_h(\mathbf{S})$ is the hydraulic radius.

[[]BEG09] C. Bourdarias, M. Ersoy and S. Gerbi. A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. IJFV , 2009.

Mathematical properties

- The PFS system is strictly hyperbolic for A(t, x) > 0.
- For smooth solutions, the mean velocity u = Q/A satisfies

$$\partial_t u + \partial_x \left(\frac{u^2}{2} + c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z \right)$$

= $-g K(x, \mathbf{S}) u |u|$

and u = 0 reads: $c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z = 0$.

It admits a mathematical entropy

$$E(A, Q, S) = \frac{Q^2}{2A} + c^2 A \ln(A/\mathbf{S}) + c^2 S + g \overline{Z}(x, \mathbf{S}) \cos \theta + g A Z$$

which satisfies the entropy inequality

$$\partial_t E + \partial_x \left(E \, u + p(x, A, E) \, u \right) = -g \, A \, K(x, \mathbf{S}) \, u^2 \, |u| \leqslant 0$$

22/41

Montpellier 2010

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

Discretisation of the space domain

Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

3 Numerical experiments

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface mode
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation

Discretisation of the space domain

- Explicit first order VFRoe scheme
 - The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

Geometric terms and unknowns are piecewise constant approximations on the cell m_i at time t_n :

- Geometric terms
 - $Z_i, S_i, \cos \theta_i$
- unknowns

•
$$(A_i^n, Q_i^n), u_i^n = \frac{Q_i^n}{A_i^n}$$

- Notation: "unknown" vector
 - $\mathbf{W}_i^n = (Z_i, \cos \theta_i, S_i, A_i^n, Q_i^n)^t$

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface mode
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

Discretisation of the space domain

Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

Numerical experiments

Non-conservative formulation

Adding the equations $\partial_t Z = 0$, $\partial_t \cos \theta = 0$ and $\partial_t S = 0$, the PFS-model under a non conservative form reads:

$$\partial_t \mathbf{W} + \mathbf{D}(\mathbf{W}) \partial_X \mathbf{W} = T \mathbf{S}(\mathbf{W})$$
(5)

Integrating conservative PFS-System over $]X_{i-1/2}, X_{i+\frac{1}{2}}[\times[t_n, t_{n+1}[, we can write a Finite Volume scheme as follows:$

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t^{n}}{h_{i}} \left(\mathbf{F}(\mathbf{W}_{i+1/2}^{*}(0^{-}, \mathbf{W}_{i}^{n}, \mathbf{W}_{i+1}^{n})) - \mathbf{F}(\mathbf{W}_{i-1/2}^{*}(0^{+}, \mathbf{W}_{i-1}^{n}, \mathbf{W}_{i}^{n})) \right) + TS(\mathbf{W}_{i}^{n})$$
(5)

 $\mathbf{W}_{i+1/2}^*(\xi = x/t, \mathbf{W}_i, \mathbf{W}_{i+1})$ is the exact or an approximate solution to the Riemann problem at interface $X_{i+1/2}$.

 $W^*(0+, \mathbf{W}_i, \mathbf{W}_{i+1}) = (Z_{i+1}, \cos \theta_{i+1}, S_{i+1}, AP, QP)^t$ and $W^*(0-, \mathbf{W}_i, \mathbf{W}_{i+1}) = (Z_{i+1}, \cos \theta_{i+1}, S_{i+1}, AM, QM)^t$ depend on two types of interfaces:

- a non transition point: the flow on both sides of the interface is of the same type
- a transition point: the flow changes of type through the interface

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation
 - Discretisation of the space domain
 - Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

• approximating the convection matrix $D(\mathbf{W})$ by \widetilde{D} ,

to compute (AM, QM), (AP, QP), we solve the linearized Riemann problem:

$$\begin{cases} \partial_t \mathbf{W} + \widetilde{D} \, \partial_X \mathbf{W} &= 0 \\ \mathbf{W} &= \begin{cases} \mathbf{W}_l = (Z_l, \cos \theta_l, S_l, A_l, Q_l)^t & \text{if } x < 0 \\ \mathbf{W}_r = (Z_r, \cos \theta_r, S_r, A_r, Q_r)^t & \text{if } x > 0 \end{cases}$$
(5)

with $(\mathbf{W}_l, \mathbf{W}_r) = (\mathbf{W}_i, \mathbf{W}_{i+1})$ and $\widetilde{D} = \widetilde{D}(\mathbf{W}_l, \mathbf{W}_r) = D(\widetilde{\mathbf{W}})$ where $\widetilde{\mathbf{W}}$ is some approximate state of the left \mathbf{W}_l and the right \mathbf{W}_r state.

We obtain, for instance in the subcritical case (when $-c(\widetilde{W}) < \widetilde{u} < c(\widetilde{W})$), we have:

$$AM = A_{l} + \frac{g\widetilde{A}}{2c(\widetilde{W})(c(\widetilde{W}) - \widetilde{u})}\psi_{l}^{r} + \frac{\widetilde{u} + c(\widetilde{W})}{2c(\widetilde{W})}(A_{r} - A_{l}) - \frac{1}{2c(\widetilde{W})}(Q_{r} - Q_{l})$$
$$QM = QP = Q_{l} - \frac{g\widetilde{A}}{2c(\widetilde{W})}\psi_{l}^{r} + \frac{\widetilde{u}^{2} - c(\widetilde{W})^{2}}{2c(\widetilde{W})}(A_{r} - A_{l}) - \frac{\widetilde{u} - c(\widetilde{W})}{2c(\widetilde{W})}(Q_{r} - Q_{l})$$
$$AP = AM + \frac{g\widetilde{A}}{\widetilde{u}^{2} - c(\widetilde{W})^{2}}\psi_{l}^{r}$$

where ψ_l^r is the upwinded source term $Z_r - Z_l + \mathcal{H}(\widetilde{\mathbf{S}})(\cos \theta_r - \cos \theta_l) + \Psi(\widetilde{\mathbf{W}})(S_r - S_l).$

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation
 - Discretisation of the space domain
 - Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

Numerical experiments

- Assumption the propagation of the interface (pressurized-free surface or free surface-pressurized) has a constant speed w during a time step.
- Consequently the half line x = w t is the discontinuity line of $D(W_l, W_r)$.
- Setting $w = \frac{Q^+ Q^-}{A^+ A^-}$ with $\mathbf{U}^- = (A^-, Q^-)$ and $\mathbf{U}^+ = (A^+, Q^+)$ the (unknown) states resp. on the left and on the right hand side of the line x = w t (we).
- Remark Both states U₁ and U⁻ (resp. U_r and U⁺) correspond to the same type of flow
- Thus it makes sense to define the averaged matrices in each zone as follows:
 - for x < w t, we set D_l = D(W_l, W_l) = D(W_l) for some approximation W_l which connects the state W_l and W⁻.
 - for x > w t, we set D_r = D(W_t, W_r) = D(W_r) for some approximation W_t which connects the state W⁺ and W_r.

• • • • • • • • • • • • •

- Assumption the propagation of the interface (pressurized-free surface or free surface-pressurized) has a constant speed w during a time step.
- Consequently the half line x = w t is the discontinuity line of $\widetilde{D}(W_l, W_r)$.
- Setting $w = \frac{Q^+ Q^-}{A^+ A^-}$ with $\mathbf{U}^- = (A^-, Q^-)$ and $\mathbf{U}^+ = (A^+, Q^+)$ the (unknown) states resp. on the left and on the right hand side of the line x = w t (we).
- Remark Both states U₁ and U⁻ (resp. U_r and U⁺) correspond to the same type of flow
- Thus it makes sense to define the averaged matrices in each zone as follows:
 - for x < w t, we set D_l = D(W_l, W_l) = D(W_l) for some approximation W_l which connects the state W_l and W⁻.
 - for x > w t, we set D_r = D(W_t, W_r) = D(W_r) for some approximation W_t which connects the state W⁺ and W_r.

- Assumption the propagation of the interface (pressurized-free surface or free surface-pressurized) has a constant speed w during a time step.
- Consequently the half line x = w t is the discontinuity line of $\widetilde{D}(W_l, W_r)$.
- Setting $w = \frac{Q^+ Q^-}{A^+ A^-}$ with $\mathbf{U}^- = (A^-, Q^-)$ and $\mathbf{U}^+ = (A^+, Q^+)$ the (unknown) states resp. on the left and on the right hand side of the line x = w t (set).
- Remark Both states U₁ and U⁻ (resp. U_r and U⁺) correspond to the same type of flow
- Thus it makes sense to define the averaged matrices in each zone as follows:
 - for x < w t, we set D_l = D(W_l, W_l) = D(W_l) for some approximation W_l which connects the state W_l and W⁻.
 - for x > w t, we set D_r = D(W_t, W_r) = D(W_r) for some approximation W_t which connects the state W⁺ and W_r.

- Assumption the propagation of the interface (pressurized-free surface or free surface-pressurized) has a constant speed w during a time step.
- Consequently the half line x = w t is the discontinuity line of $\widetilde{D}(W_l, W_r)$.
- Setting $w = \frac{Q^+ Q^-}{A^+ A^-}$ with $\mathbf{U}^- = (A^-, Q^-)$ and $\mathbf{U}^+ = (A^+, Q^+)$ the (unknown) states resp. on the left and on the right hand side of the line x = w t (set).
- Remark Both states U₁ and U⁻ (resp. U_r and U⁺) correspond to the same type of flow
- Thus it makes sense to define the averaged matrices in each zone as follows:
 - for x < w t, we set D
 _l = D
 (W_l, W_r) = D(W_l) for some approximation W_l which connects the state W_l and W⁻.
 - for x > w t, we set D_r = D(W_t, W_r) = D(W_r) for some approximation W_t which connects the state W⁺ and W_r.

- Assumption the propagation of the interface (pressurized-free surface or free surface-pressurized) has a constant speed w during a time step.
- Consequently the half line x = w t is the discontinuity line of $\widetilde{D}(W_l, W_r)$.
- Setting $w = \frac{Q^+ Q^-}{A^+ A^-}$ with $\mathbf{U}^- = (A^-, Q^-)$ and $\mathbf{U}^+ = (A^+, Q^+)$ the (unknown) states resp. on the left and on the right hand side of the line x = w t (left).
- Remark Both states U₁ and U⁻ (resp. U_r and U⁺) correspond to the same type of flow
- Thus it makes sense to define the averaged matrices in each zone as follows:
 - for x < w t, we set D
 _l = D
 (W_l, W_r) = D(W
 _l) for some approximation W
 _l which connects the state W_l and W⁻.
 - for x > w t, we set D
 _r = D
 (W₁, W_r) = D(W
 _r) for some approximation W
 _i which connects the state W⁺ and W_r.

Then we formally solve two Riemann problems and use the Rankine-Hugoniot jump conditions through the line x = w t which writes:

$$Q^+ - Q^- = w(A^+ - A^-)$$
 (5)

$$F_5(A^+, Q^+) - F_5(A^-, Q^-) = w(Q^+ - Q^-)$$
(6)

with $F_5(A, Q) = \frac{Q^2}{A} + p(X, A)$. According to (**U**⁻, **UM**) and (**U**⁺, **UP**) (unknowns) at the interface $x_{i+1/2}$ and the sign of the speed *w*, we have to deal with four cases:

pressure state propagating downstream (iii)

- pressure state propagating upstream,
- free surface state propagating downstream,
- free surface state propagating upstream.

Then we formally solve two Riemann problems and use the Rankine-Hugoniot jump conditions through the line x = w t which writes:

$$Q^+ - Q^- = w(A^+ - A^-)$$
 (5)

$$F_5(A^+, Q^+) - F_5(A^-, Q^-) = w(Q^+ - Q^-)$$
(6)

with $F_5(A, Q) = \frac{Q^2}{A} + p(X, A)$. According to (**U**⁻, **UM**) and (**U**⁺, **UP**) (unknowns) at the interface $x_{i+1/2}$ and the sign of the speed *w*, we have to deal with four cases:

- pressure state propagating downstream ocception
- pressure state propagating upstream,
- free surface state propagating downstream,
- free surface state propagating upstream.

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation
 - Discretisation of the space domain

Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix

Numerical experiments


```
Given n, \forall i, A_i^n and E_i^n are known. Then

• if E_i^n = 0 then

if A_i^{n+1} < S_i then E_i^{n+1} = 0

else E_i^{n+1} = 1

• if E_i^n = 1 then

if A_i^{n+1} > S_i then E_i^{n+1} = 1

else E_i^{n+1} = E_{i-1}^n E_{i-1}^n
```



```
Given n, \forall i, A_i^n and E_i^n are known. Then

• if E_i^n = 0 then

if A_i^{n+1} < S_i then E_i^{n+1} = 0

else E_i^{n+1} = 1

• if E_i^n = 1 then

if A_i^{n+1} > S_i then E_i^{n+1} = 1
```



```
Given n, \forall i, A_i^n and E_i^n are known. Then

• if E_i^n = 0 then

if A_i^{n+1} < S_i then E_i^{n+1} = 0

else E_i^{n+1} = 1

• if E_i^n = 1 then

if A_i^{n+1} > S_i then E_i^{n+1} = 1
```



```
Given n, \forall i, A_i^n and E_i^n are known. Then

• if E_i^n = 0 then

if A_i^{n+1} < S_i then E_i^{n+1} = 0

else E_i^{n+1} = 1

• if E_i^n = 1 then

if A_i^{n+1} \ge S_i then E_i^{n+1} = 1

else E_i^{n+1} = E_{i-1}^n E_{i+1}^n
```


• • • • • • •

```
Given n, \forall i, A_i^n and E_i^n are known. Then

• if E_i^n = 0 then

if A_i^{n+1} < S_i then E_i^{n+1} = 0

else E_i^{n+1} = 1

• if E_i^n = 1 then

if A_i^{n+1} \ge S_i then E_i^{n+1} = 1

else E_i^{n+1} = E_{i-1}^n E_{i+1}^n
```


< ∃ >

```
Given n, \forall i, A_i^n and E_i^n are known. Then

• if E_i^n = 0 then

if A_i^{n+1} < S_i then E_i^{n+1} = 0

else E_i^{n+1} = 1

• if E_i^n = 1 then

if A_i^{n+1} \ge S_i then E_i^{n+1} = 1

else E_i^{n+1} = E_{i-1}^n E_{i+1}^n
```


< ∃ >

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation
 - Discretisation of the space domain

Explicit first order VFRoe scheme

- 1. The Case of a non transition point
- 2. The Case of a transition point
- 3. Update of the cell state
- 4. Approximation of the convection matrix
- 3 Numerical experiments
- 4 Conclusion and perspectives

The classical approximation
$$D(\widetilde{\mathbf{W}})$$
 of the Roe matrix
 $D_{Roe}(\mathbf{W}_l, \mathbf{W}_r) = \int_0^1 D(\mathbf{W}_r + (1 - s)(\mathbf{W}_l - \mathbf{W}_r)) \, ds$ defined by
 $\widetilde{D} = D(\widetilde{\mathbf{W}}) = D\left(\frac{\mathbf{W}_l + \mathbf{W}_r}{2}\right)$ preserve the still water steady state only for
constant section pipe and $Z = 0$.

< □ > < □ > < □ > < □ > < □</p>

Let us start with the consideration: the still water steady state is perfectly maintained: it exists *n* such that for every *i*, if $Q_i^n = 0$ and $\forall i$,

A1:
$$c^{2} \ln \left(\frac{A_{i+1}^{n}}{S_{i+1}}\right) + g\mathcal{H}(\mathbf{S}_{i+1}^{n}) \cos \theta + gZ_{i+1} = c^{2} \ln \left(\frac{A_{i}^{n}}{S_{i}}\right) + g\mathcal{H}(\mathbf{S}_{i}^{n}) \cos \theta + gZ_{i},$$

A2: $AM_{i+1/2}^{n} = AP_{i-1/2}^{n},$
A3: $Q_{i+1/2}^{n} = Q_{i-1/2}^{n},$

then, for all l > n the conditions A1, A2 and A3 holds.

 $(\widetilde{A}^n_{i-1/2},\widetilde{A}^n_{i+1/2})$ as the solution of the non-linear system:

$$\begin{cases} 0 = \Delta A_{i+1/2}^{n} + \frac{g}{2} \left(\frac{\widetilde{A}_{i+1/2}^{n} \psi_{i}^{i+1}}{\widetilde{C}_{i+1/2}^{2}} + \frac{\widetilde{A}_{i-1/2}^{n} \psi_{i-1}^{i}}{\widetilde{C}_{i-1/2}^{2}} \right) \\ 0 = \frac{g}{2} \left\{ \frac{\widetilde{A}_{i-1/2}^{n} \psi_{i-1}^{i}}{\widetilde{C}_{i-1/2}} - \frac{\widetilde{A}_{i+1/2}^{n} \psi_{i}^{i+1}}{\widetilde{C}_{i+1/2}} \right\} + \frac{\Delta A_{i+1/2}^{n}}{2} \left(\widetilde{C}_{i-1/2} - \widetilde{C}_{i+1/2} \right) \end{cases}$$
(7)

the numerical scheme is exactly well-balanced.

$$\widetilde{A}_{i+1/2}^n \approx rac{A_i^n + A_{i+1}^n}{2}$$

* ロ > * 母 > * ほ > * ほ

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling
- Finite Volume discretisation
 - Discretisation of the space domain
 - Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 Numerical experiments

Well-balanced scheme and the averaged approximation for P

Well-balanced scheme and the averaged approximation for FS

Depression for a contracting pipe

Depression for an uniform pipe

Depression for an expanding pipe

Modelisation: the pressurized and free surface flows model

- Previous works about mixed model
- The free surface model
- The pressurized model
- The PFS-model : a natural coupling

Finite Volume discretisation

- Discretisation of the space domain
- Explicit first order VFRoe scheme
 - 1. The Case of a non transition point
 - 2. The Case of a transition point
 - 3. Update of the cell state
 - 4. Approximation of the convection matrix

3 Numerical experiments

Conclusion

- Easy implementation of source terms
- Very good agreement for uniform case
- Still water steady states are preserved

Perspective

- Air entrainment treated as a bilayer fluid flow (in progress).
- Diphasic approach to take into account air entrapment, evaporation/condensation and cavitation.

Conclusion

- Easy implementation of source terms
- Very good agreement for uniform case
- Still water steady states are preserved

Perspective

- Air entrainment treated as a bilayer fluid flow (in progress).
- Diphasic approach to take into account air entrapment, evaporation/condensation and cavitation.

Thank you for your attention

