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What is a transient mixed flow in closed pipes

Free surface (FS) area : only a part of the section is filled.
Incompressible?. . .

Pressurized (P) area : the section is completely filled. Compressible?
Incompressible?. . .
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Some closed pipes

a forced pipe a sewer in Paris

The Orange-Fish Tunnel Storm Water Overflow, Minnesota
http://www.sewerhistory.org/grfx/misc/disaster.htm
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Modelisation problem?

Free surface flows

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

∂P
∂t

+
c2

g A
∂Q
∂x

= 0

∂Q
∂t

+ g A
∂P
∂x

= −αQ |Q|

A lot of terms have been neglected: no conservative form
Goal :
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∂Q
∂x

= 0

∂Q
∂t

+ g A
∂P
∂x

= −αQ |Q|

A lot of terms have been neglected: no conservative form
Goal :
1-to write a model for pressurized flows “close to” Saint-Venant equations
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Saint-Venant equations for open channels
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∂P
∂t

+
c2

g A
∂Q
∂x

= 0

∂Q
∂t

+ g A
∂P
∂x

= −αQ |Q|

A lot of terms have been neglected: no conservative form
Goal :
2-to get a single model for pressurized and free surface flows
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Modelisation problem?

Free surface flows

Saint-Venant equations for open channels

Pressurized flows : Allievi equation

∂P
∂t

+
c2

g A
∂Q
∂x

= 0

∂Q
∂t

+ g A
∂P
∂x

= −αQ |Q|

A lot of terms have been neglected: no conservative form
Goal :
3-to take into account depression phenomena
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Preissmann slot : incompressibility of water

Preissmann (1961), Cunge and Wenger (1965), Song and Cardle (1983)
Garcia-Navarro et al. (1994) , Zech et al. (1997): finite difference and
characteristics method or Roe’s method
Baines et al. (1992), Tseng (1999): Roe scheme on finite volume
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Preissmann (1961), Cunge and Wenger (1965), Song and Cardle (1983)
Garcia-Navarro et al. (1994) , Zech et al. (1997): finite difference and
characteristics method or Roe’s method
Baines et al. (1992), Tseng (1999): Roe scheme on finite volume

Good behavior

We used only Saint-Venant equations, very easy to solve ...
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Preissmann slot : incompressibility of water

Preissmann (1961), Cunge and Wenger (1965), Song and Cardle (1983)
Garcia-Navarro et al. (1994) , Zech et al. (1997): finite difference and
characteristics method or Roe’s method
Baines et al. (1992), Tseng (1999): Roe scheme on finite volume

Bad behavior

sound speed '
√

S/Tslot

water-hammer are not well computed

depression in pressurized flows : free surface transition
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Compressibility of water

Hamam et McCorquodale (82): “rigid water column approach”; a water column
follows a dilatation-compression process .

Trieu Dong (1991) Finite difference method : on each cell conservativity of mass
and momentum are written depending on the state.

Musandji Fuamba (2002) : Saint-Venant (free surface) and compressible fluid
(pressurized flow); finite difference and characteristics method.

Vasconcelos, Wright and Roe (2006). Two Pressure Approach and Roe scheme;
the overpressure or depression computed via the dilatation of the pipe.
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Incompressible Euler equations

div(U) = 0
∂t (U) + U · ∇U +∇p = F

Figure: Geometric characteristics of the free surface domain
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The framework

The domain ΩF (t) of the flow at time t : the union of sections Ω(t , x)
orthogonal to some plane curve C lying in (O, i,k) following main flow axis.
ω = (x ,0,b(x)) in the cartesian reference frame (O, i, j,k) where k follows the
vertical direction; b(x) is then the elevation of the point ω(x ,0,b(x)) over the
plane (O, i, j)
Curvilinear variable defined by:

X =

∫ x

x0

√
1 + (b′(ξ))2dξ

where x0 is an arbitrary abscissa. Y = y and we denote by Z the
B-coordinate of any fluid particle M in the Serret-Frenet reference frame
(T,N,B) at point ω(x ,0,b(x)).
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The derivation of the FS model

1 write the Euler equations in a curvilinear reference frame,
2 ε = H/L with H (the height) and L (the length) and take ε = 0 in the Euler

curvilinear equations,
3 approximation :U2 ≈ U U and U V ≈ U V .
4 the conservative variables A(t ,X ): the wet area, Q(t ,X ) the discharge

defined by

A(t ,X ) =

∫
Ω(t,X)

dYdZ , Q(t ,X ) = A(t ,X )U

U(t ,X ) =
1

A(t ,X )

∫
Ω(t,X)

U(t ,X ) dYdZ .

[GP01] J.-F. Gerbeau, B. Perthame Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous
Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.

[F07] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European
Journal of Mechanic B/Fluid, 26 (2007), 49–63.
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The FS-Model


∂tA + ∂X Q = 0

∂tQ + ∂X

(
Q2

A
+ gI1(X ,A) cos θ

)
= gI2(X ,A) cos θ − gA sin θ

−gAZ (X ,A)(cos θ)′

(1)

I1(X ,A) =

∫ h

−R
(h − Z )σ dZ : the hydrostatic pressure term

I2(X ,A) =

∫ h

−R
(h − Z )∂Xσ dZ : the pressure source term

Z =

∫
Ω(t,X)

Z dY dZ : the center of mass

We add the Manning-Strickler friction term of the form

Sf (A,U) = K (A)U|U| .
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Compressible Euler equations

∂tρ+ div(ρU) = 0, (2)

∂t (ρU) + div(ρU⊗ U) +∇p = ρF, (3)

Linearized pressure law:

p = pa +
ρ− ρ0

βρ0

c =
1√
βρ0
' 1400m/s
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The derivation of the P-Model

1 write the Euler equations in a curvilinear reference frame,
2 ε = H/L with H (the height) and L (the length) and takes ε = 0 in the

Euler curvilinear equations,
3 Approximation :ρU ≈ ρU and ρU2 ≈ ρU U.
4 the conservative variables A(t ,X ): the wet equivalent area, Q(t ,X ) the

equivalent discharge defined by

A =
ρ

ρ0
S , Q = AU

U(t ,X ) =
1

S(X )

∫
S(X)

U(t ,X ) dYdZ .
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The P-Model



∂t (A) + ∂X (Q) = 0

∂t (Q) + ∂X

(
Q2

A
+ c2A

)
= −gA sin θ − gAZ (X ,S)(cos θ)′

+c2A
S′

S

(4)

c2A : the pressure term

c2A
S′

S
: the pressure source term due to geometry changes

gAZ (X ,S)(cos θ)′ : the pressure source term due to the curvature

Z : the center of mass

We add the Manning-Strickler friction term of the form

Sf (A,U) = K (A)U|U|
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State variable

Let E the state variable and S = S(A,E) the physical wet area such that:

S =

{
S if E = 1(P)
A if E = 0(FS)
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The PFS-model



∂t (A) + ∂x (Q) = 0

∂t (Q) + ∂x

(
Q2

A
+ p(x ,A,E)

)
= −g A

d
dx

Z (x)

+Pr(x ,A,E)
−G(x ,A,E)
−g A K (x ,S) u |u|

.

A =
ρ

ρ0
S : wet equivalent area,

Q = A u : discharge,
S the physical wet area.

The pressure is p(x ,A,E) = c2 (A− S) + g I1(x ,S) cos θ.

M. Ersoy (LAMA, UdS, Chambéry) Mixed flows in closed pipes. A well-balanced scheme. Montpellier 2010 21 / 41



Source terms

The pressure source term:

Pr(x ,A,E) =
(
c2 (A/S− 1)

) d
dx

S + g I2(x ,S) cos θ,

the z−coordinate of the center of mass term:

G(x ,A,E) = g A Z (x ,S)
d
dx

cos θ,

the friction term:
K (x ,S) =

1
K 2

s Rh(S)4/3 .

Ks > 0 is the Strickler coefficient,
Rh(S) is the hydraulic radius.

[BEG09] C. Bourdarias, M. Ersoy and S. Gerbi. A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume
scheme. IJFV , 2009.
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Mathematical properties
The PFS system is strictly hyperbolic for A(t , x) > 0.

For smooth solutions, the mean velocity u = Q/A satisfies

∂tu + ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + g Z

)
= −g K (x ,S) u |u|

.

and u = 0 reads: c2 ln(A/S) + gH(S) cos θ + g Z = 0.

It admits a mathematical entropy

E(A,Q,S) =
Q2

2A
+ c2A ln(A/S) + c2S + gZ (x ,S) cos θ + gAZ

which satisfies the entropy inequality

∂tE + ∂x (E u + p(x ,A,E) u) = −g A K (x ,S) u2 |u| 6 0
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The mesh and the unknowns

Geometric terms and unknowns are piecewise constant approximations on
the cell mi at time tn:

Geometric terms
Zi , Si , cos θi

unknowns

(An
i ,Q

n
i ), un

i =
Qn

i

An
i

Notation: “unknown” vector
Wn

i = (Zi , cos θi ,Si ,An
i ,Q

n
i )t
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Non-conservative formulation

Adding the equations ∂tZ = 0, ∂t cos θ = 0 and ∂tS = 0, the PFS-model
under a non conservative form reads:

∂tW + D(W)∂X W = TS(W) (5)

where W = (Z , cos θ,S,A,Q)t

TS(W) =

(
0,0,0,0,−g K (X ,S)

Q|Q|
A

)

D(W) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

gA gAH(S) Ψ(W) c2(W)− u2 2u


where Ψ(W) = gS∂SH(S) cos θ − c2(W)

A
S

and

c(W) =


c for pressurised flow√

g
A

T (A)
cos θ for free surface flow
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The Finite Volume scheme

Integrating conservative PFS-System over ]Xi−1/2,Xi+ 1
2
[×[tn, tn+1[, we can

write a Finite Volume scheme as follows:

Wn+1
i = Wn

i −
∆tn

hi

(
F(W∗i+1/2(0−,Wn

i ,W
n
i+1))− F(W∗i−1/2(0+,Wn

i−1,W
n
i ))
)

+TS(Wn
i )

(5)
W∗i+1/2(ξ = x/t ,Wi ,Wi+1) is the exact or an approximate solution to the
Riemann problem at interface Xi+1/2.
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Interface quantities AM,QM,AP,QP depend on two types of interfaces

W ∗(0+,Wi ,Wi+1) = (Zi+1, cos θi+1,Si+1,AP,QP)t and
W ∗(0−,Wi ,Wi+1) = (Zi+1, cos θi+1,Si+1,AM,QM)t depend on two types of
interfaces:

a non transition point: the flow on both sides of the interface is of the
same type
a transition point: the flow changes of type through the interface
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The linearized Riemann problem

approximating the convection matrix D(W) by D̃,

to compute (AM,QM), (AP,QP), we solve the linearized Riemann problem: ∂tW + D̃ ∂X W = 0

W =

{
Wl = (Zl , cos θl ,Sl ,Al ,Ql )

t if x < 0
Wr = (Zr , cos θr ,Sr ,Ar ,Qr )t if x > 0

(5)

with (Wl ,Wr ) = (Wi ,Wi+1) and D̃ = D̃(Wl ,Wr ) = D(W̃) where W̃ is some
approximate state of the left Wl and the right Wr state.
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The convection matrix

The eigenvalues of D̃ are λi = 0, i = 1,2,3, λ4 = ũ − c(W̃), λ5 = ũ + c(W̃)

where c(W) =


c for pressurised flow√

g
A

T (A)
cos θ for free surface flow

AM
QM

AM
QM

AM
QM

AP
QP

AP
QP

AP
QP

W W W W Wl r l r l r

(1),(2),(3) (1),(2),(3) (1),(2),(3)

(4)

(4)

(4)
(5)

(5) (5)

W
u < − c~ − c < u < cu > c~ ~ ~ ~ ~ ~
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AM, QM, AP, QP are given by

We obtain, for instance in the subcritical case (when −c(W̃) < ũ < c(W̃)), we
have:

AM = Al +
g Ã

2 c(W̃) (c(W̃)− ũ)
ψr

l +
ũ + c(W̃)

2 c(W̃)
(Ar − Al )−

1

2 c(W̃)
(Qr −Ql )

QM = QP = Ql −
g Ã

2 c(W̃)
ψr

l +
ũ2 − c(W̃)2

2 c(W̃)
(Ar − Al )−

ũ − c(W̃)

2 c(W̃)
(Qr −Ql )

AP = AM +
g Ã

ũ2 − c(W̃)2
ψr

l

where ψr
l is the upwinded source term

Zr − Zl +H(S̃)(cos θr − cos θl ) + Ψ(W̃)(Sr − Sl ).
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Two Riemann problems

Assumption the propagation of the interface (pressurized-free surface or
free surface-pressurized) has a constant speed w during a time step.

Consequently the half line x = w t is the discontinuity line of D̃(Wl ,Wr ).

Setting w =
Q+ − Q−

A+ − A−
with U− = (A−,Q−) and U+ = (A+,Q+) the

(unknown) states resp. on the left and on the right hand side of the line
x = w t click .
Remark Both states Ul and U− (resp. Ur and U+) correspond to the
same type of flow
Thus it makes sense to define the averaged matrices in each zone as
follows:

for x < w t , we set D̃l = D̃(Wl ,Wr ) = D(W̃l ) for some approximation W̃l

which connects the state Wl and W−.
for x > w t , we set D̃r = D̃(Wl ,Wr ) = D(W̃r ) for some approximation W̃l

which connects the state W+ and Wr .
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four cases

Then we formally solve two Riemann problems and use the Rankine-Hugoniot
jump conditions through the line x = w t which writes:

Q+ −Q− = w (A+ − A−) (5)
F5(A+,Q+)− F5(A−,Q−) = w (Q+ −Q−) (6)

with F5(A,Q) =
Q2

A
+ p(X ,A). According to (U−, UM) and (U+, UP )

(unknowns) at the interface xi+1/2 and the sign of the speed w , we have to
deal with four cases:

pressure state propagating downstream click ,
pressure state propagating upstream,
free surface state propagating downstream,
free surface state propagating upstream.
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State update

Given n, ∀i , An
i and En

i are known. Then
if En

i = 0 then
if An+1

i < Si then En+1
i = 0

else En+1
i = 1

if En
i = 1 then

if An+1
i > Si then En+1

i = 1
else En+1

i = En
i−1En

i+1
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The classical choice

The classical approximation D(W̃) of the Roe matrix

DRoe(Wl ,Wr ) =

∫ 1

0
D(Wr + (1− s)(Wl −Wr )) ds defined by

D̃ = D(W̃) = D
(

Wl + Wr

2

)
preserve the still water steady state only for

constant section pipe and Z = 0.
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Construction of an exactly well-balanced scheme

Let us start with the consideration: the still water steady state is perfectly
maintained: it exists n such that for every i , if Qn

i = 0 and ∀i ,

A1: c2 ln
(

An
i+1

Si+1

)
+ gH(Sn

i+1) cos θ + gZi+1 =

c2 ln
(

An
i

Si

)
+ gH(Sn

i ) cos θ + gZi ,

A2: AMn
i+1/2 = APn

i−1/2,
A3: Qn

i+1/2 = Qn
i−1/2,

then, for all l > n the conditions A1, A2 and A3 holds.
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Defining

(Ãn
i−1/2, Ã

n
i+1/2) as the solution of the non-linear system:

0 = ∆An
i+1/2 +

g
2

(
Ãn

i+1/2ψ
i+1
i

c̃2
i+1/2

+
Ãn

i−1/2ψ
i
i−1

c̃2
i−1/2

)

0 =
g
2

{
Ãn

i−1/2 ψ
i
i−1

c̃i−1/2
−

Ãn
i+1/2 ψ

i+1
i

c̃i+1/2

}
+

∆An
i+1/2

2
(
c̃i−1/2 − c̃i+1/2

) (7)

the numerical scheme is exactly well-balanced.
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For small ∆x , we show that

Ãn
i+1/2 ≈

An
i + An

i+1

2
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Well-balanced scheme and the averaged approximation for P
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Conclusion
Easy implementation of source terms
Very good agreement for uniform case
Still water steady states are preserved

Perspective
Air entrainment treated as a bilayer fluid flow (in progress).
Diphasic approach to take into account air entrapment,
evaporation/condensation and cavitation.
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Thank you for your attention
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