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The air entrainment

@ appears in the transient flow in closed pipes not completely filled : the liquid flow (as
well as the air flow) is free surface.

(a) Settings
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The air entrainment

@ appears in the transient flow in closed pipes not completely filled : the liquid flow (as
well as the air flow) is free surface.

@ may lead to two-phase flows for transition : free surface flows — pressurized flows.
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AIR ENTRAINMENT

The air entrainment

appears in the transient flow in closed pipes not completely filled : the liquid flow (as
well as the air flow) is free surface.

@ may lead to two-phase flows for transition : free surface flows — pressurized flows.

@ may cause severe damage due to the pressure surge.

(i) Settings (j) Sewers ...in Paris (k)  Forced (I) ...at

pipe sota http://www.
sewerhistory.org/
grfx/misc/disaster.htm

Minne-
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@ the homogeneous model : a single fluid is considered where sound speed depends on
the fraction of air
M. H. Chaudhry et al. 1990 and Wylie an Streeter 1993.
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@ Almost all previous models introduce several mathematical and numerical difficulties
such as
> the ill-posedness
> the presence of discontinuous fluxes
> the loss of hyperbolicity (eigenvalues may become complex)
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@ Almost all previous models introduce several mathematical and numerical difficulties
such as
> the ill-posedness
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> the loss of hyperbolicity (eigenvalues may become complex)
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» any consistent finite difference scheme is unconditionally unstable
» any consistent finite volume scheme (based on eigenvalues) is useless
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MATHEMATICAL AND NUMERICAL PROBLEMS

@ Almost all previous models introduce several mathematical and numerical difficulties

such as

> the ill-posedness
> the presence of discontinuous fluxes
> the loss of hyperbolicity (eigenvalues may become complex)

@ The last one is the problem analyzed here for a two-layer problem :
> any consistent finite difference scheme is unconditionally unstable
> any consistent finite volume scheme (based on eigenvalues) is useless
o = Kelvin-Helmholtz instability, for which the two-layer model is not a priori
suitable :

FIGURE: Kelvin-Helmholtz instability (source : wiki Kelvin-Helmholtz instability)
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SETTINGS

FIGURE: Geometric characteristics of the domain.

We have then the first natural coupling :

Hy(t,z) + Ho(t,z) = 2R(x) .
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FLUID LAYER : INCOMPRESSIBLE EULER’S EQUATIONS W 2001)

INCOMPRESSIBLE EULER’S EQUATIONS

div(poUw) 0, on R X Q4
0t (poUw) + div(poUw @ Uw) + VP, = poF, onR X Q4

where Uy, (¢, z,y, 2) = (Uw, Vi, Wy the velocity, Py (t, z,y, z) the pressure, F the
gravity strength.

F1GURE: Cross-section of the domain
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@ Write non dimensional form of Euler equations using the parameter ¢ = H/L < 1
and takes € = 0.
o
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FLUID LAYER : INCOMPRESSIBLE EULER’S EQUATIONS (GERBEAU, PERTHAME, 2001)

INCOMPRESSIBLE EULER’S EQUATIONS

div(poUw) = 0, on R X Q¢ 4
0t (poUw) + div(poUw @ Uw) + VP, = poF, onR X Q4

where Uy, (¢, z,y, 2) = (Uw, Vi, Wy the velocity, Py (t, z,y, z) the pressure, F the
gravity strength.
@ Write non dimensional form of Euler equations using the parameter ¢ = H/L < 1
and takes € = 0.
o Equality of the pressure of air and water P, = P,, at the free surface interface.
o Section averaging pU ~ pU and U2 =~ U U.
o Introduce A(t,x) :/ dydz, u(t,z) =
Q. A(
Q(t,x) = A(t, z)u(t, ).

[y

~+

/ Uy (t,z,y, z) dydz, and
,.’[) Qo

L

X
halt,2) ,
I L N

FI1GURE: Cross-section of the domain
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FLUID LAYER MODEL

FLUID LAYER MODEL

where

OtA + 0:Q =
2
0:Q + Ox (% + AP.(p)/po+ gl (z, A) cos 0>

R
the hydrostatic pressure  : [i(z, A) = / (hw —
i
the pressure source term  :  Ix(x, A) = / (hw —
-R
the air pressure . P,
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0
—gA0.Z
+glz(x, A) cos 0

+/7.(p)/ po 9= A

2)o(z, z) dz,

2)0z0(x, z)dz,
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AIR LAYER : COMPRESSIBLE EULER’S EQ(_)

COMPRESSIBLE EULER’S EQUATIONS

at,Da, T diV(ana)
0t (paUa) + div(paUa ® Ua) + VP,

O, on R x Qt,a,
0, onRXxQ,

where Ua(t, z,y, z) = (Ua, Va, Wa) the velocity, P.(t,x,y, z) the pressure, pq(t,z,y, 2)
the density.
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COMPRESSIBLE EULER’S EQUATIONS

O, on R x Qt,a
0, onRXxQ,

atpa T diV(ana)
6t(ana) a4 diV(ana ® Ua) + VP,

with
P.(p) =kp" with k = % where 7 is set to 7/5.

a

where Ua(t, z,y, z) = (Ua, Va, Wa) the velocity, P.(t,x,y, z) the pressure, pq(t,z,y, 2)
the density.
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AIR LAYER : COMPRESSIBLE EULER'S EQUATIONS

COMPRESSIBLE EULER’S EQUATIONS

Orpa + div(paUa) on R x Q4
0t(paUa) + div(paUa @ Ua) + VP, = 0, onR X Q,

I
L

with
P.(p) = kp” with k = Pa here 7 is set to 7/5.

pa

where Ua(t, z,y, z) = (Ua, Va, Wa) the velocity, P.(t,x,y, z) the pressure, pq(t,z,y, 2)
the density.

@ Write non dimensional form of Euler equations using the parameter e = H/L < 1
and takes € = 0.

o Equality of the pressure of air and water P, = P,, at the free surface interface.
@ Section averaging Averaged nonlinearity ~ Nonlinearity of the averaged.
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COMPRESSIBLE EULER’S EQUATIONS

Orpa + div(paUa) on R x Q4
0t(paUa) + div(paUa @ Ua) + VP, = 0, onR X Q,

I
L

with
P.(p) = kp” with k = Pa here 7 is set to 7/5.

pa

where Ua(t, z,y, z) = (Ua, Va, Wa) the velocity, P.(t,x,y, z) the pressure, pq(t,z,y, 2)
the density.

@ Write non dimensional form of Euler equations using the parameter e = H/L < 1
and takes € = 0.

@ Equality of the pressure of air and water P, = P,, at the free surface interface.

@ Section averaging Averaged nonlinearity ~ Nonlinearity of the averaged.

1
@ Introduce A(t,x) = dydz, uwv(t,x) = 7/ Us(t,z,y,z)dydz,
(t,x) o, (t,z) A7) Jo, (t, @,y 2)dy

y—1
M =p/poA, D= Mv and cizg—i:k”y (pi‘M> .
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S -

AIR LAYER MODEL

oM +0.,.D = 0
D* M , M ,
0:D + 0y (ﬁ = TCa) = —c;0:(A)
where
M ,
the  pressure : TCG,

M
the pressure source term  :  —c2 9, (A).
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THE TWO-LAYER MODEL

A+ A =S where S = S(x) denotes the pipe section

TWO-LAYER MODEL

M + 0D = 0
D> M\ _ M,
8tD aF 81 (M + 70a> = 70(1_ 8I(S — A)
Q@ A _Weah _
0:Q + 0z ( + gli(z, A) cos 0 + G4 ca> = —gAd,Z
+gl>(z, A) cosb
M 2
+(S e 2 0z A
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MATHEMATICAL ENTROPY AND ENERGETIC_

@ Energies
Muv? 2M Au?
=20 4 G and E, = U
2 (v-1) 2

satisfy the following entropy flux equalities :

+ gA(hw — Ii(z, A)JA) cos b + gAZ

M
Ea zHa = A
Ot Oulle =S5 =2
and 2
co M
Ey e Hy = — — o OHA
0B +0 WS-
where
M ca M
Hy,=(E.+ v and Hy = Ew+911(f0>A)C°sa+A(S—A) b
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MATHEMATICAL ENTROPY AND ENERGETICALLY CLOSED SYSTEM

@ Energies

and E,, = o + gA(hyw — Ii(x,A)/A) cos 0 + gAZ

By= 4 07
2 qy-1) 2

satisfy the following entropy flux equalities :

OtEq + 0 Hy =
and
OtEy + 0:H,
where
2 M 2 M
H,=|E,+ vand Hy, = ( Bw + ¢ (acA)cosG—i—A(S )

@ The total energy satisfies
HE+0,H=(0).
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A CONDITIONALLY HYPERBOLIC SYSTEM _

@ Quasi-linear form : W = (M, D, A, Q)
W +D(z, W)OxW =0

with
0 1 0 0
Cc, — v? 2v M Ca 0
0 0 0
A 2 2 AM o 2
mca Cw + mca —Uu 2u
where ¢ = ¢2, + (S{—Aj{lﬁci : water sound speed under the air effect.
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A CONDITIONALLY HYPERBOLIC SYSTEM : EIGENSTRUCTURE
o Quasi-linear form : W = (M, D, A, Q)"
W + D(z, W)dxW =0

with
0 1 0 0
Cc, — v? 2v M ch 0
D= S—A
0 0 0 1
A 2 AM 5
0 0 2
(S_A)cu Cw+(S_A)2Ca u u
AM .
where ¢, := ci + mci . water sound speed under the air effect.
o Writing
- a . AM
sz u7 ﬁziy Cm=\/c12ﬂ-l—sc§W1ths:7;07

Cm Cm (S—A)?2
the characteristic polynom reads P(x = A\/em) =
et =202+ F)2* + (1+F)5+F) - H)z* +2(H - 1+ F)*)z — sH*
where A\ stands for an eigenvalue of D.
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CONDITIONAL HYPERBOLICITY OF THE TWO-LAYER SYSTEM

THEOREM (FULLER, IEEE TRANS. AUTOMAT. CONTROL, 81)

All the root of Equation P are real if and only if one of the following conditions holds :
(’L) Az >0, As >0 and A7 >0,
(Z’L) AgZO, A5:OandA7=O

where A3, A5, A7 are the inner determinant of the discriminant of P.
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CONDITIONAL HYPERBOLICITY OF THE TWO-LAYER SYSTEM

THEOREM (FULLER, IEEE TRANS. AUTOMAT. CONTROL, 81)

All the root of Equation P are real if and only if one of the following conditions holds :
(1) A3>0,As >0and A7 >0,
(1) A3 >0, As =0 and A7 =0

where A3, A5, A7 are the inner determinant of the discriminant of P.

o From physical consideration, As > 0 and As > 0 = hyperbolic <= A7 > 0.
e ie.

Ymas 7L Foe . Ymaz %F&w

Y

Ymin X Frmin y

(a) Ymin <0 (b) Ymin >0

FIGURE: Behavior of the polynomial A7 (y)
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CONDITIONAL HYPERBOLICITY OF THE TWO-LAYER SYSTEM

THEOREM (FULLER, IEEE TRANS. AUTOMAT. CONTROL, 81)

All the root of Equation P are real if and only if one of the following conditions holds :
(Z) Az >0, As >0 and A7 >0,
(’LZ) A3>0, A5:OandA7:O

where A3, A5, A7 are the inner determinant of the discriminant of P.

o From physical consideration, As > 0 and As > 0 = hyperbolic <= A7 > 0.
@ Then,

THEOREM (ERSOY et al., M2AN,13)

The two-layer system is strictly hyperbolic if
> y=F2>F2 . = y2 .. < large relative speed
> Ymin > 0 and 0 < F? < 1 — F,%Lm <= small relative speed
p_A _p

where s = — ——

Sy < 1 as in the two-layer shallows water equations.
PO O — pP1
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HYPERBOLIC REGION : EXAMPLES

280 28 20
i3 13 5
o i Lo
L5} 1 03 o5
] ] 0
i -2 o x 48 —dd -02 [ 0.2 od —d -0 @ » i

(a) large relative speed (p = 1000 (b) Small relative speed(Zoom (c) p = 10, F z-axis and A y-axis
(air density), F' z-axis and A y- on :p = 1000, F z-axis and A y-
axis) axis)

FIGURE: black grey = non hyperbolic region
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HYPERBOLIC REGION : EXAMPLES

280 - 20

L5} 1 03

] ] 0
i -2 o k- 4 —itd -2 [ 0.2 od —d -0 @ x it

(a) large relative speed (p = 1000 (b) Small relative speed(Zoom (c) p = 10, F z-axis and A y-axis
(air density), F' z-axis and A y- on :p = 1000, F z-axis and A y-
axis) axis)

FIGURE: black grey = non hyperbolic region

As a consequence
@ system may lose its hyperbolicity.
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(a) large relative speed (p = 1000 (b) Small relative speed(Zoom (c) p = 10, F z-axis and A y-axis
(air density), F' z-axis and A y- on :p = 1000, F z-axis and A y-
axis) axis)

FIGURE: black grey = non hyperbolic region
As a consequence

@ system may lose its hyperbolicity.

@ solver based on the computation of eigenvalues are useless.
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KINETIC INTERPRETATION -
As in gas theory,
Describe the macroscopic behavior from particle motions, here, assumed fictitious by
introducin { a x density function and
g1 a M(t, xz, & x) maxwellian function (or a Gibbs equilibrium)

(t,z)

*
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KINETIC INTERPRETATION

As in gas theory,

Describe the macroscopic behavior from particle motions, here, assumed fictitious by
a x density function and
introducing { X Y

a M(t, z,&; x) maxwellian function (or a Gibbs equilibrium)

(t,z)

*

i.e., transform the nonlinear system into a kinetic transport equation on M.
Thus, to be able to define the numerical macroscopic fluxes from the microscopic one

...Faire d’une pierre deux coups...
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PRINCIPLE
DENSITY FUNCTION

We introduce

x(w) =x(-w) >0, /Rx(w)dw = 1,/w2x(w)dw =1,

R
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PRINCIPLE
GiBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

x(w) =x(-w) >0, /Rx(w)dw = 1,/w2x(w)dw =1,

R

then we define the Gibbs equilibrium by

M(t,x,a:%x(f‘“)
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PRINCIPLE "
Gi1BBS EQUILIBRIUM OR MAXWELLIAN n .

We introduce

x(w) =x(-w) =20, /Rx(w)dw = 1,/Rw2x(w)dw =1,

then we define the Gibbs equilibrium by

M(t,z,§) =

SIS
=
/N

o
SAN
N

——

then
MICRO-MACROSCOPIC RELATIONS

A = [ Mieogde
Au = EM(t,x, ) dE
Au? + AV = EM(t,x, &) dE
R
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KINETIC INTERPRETATION

THE KINETIC FORMULATION [PERTHAME, OXFORD LECT. SER. IN MATH. AND ITS APPLIC., 02]

(A, Q) is solution of the (air or water) system if and only if M satisfies the transport
equation :

QM+ € 0. M — gd I M = K(t, z,£)

where KC(t, z, &) is a collision kernel satisfying a.e. (¢,x)

/R/cczgzo, /Rgmgzo

and ® are the source terms.
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KINETIC INTERPRETATION

THE KINETIC FORMULATION [PERTHAME, OXFORD LECT. SER. IN MATH. AND ITS APPLIC., 02]

(A, Q) is solution of the (air or water) system if and only if M satisfies the transport
equation :

M + € - 0 M — gB I M = K(t, z,€)

where KC(t, z, &) is a collision kernel satisfying a.e. (¢,x)

/Ricczgzo, /Rgmgzo

and ® are the source terms.

General form of the source terms :

COI)SET\'&tiVe non Conserva‘tive f"iCtiU“
d d QRIQ

b= —2Z2 4+ B-—W +K
dx dx A2

@ conservative term : classical upwind
@ non conservative term : mid point rule (DLM, 95)
o friction : dynamic topography (Ersoy, Ph.D.)
NTM  28/33



DISCRETIZATION OF SOURCE T

@ Recalling that Z is constant per cell
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@ Recalling that Z is constant per cell

o Then Y(t,2) € [tn,tns1[X mi
Z'(x) =0

HM + € - .M = K(t,z,€)
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M

@ Recalling that Z is constant per cell

o Then Y(t,2) € [tn,tns1[X mi
Z'(x) =0

0

¢.ie_f z E_u(tfhmv 5)
M(t'ﬂvx)g) T h(t) )X( h(t,:l?) >

Orf+&-0:f
f(tnamv §)

by neglecting the collision kernel.
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SIMPLIFICATION OF THE TRANSPORT E_

@ Recalling that Z is constant per cell

o Then Y(t,2) € [tn,tns1[X mi

Z'(x) =0
Of+€-0-f = 0
_ E - u(tn7 z, é.)
by neglecting the collision kernel.
o ie.
At

IO = M)+

— (M ©-M,©)
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SIMPLIFICATION OF THE TRANSPORT EQUA_

@ Recalling that Z is constant per cell

o Then Y(t,2) € [tn,tns1[X mi
Z'(x) =0

Of+€-0f = 0
f(tn,:c,g)

Mtn, 2,€) "< /R ) <€—U<tnw€)>

h(t, z)
by neglecting the collision kernel.

e ie.
At"

o = M

- M)

l
+3

n 1
(Y (1)
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SIMPLIFICATION OF THE TRANSPORT EQUA_

@ Recalling that Z is constant per cell

o Then Y(t,2) € [tn,tns1[X mi
Z'(x) =0

Of+€-0f = 0
f(tn,:c,g)

Mtn, 2,€) "< /R ) <€—U<tnw€)>

h(t, z)
by neglecting the collision kernel.

e ie.

n At" _
SO = ME©) + €5 (M, O - MP,(©)
o ie.
n n Ao 1
U = U7 = 88 (- £ ) w2, = [ g ( . ) My (Ot
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FIGURE: “Dam break in presence of air in a closed water pipe.”
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CONCLUSION

o Existence of a convex entropy function = admissible weak solutions
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CONCLUSION

CONCLUSION

o Existence of a convex entropy function = admissible weak solutions

e System is hyperbolic even for large relative speed
o Advantages of the kinetic scheme :

>

| 2
>
>

easy implementation

no use of eigenvalues = computation in non hyperbolic region
apparition of vaccum, drying and flooding are obtained
equilibrium states are well-approximated

M. Ersoy (IMATH) Air entrainment in transient flows NTM

3233



CONCLUSION & PERSPECTIVES

CONCLUSION

o Existence of a convex entropy function = admissible weak solutions

@ System is hyperbolic even for large relative speed
o Advantages of the kinetic scheme :

>

| 2
>
>

easy implementation

no use of eigenvalues = computation in non hyperbolic region
apparition of vaccum, drying and flooding are obtained
equilibrium states are well-approximated

A LOT OF THINGS ...TO DO

@ air entrapment and mixed flows

@ more realistic models based on
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TOTAL HEAD

THEOREM

For smooth solutions, the velocities u and v satisfy

v? c2
atv‘f'aa:(?'i"y_l) O,
2 M
6‘tu+3( + ghw (A)cos@—l—gZ—i—TA)) = 0.
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THE MICROSCOPIC FLUXES
INTERPRETATION : POTENTIAL BAREER

positive transmission
—N—
ir128) = LgesoyMi'(§)

r 1{£<0,52—29A¢;;1/2>0}M?+1 (*\/52 & 29A¢’?+1/2)

negative transmission

¥
Ml+1/2 W Mz+1/z
----------------------------- >
________ Zit1
ot
n
ARY )
barriere de potentiel
Z,
E A 1 4N
ZT
ZT; E) v
Ti-1/2 f il 2 Tits/2
: Miy

AD; /9= AZ; 19 = Ziy1 — Z;
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THE MICROSCOPIC FLUXES
INTERPRETATION : POTENTIAL BAREER

positive transmission reflection
i+12(8) = LiesapMi(€)  +Leco e2-29n07, <0y Mi' (=€)

+ Lieco, 220007, , 500 Mt (*\/52 ~ 29A¢’?+1/2)

negative transmission

AZ
Mt+1/2 M:rﬂ/z

Zi+1

®?+1/2

A
q\q\ barriere de potentiel

Ti-1/2

A‘1’1‘4-1/2 = AZi+1/2 —Zit1~ Z;
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THE MICROSCOPIC FLUXES
INTERPRETATION : POTENTIAL BAREER

positive transmission reflection
128 = LgesopMi(§)  + 11{§<0,5272gA<1>ZTL+1/2<0}M?(_£)
" 1{£<0,52—2gA<I>;‘+1/2>0}M?+1 (* E2 29A¢’?+1/2)

negative transmission

AZ

@TL
i+1/2
barriere de potentiel

Tit1/2

M3 M

7

El
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