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Air entrainment

The air entrainment

appears in the transient flow in closed pipes not completely filled : the liquid flow (as
well as the air flow) is free surface.

may lead to two-phase flows for transition : free surface flows → pressurized flows.

may cause severe damage due to the pressure surge.

(a) Settings

(b) Sewers . . . in Paris (c) Forced
pipe

(d) . . . at Minne-
sota http://www.
sewerhistory.org/
grfx/misc/disaster.htm
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Previous works

the homogeneous model : a single fluid is considered where sound speed depends on
the fraction of air
M. H. Chaudhry et al. 1990 and Wylie an Streeter 1993.

the drift-flux model : the velocity fields are expressed in terms of the mixture
center-of-mass velocity and the drift velocity of the vapor phase
Ishii et al. 2003, Faille and Heintze 1999.

the two-fluid model : a compressible and incompressible model are coupled via the
interface. PDE of 6 equations
Tiselj, Petelin et al. 1997, 2001.

the rigid water column :
Hamam and McCorquodale 1982, Zhou, Hicks et al 2002.

the PFS equations (Ersoy et al, IJFV 2009, JSC 2011).

the two layer model (Ersoy et al M2AN 2013).
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Mathematical problems

and numerical problems

Almost all previous models introduce several mathematical and numerical difficulties
such as

I the ill-posedness
I the presence of discontinuous fluxes
I the loss of hyperbolicity (eigenvalues may become complex)

The last one is the problem analyzed here for a two-layer problem :
I any consistent finite difference scheme is unconditionally unstable
I any consistent finite volume scheme (based on eigenvalues) is useless

⇒ Kelvin-Helmholtz instability, for which the two-layer model is not a priori
suitable :

Figure: Kelvin-Helmholtz instability (source : wiki Kelvin-Helmholtz instability)
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Settings

Figure: Geometric characteristics of the domain.

We have then the first natural coupling :

Hw(t, x) +Ha(t, x) = 2R(x) .
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Fluid layer : incompressible Euler’s Equations (Gerbeau, Perthame, 2001)

Incompressible Euler’s equations

div(ρ0Uw) = 0, on R× Ωt,w
∂t(ρ0Uw) + div(ρ0Uw ⊗Uw) +∇Pw = ρ0F, on R× Ωt,w

where Uw(t, x, y, z) = (Uw, Vw,Ww) the velocity, Pw(t, x, y, z) the pressure, F the
gravity strength.

Write non dimensional form of Euler equations using the parameter ε = H/L� 1
and takes ε = 0.
Equality of the pressure of air and water Pa = Pw at the free surface interface.
Section averaging ρU ≈ ρU and U2 ≈ U U .

Introduce A(t, x) =

∫
Ωw

dydz, u(t, x) =
1

A(t, x)

∫
Ωw

Uw(t, x, y, z) dydz, and

Q(t, x) = A(t, x)u(t, x).

Figure: Cross-section of the domain
M. Ersoy (IMATH) Air entrainment in transient flows NTM 12 / 33
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Fluid layer model

Fluid layer model

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+APa(ρ)/ρ0 + gI1(x,A) cos θ

)
= −gA∂xZ

+gI2(x,A) cos θ

+Pa(ρ)/ρ0 ∂xA

where

the hydrostatic pressure : I1(x,A) =

∫ hw

−R
(hw − z)σ(x, z) dz,

the pressure source term : I2(x,A) =

∫ hw

−R
(hw − z)∂xσ(x, z) dz ,

the air pressure : Pa.
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Air Layer : compressible Euler’s Equations

Compressible Euler’s equations

∂tρa + div(ρaUa) = 0, on R× Ωt,a
∂t(ρaUa) + div(ρaUa ⊗Ua) +∇Pa = 0, on R× Ωt,a

with
Pa(ρ) = k ργ with k =

pa
ργa

where γ is set to 7/5.

where Ua(t, x, y, z) = (Ua, Va,Wa) the velocity, Pa(t, x, y, z) the pressure, ρa(t, x, y, z)
the density.

Write non dimensional form of Euler equations using the parameter ε = H/L� 1
and takes ε = 0.

Equality of the pressure of air and water Pa = Pw at the free surface interface.

Section averaging Averaged nonlinearity ∼ Nonlinearity of the averaged.

Introduce A(t, x) =

∫
Ωa

dydz, uv(t, x) =
1

A(t, x)

∫
Ωa

Ua(t, x, y, z) dydz,

M = ρ/ρ0A, D = Mv and c2a =
∂p

∂ρ
= kγ

(
ρ0M

A

)γ−1

.
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Air layer model : mean value on Ωa

Air layer model
∂tM + ∂xD = 0

∂tD + ∂x

(
D2

M
+
M

γ
c2a

)
=

M

γ
c2a ∂x(A)

.

where

the γ pressure :
M

γ
c2a,

the pressure source term :
M

γ
c2a ∂x(A).
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The two-layer model

A+A = S where S = S(x) denotes the pipe section

Two-layer model



∂tM + ∂xD = 0

∂tD + ∂x

(
D2

M
+
M

γ
c2a

)
=

M

γ
c2a ∂x(S −A)

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+ gI1(x,A) cos θ +

A

(S −A)

M

γ
c2a

)
= −gA∂xZ

+gI2(x,A) cos θ

+
A

(S −A)

M

γ
c2a ∂xA

.

M. Ersoy (IMATH) Air entrainment in transient flows NTM 18 / 33



Outline
Outline

1 Physical and mathematical motivations
Air entrainement
Previous works

2 The two layer model
Fluid Layer : incompressible Euler’s Equations
Air Layer : compressible Euler’s Equations
The two-layer model
Properties

3 Numerical approximation
The kinetic scheme
A numerical experiment

M. Ersoy (IMATH) Air entrainment in transient flows NTM 19 / 33



Mathematical entropy and energetically closed system

1 Energies

Ea =
Mv2

2
+

c2aM

γ(γ − 1)
and Ew =

Au2

2
+ gA(hw − I1(x,A)/A) cos θ + gAZ

satisfy the following entropy flux equalities :

∂tEa + ∂xHa =
c2aM

γ(S −A)
∂tA

and

∂tEw + ∂xHw = − c2aM

γ(S −A)
∂tA

where

Ha =

(
Ea +

c2aM

γ

)
v and Hw =

(
Ew + gI1(x,A) cos θ +A

c2aM

(S −A)

)
u .

2 The total energy satisfies
∂tE + ∂xH = .
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Mathematical entropy and energetically closed system

1 Energies

Ea =
Mv2

2
+

c2aM

γ(γ − 1)
and Ew =

Au2

2
+ gA(hw − I1(x,A)/A) cos θ + gAZ

satisfy the following entropy flux equalities :

∂tEa + ∂xHa =
c2aM

γ(S −A)
∂tA

and

∂tEw + ∂xHw = − c2aM

γ(S −A)
∂tA

where

Ha =

(
Ea +

c2aM

γ

)
v and Hw =

(
Ew + gI1(x,A) cos θ +A

c2aM

(S −A)

)
u .

2 The total energy satisfies
∂tE + ∂xH = 0 .
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A conditionally hyperbolic system : eigenstructure

Quasi-linear form : W = (M,D,A,Q)t

∂tW +D(x,W)∂XW = 0

with

D =


0 1 0 0

c2a − v2 2v
M

S −Ac
2
a 0

0 0 0 1
A

(S −A)
c2a 0 c2w +

AM

(S −A)2
c2a − u2 2u


where cm := c2w +

AM

(S −A)2
c2a : water sound speed under the air effect.

Writing

F =
v − u
cm

,
√
H =

ca
cm

, cm =
√
c2w + sc2a with s =

AM

(S −A)2
> 0 ,

the characteristic polynom reads P (x = λ/cm) =

x4 − 2(2 + F )x3 + ((1 + F )(5 + F )−H)x2 + 2
(
H − (1 + F )2)x− sH2

where λ stands for an eigenvalue of D.
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Conditional hyperbolicity of the two-layer system

Theorem (Fuller, IEEE Trans. Automat. Control, 81)

All the root of Equation P are real if and only if one of the following conditions holds :

(i) ∆3 > 0, ∆5 > 0 and ∆7 > 0,

(ii) ∆3 > 0, ∆5 = 0 and ∆7 = 0

where ∆3, ∆5, ∆7 are the inner determinant of the discriminant of P .

From physical consideration, ∆3 > 0 and ∆5 > 0 =⇒ hyperbolic ⇐⇒ ∆7 > 0.
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Theorem (Fuller, IEEE Trans. Automat. Control, 81)

All the root of Equation P are real if and only if one of the following conditions holds :

(i) ∆3 > 0, ∆5 > 0 and ∆7 > 0,

(ii) ∆3 > 0, ∆5 = 0 and ∆7 = 0

where ∆3, ∆5, ∆7 are the inner determinant of the discriminant of P .

From physical consideration, ∆3 > 0 and ∆5 > 0 =⇒ hyperbolic ⇐⇒ ∆7 > 0.

i.e.

(a) ymin < 0 (b) ymin > 0

Figure: Behavior of the polynomial ∆7(y)
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Conditional hyperbolicity of the two-layer system

Theorem (Fuller, IEEE Trans. Automat. Control, 81)

All the root of Equation P are real if and only if one of the following conditions holds :

(i) ∆3 > 0, ∆5 > 0 and ∆7 > 0,

(ii) ∆3 > 0, ∆5 = 0 and ∆7 = 0

where ∆3, ∆5, ∆7 are the inner determinant of the discriminant of P .

From physical consideration, ∆3 > 0 and ∆5 > 0 =⇒ hyperbolic ⇐⇒ ∆7 > 0.

Then,

Theorem (Ersoy et al., M2AN,13)

The two-layer system is strictly hyperbolic if
I y = F 2 > F 2

max := y2
max ⇐⇒ large relative speed

I ymin > 0 and 0 6 F 2 6 ymin = F 2
min ⇐⇒ small relative speed

where s =
ρ

ρ0

A

S −A ∼
ρ2

ρ1
< 1 as in the two-layer shallows water equations.
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Hyperbolic region : examples

(a) large relative speed (ρ = 1000
(air density), F x-axis and A y-
axis)

(b) Small relative speed(Zoom
on :ρ = 1000, F x-axis and A y-
axis)

(c) ρ = 10, F x-axis and Ay-axis

Figure: black grey = non hyperbolic region

As a consequence

system may lose its hyperbolicity.

solver based on the computation of eigenvalues are useless.
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Kinetic interpretation

As in gas theory,
Describe the macroscopic behavior from particle motions, here, assumed fictitious by

introducing
{ a χ density function and

a M(t, x, ξ;χ) maxwellian function (or a Gibbs equilibrium)

i.e., transform the nonlinear system into a kinetic transport equation on M.
Thus, to be able to define the numerical macroscopic fluxes from the microscopic one.

...Faire d’une pierre deux coups...
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Principle

Density function

We introduce

χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,
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Principle

Gibbs Equilibrium or Maxwellian

We introduce

χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,

then we define the Gibbs equilibrium by

M(t, x, ξ) =
A

b
χ

(
ξ − u
b

)
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Principle

Gibbs Equilibrium or Maxwellian

We introduce

χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,

then we define the Gibbs equilibrium by

M(t, x, ξ) =
A

b
χ

(
ξ − u
b

)
then

micro-macroscopic relations

A =

∫
R
M(t, x, ξ) dξ

Au =

∫
R
ξM(t, x, ξ) dξ

Au2 +Ab2 =

∫
R
ξ2M(t, x, ξ) dξ
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Kinetic interpretation

The kinetic formulation [Perthame, Oxford Lect. Ser. in Math. and its Applic., 02]

(A,Q) is solution of the (air or water) system if and only if M satisfies the transport
equation :

∂tM+ ξ · ∂xM− gΦ ∂ξM = K(t, x, ξ)

where K(t, x, ξ) is a collision kernel satisfying a.e. (t, x)∫
R
K dξ = 0 ,

∫
R
ξKd ξ = 0

and Φ are the source terms.
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Kinetic interpretation

The kinetic formulation [Perthame, Oxford Lect. Ser. in Math. and its Applic., 02]

(A,Q) is solution of the (air or water) system if and only if M satisfies the transport
equation :

∂tM+ ξ · ∂xM− gΦ ∂ξM = K(t, x, ξ)

where K(t, x, ξ) is a collision kernel satisfying a.e. (t, x)∫
R
K dξ = 0 ,

∫
R
ξKd ξ = 0

and Φ are the source terms.

General form of the source terms :

Φ =

conservative︷ ︸︸ ︷
d

dx
Z +

non conservative︷ ︸︸ ︷
B · d

dx
W +

friction︷ ︸︸ ︷
K
Q|Q|
A2

conservative term : classical upwind

non conservative term : mid point rule (DLM, 95)

friction : dynamic topography (Ersoy, Ph.D.)

M. Ersoy (IMATH) Air entrainment in transient flows NTM 28 / 33



Discretization of source terms (for the sake of simplicity, consider only Z)

Recalling that Z is constant per cell

Then ∀(t, x) ∈ [tn, tn+1[× ◦
mi

Z′(x) = 0
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Simplification of the transport equation

Recalling that Z is constant per cell

Then ∀(t, x) ∈ [tn, tn+1[× ◦
mi

Z′(x) = 0

=⇒
∂tM+ ξ · ∂xM = K(t, x, ξ)
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Simplification of the transport equation

Recalling that Z is constant per cell

Then ∀(t, x) ∈ [tn, tn+1[× ◦
mi

Z′(x) = 0

=⇒ 
∂tf + ξ · ∂xf = 0

f(tn, x, ξ) = M(tn, x, ξ)
def
:=
√
h(t, x)χ

(
ξ − u(tn, x, ξ)√

h(t, x)

)
by neglecting the collision kernel.
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f(tn, x, ξ) = M(tn, x, ξ)
def
:=
√
h(t, x)χ

(
ξ − u(tn, x, ξ)√

h(t, x)

)
by neglecting the collision kernel.

i.e.

fn+1
i (ξ) =Mn

i (ξ) + ξ
∆tn

∆x

(
M−

i+ 1
2
(ξ)−M+

i− 1
2
(ξ)
)
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∂tf + ξ · ∂xf = 0

f(tn, x, ξ) = M(tn, x, ξ)
def
:=
√
h(t, x)χ

(
ξ − u(tn, x, ξ)√

h(t, x)

)
by neglecting the collision kernel.

i.e.

fn+1
i (ξ) =Mn

i (ξ) + ξ
∆tn

∆x

(
M−

i+ 1
2
(ξ)−M+

i− 1
2
(ξ)
)

i.e.

Un+1
i =

(
An+1
i

Qn+1
i

)
def
:=

∫
R

(
1
ξ

)
fn+1
i (ξ) dξ
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Simplification of the transport equation

Recalling that Z is constant per cell

Then ∀(t, x) ∈ [tn, tn+1[× ◦
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Z′(x) = 0
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f(tn, x, ξ) = M(tn, x, ξ)
def
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√
h(t, x)χ

(
ξ − u(tn, x, ξ)√

h(t, x)

)
by neglecting the collision kernel.

i.e.

fn+1
i (ξ) =Mn

i (ξ) + ξ
∆tn

∆x

(
M−

i+ 1
2
(ξ)−M+

i− 1
2
(ξ)
)

i.e.

Un+1
i = Un

i −
∆tn

∆x

(
F−i+1/2 − F

+
i−1/2

)
with F±

i± 1
2

=

∫
R
ξ

(
1
ξ

)
M±

i± 1
2
(ξ) dξ.
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De l’air dans les tuyaux

Figure:“Dam break in presence of air in a closed water pipe.”
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Conclusion

& Perspectives

Conclusion

Existence of a convex entropy function ⇒ admissible weak solutions

System is hyperbolic even for large relative speed

Advantages of the kinetic scheme :

I easy implementation
I no use of eigenvalues ⇒ computation in non hyperbolic region
I apparition of vaccum, drying and flooding are obtained
I equilibrium states are well-approximated

a lot of things . . . to do

air entrapment and mixed flows

more realistic models based on
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Thank you
Thank you

for your
for your

attention
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n
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inner determinant

∆3 =

 a0 a1 a2

0 4a0 3a1

4a0 3a1 2a2

 , ∆5 =


a0 a1 a2 a3 a4

0 a0 a1 a2 a3

0 0 4a0 3a1 2a2

0 4a0 3a1 2a2 a3

4a0 3a1 2a2 a3 0

 ,

∆7 =



a0 a1 a2 a3 a4 0 0
0 a0 a1 a2 a3 a4 0
0 0 a0 a1 a2 a3 a4

0 0 0 4a0 3a1 2a2 a3

0 0 4a0 3a1 2a2 a3 0
0 4a0 3a1 2a2 a3 0 0

4a0 3a1 2a2 a3 0 0 0


.
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Total head

Theorem

For smooth solutions, the velocities u and v satisfy

∂tv + ∂x

(
v2

2
+

c2a
γ − 1

)
= 0 ,

∂tu+ ∂x

(
u2

2
+ ghw(A) cos θ + gZ +

c2aM

γ(S −A)

)
= 0 .
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The microscopic fluxes

Interpretation : potential bareer

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ)

+

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}M

n
i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}M
n
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φi+1/2 := ∆Zi+1/2 = Zi+1 − Zi

M. Ersoy (IMATH) Air entrainment in transient flows NTM 33 / 33



The microscopic fluxes

Interpretation : potential bareer

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ) +

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}M

n
i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}M
n
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φi+1/2 := ∆Zi+1/2 = Zi+1 − Zi

M. Ersoy (IMATH) Air entrainment in transient flows NTM 33 / 33



The microscopic fluxes

Interpretation : potential bareer

M−i+1/2(ξ) =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ) +

reflection︷ ︸︸ ︷
1{ξ<0, ξ2−2g∆Φn

i+1/2
<0}M

n
i (−ξ)

+ 1{ξ<0, ξ2−2g∆Φn
i+1/2

>0}M
n
i+1

(
−
√
ξ2 − 2g∆Φni+1/2

)
︸ ︷︷ ︸

negative transmission

∆Φi+1/2 := ∆Zi+1/2 = Zi+1 − Zi

M. Ersoy (IMATH) Air entrainment in transient flows NTM 33 / 33


	Physical and mathematical motivations
	Air entrainement
	Previous works

	The two layer model
	Fluid Layer : incompressible Euler's Equations
	Air Layer : compressible Euler's Equations
	The two-layer model
	Properties

	Numerical approximation
	The kinetic scheme
	A numerical experiment




