

Air entrainment in transient flows in closed water pipes: A two-layer approach.

Mehmet Ersoy¹

joint work with C. Bourdarias and S. Gerbi, LAMA, Chambéry, France

NTM, Porquerolles, June 2013

^{1.} Mehmet.Ersoy@univ-tln.fr and http://ersoy.univ-tln.fr

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

PHYSICAL AND MATHEMATICAL MOTIVATIONS Air entrainement

• Previous works

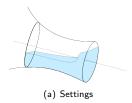
2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

The air entrainment

• appears in the transient flow in closed pipes not completely filled : the liquid flow (as well as the air flow) is free surface.



The air entrainment

- appears in the transient flow in closed pipes not completely filled : the liquid flow (as well as the air flow) is free surface.
- ullet may lead to two-phase flows for transition : free surface flows \rightarrow pressurized flows.

The air entrainment

- appears in the transient flow in closed pipes not completely filled : the liquid flow (as well as the air flow) is free surface.
- ullet may lead to two-phase flows for transition : free surface flows \rightarrow pressurized flows.
- may cause severe damage due to the pressure surge.

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

 the homogeneous model : a single fluid is considered where sound speed depends on the fraction of air
 M. H. Chaudhry *et al.* 1990 and Wylie an Streeter 1993.

PREVIOUS WORKS

- the homogeneous model : a single fluid is considered where sound speed depends on the fraction of air
 M. H. Chaudhry *et al.* 1990 and Wylie an Streeter 1993.
- the drift-flux model : the velocity fields are expressed in terms of the mixture center-of-mass velocity and the drift velocity of the vapor phase Ishii *et al.* 2003, Faille and Heintze 1999.

- the homogeneous model : a single fluid is considered where sound speed depends on the fraction of air
 M. H. Chaudhry *et al.* 1990 and Wylie an Streeter 1993.
- the drift-flux model : the velocity fields are expressed in terms of the mixture center-of-mass velocity and the drift velocity of the vapor phase Ishii *et al.* 2003, Faille and Heintze 1999.
- the two-fluid model : a compressible and incompressible model are coupled via the interface. PDE of 6 equations Tiselj, Petelin *et al.* 1997, 2001.

- the homogeneous model : a single fluid is considered where sound speed depends on the fraction of air
 M. H. Chaudhry *et al.* 1990 and Wylie an Streeter 1993.
- the drift-flux model : the velocity fields are expressed in terms of the mixture center-of-mass velocity and the drift velocity of the vapor phase Ishii *et al.* 2003, Faille and Heintze 1999.
- the two-fluid model : a compressible and incompressible model are coupled via the interface. PDE of 6 equations Tiselj, Petelin *et al.* 1997, 2001.
- the rigid water column :

Hamam and McCorquodale 1982, Zhou, Hicks et al 2002.

- the homogeneous model : a single fluid is considered where sound speed depends on the fraction of air
 M. H. Chaudhry *et al.* 1990 and Wylie an Streeter 1993.
- the drift-flux model : the velocity fields are expressed in terms of the mixture center-of-mass velocity and the drift velocity of the vapor phase Ishii *et al.* 2003, Faille and Heintze 1999.
- the two-fluid model : a compressible and incompressible model are coupled via the interface. PDE of 6 equations Tiselj, Petelin *et al.* 1997, 2001.
- the rigid water column : Hamam and McCorquodale 1982, Zhou, Hicks *et al* 2002.
- the PFS equations (Ersoy et al, IJFV 2009, JSC 2011).

- the homogeneous model : a single fluid is considered where sound speed depends on the fraction of air
 M. H. Chaudhry *et al.* 1990 and Wylie an Streeter 1993.
- the drift-flux model : the velocity fields are expressed in terms of the mixture center-of-mass velocity and the drift velocity of the vapor phase Ishii *et al.* 2003, Faille and Heintze 1999.
- the two-fluid model : a compressible and incompressible model are coupled via the interface. PDE of 6 equations Tiselj, Petelin *et al.* 1997, 2001.
- the rigid water column : Hamam and McCorquodale 1982, Zhou, Hicks *et al* 2002.
- the PFS equations (Ersoy et al, IJFV 2009, JSC 2011).
- the two layer model (Ersoy et al M2AN 2013).

- Almost all previous models introduce several mathematical and numerical difficulties such as
 - the ill-posedness
 - the presence of discontinuous fluxes
 - the loss of hyperbolicity (eigenvalues may become complex)

- Almost all previous models introduce several mathematical and numerical difficulties such as
 - the ill-posedness
 - the presence of discontinuous fluxes
 - the loss of hyperbolicity (eigenvalues may become complex)
- The last one is the problem analyzed here for a two-layer problem :
 - any consistent finite difference scheme is unconditionally unstable
 - any consistent finite volume scheme (based on eigenvalues) is useless

- Almost all previous models introduce several mathematical and numerical difficulties such as
 - the ill-posedness
 - the presence of discontinuous fluxes
 - the loss of hyperbolicity (eigenvalues may become complex)
- The last one is the problem analyzed here for a two-layer problem :
 - any consistent finite difference scheme is unconditionally unstable
 - any consistent finite volume scheme (based on eigenvalues) is useless

- Almost all previous models introduce several mathematical and numerical difficulties such as
 - the ill-posedness
 - the presence of discontinuous fluxes
 - the loss of hyperbolicity (eigenvalues may become complex)
- The last one is the problem analyzed here for a two-layer problem :
 - any consistent finite difference scheme is unconditionally unstable
 - any consistent finite volume scheme (based on eigenvalues) is useless

- Almost all previous models introduce several mathematical and numerical difficulties such as
 - the ill-posedness
 - the presence of discontinuous fluxes
 - the loss of hyperbolicity (eigenvalues may become complex)
- The last one is the problem analyzed here for a two-layer problem :
 - any consistent finite difference scheme is unconditionally unstable
 - any consistent finite volume scheme (based on eigenvalues) is useless
- $\bullet \Rightarrow$ Kelvin-Helmholtz instability, for which the two-layer model is not a priori suitable :

FIGURE: Kelvin-Helmholtz instability (source : wiki Kelvin-Helmholtz instability)

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

Settings

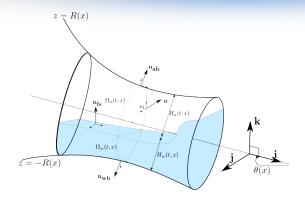


FIGURE: Geometric characteristics of the domain.

We have then the first natural coupling :

$$H_w(t,x) + H_a(t,x) = 2R(x).$$

- Air entrainement
- Previous works

2 The two layer model

• Fluid Layer : incompressible Euler's Equations

- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

FLUID LAYER : INCOMPRESSIBLE EULER'S EQUATIONS (GERBEAU, PERTHAME, 2001)

Incompressible Euler's equations

$$\begin{aligned} \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}}) &= 0, \quad \text{on } \mathbb{R} \times \Omega_{t,u} \\ \partial_t(\rho_0 \mathbf{U}_{\mathbf{w}}) + \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}} \otimes \mathbf{U}_{\mathbf{w}}) + \nabla P_w &= \rho_0 \mathbf{F}, \quad \text{on } \mathbb{R} \times \Omega_{t,u} \end{aligned}$$

where $\mathbf{U}_{\mathbf{w}}(t, x, y, z) = (U_w, V_w, W_w)$ the velocity, $P_w(t, x, y, z)$ the pressure, \mathbf{F} the gravity strength.

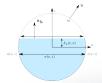


FIGURE: Cross-section of the domain

ir entrainment in transient flow:

$$\begin{aligned} \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}}) &= 0, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \\ \partial_t(\rho_0 \mathbf{U}_{\mathbf{w}}) + \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}} \otimes \mathbf{U}_{\mathbf{w}}) + \nabla P_w &= \rho_0 \mathbf{F}, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \end{aligned}$$

where $\mathbf{U}_{\mathbf{w}}(t, x, y, z) = (U_w, V_w, W_w)$ the velocity, $P_w(t, x, y, z)$ the pressure, \mathbf{F} the gravity strength.

- Write non dimensional form of Euler equations using the parameter $\epsilon = H/L \ll 1$ and takes $\epsilon = 0$.
- Equality of the pressure of air and water $P_a = P_w$ at the free surface interface.
- Section averaging $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{U^2} \approx \overline{U} \overline{U}$.
- Introduce $A(t,x) = \int_{\Omega_w} dy dz$, $u(t,x) = \frac{1}{A(t,x)} \int_{\Omega_w} U_w(t,x,y,z) dy dz$, and Q(t,x) = A(t,x)u(t,x).

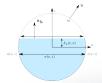


FIGURE: Cross-section of the domain

$$\begin{aligned} \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}}) &= 0, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \\ \partial_t(\rho_0 \mathbf{U}_{\mathbf{w}}) + \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}} \otimes \mathbf{U}_{\mathbf{w}}) + \nabla P_w &= \rho_0 \mathbf{F}, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \end{aligned}$$

where $\mathbf{U}_{\mathbf{w}}(t, x, y, z) = (U_w, V_w, W_w)$ the velocity, $P_w(t, x, y, z)$ the pressure, F the gravity strength.

- Write non dimensional form of Euler equations using the parameter $\epsilon = H/L \ll 1$ and takes $\epsilon = 0$.
- Equality of the pressure of air and water $P_a = P_w$ at the free surface interface.
- Section averaging $\overline{\rho U} \approx \overline{\rho U}$ and $\overline{U^2} \approx \overline{U} \overline{U}$. Introduce $A(t,x) = \int_{\Omega} dy dz$, $u(t,x) = \frac{1}{A(t,x)} \int_{\Omega} U_w(t,x,y,z) dy dz$, and Q(t, x) = A(t, x)u(t, x).

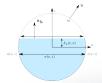


FIGURE: Cross-section of the domain

$$\begin{aligned} \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}}) &= 0, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \\ \partial_t(\rho_0 \mathbf{U}_{\mathbf{w}}) + \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}} \otimes \mathbf{U}_{\mathbf{w}}) + \nabla P_w &= \rho_0 \mathbf{F}, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \end{aligned}$$

where $\mathbf{U}_{\mathbf{w}}(t, x, y, z) = (U_w, V_w, W_w)$ the velocity, $P_w(t, x, y, z)$ the pressure, F the gravity strength.

- Write non dimensional form of Euler equations using the parameter $\epsilon = H/L \ll 1$ and takes $\epsilon = 0$.
- Equality of the pressure of air and water $P_a = P_w$ at the free surface interface.
- Section averaging $\overline{\rho U} \approx \overline{\rho U}$ and $\overline{U^2} \approx \overline{U} \overline{U}$. Introduce $A(t,x) = \int_{\Omega_w} dy dz$, $u(t,x) = \frac{1}{A(t,x)} \int_{\Omega_w} U_w(t,x,y,z) dy dz$, and Q(t, x) = A(t, x)u(t, x).

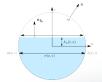


FIGURE: Cross-section of the domain Air entrainment in transient flows

$$\begin{aligned} \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}}) &= 0, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \\ \partial_t(\rho_0 \mathbf{U}_{\mathbf{w}}) + \operatorname{div}(\rho_0 \mathbf{U}_{\mathbf{w}} \otimes \mathbf{U}_{\mathbf{w}}) + \nabla P_w &= \rho_0 \mathbf{F}, & \operatorname{on} \ \mathbb{R} \times \Omega_{t,w} \end{aligned}$$

where $\mathbf{U}_{\mathbf{w}}(t, x, y, z) = (U_w, V_w, W_w)$ the velocity, $P_w(t, x, y, z)$ the pressure, F the gravity strength.

- Write non dimensional form of Euler equations using the parameter $\epsilon = H/L \ll 1$ and takes $\epsilon = 0$.
- Equality of the pressure of air and water $P_a = P_w$ at the free surface interface.
- Section averaging $\overline{\rho U} \approx \overline{\rho U}$ and $\overline{U^2} \approx \overline{U} \overline{U}$. Introduce $A(t,x) = \int_{\Omega} dy dz$, $u(t,x) = \frac{1}{A(t,x)} \int_{\Omega} U_w(t,x,y,z) dy dz$, and Q(t,x) = A(t,x)u(t,x).

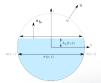


FIGURE: Cross-section of the domain Air entrainment in transient flows

FLUID LAYER MODEL

FLUID LAYER MODEL

$$\begin{pmatrix} \partial_t A + \partial_x Q &= 0\\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + A P_a(\overline{\rho}) / \rho_0 + g I_1(x, A) \cos \theta \right) &= -g A \partial_x Z \\ + g I_2(x, A) \cos \theta \\ + P_a(\overline{\rho}) / \rho_0 \partial_x A \end{cases}$$

where

the hydrostatic pressure :
$$I_1(x, A) = \int_{-R}^{h_w} (h_w - z)\sigma(x, z) dz$$
,
the pressure source term : $I_2(x, A) = \int_{-R}^{h_w} (h_w - z)\partial_x \sigma(x, z) dz$,
the air pressure : P_a .

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

$$\begin{array}{lll} \partial_t \rho_a + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}}) &=& 0, \quad \text{on } \mathbb{R} \times \Omega_{t,a} \\ \partial_t (\rho_a \mathbf{U}_{\mathbf{a}}) + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}} \otimes \mathbf{U}_{\mathbf{a}}) + \nabla P_a &=& 0, \quad \text{on } \mathbb{R} \times \Omega_{t,a} \end{array}$$

where $\mathbf{U}_{\mathbf{a}}(t,x,y,z) = (U_a,V_a,W_a)$ the velocity, $P_a(t,x,y,z)$ the pressure, $\rho_a(t,x,y,z)$ the density.

Air Layer : compressible Euler's Equations

Compressible Euler's equations

$$\begin{array}{lll} \partial_t \rho_a + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}}) &=& 0, & \text{on } \mathbb{R} \times \Omega_{t,a} \\ \partial_t (\rho_a \mathbf{U}_{\mathbf{a}}) + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}} \otimes \mathbf{U}_{\mathbf{a}}) + \nabla P_a &=& 0, & \text{on } \mathbb{R} \times \Omega_{t,a} \end{array}$$

with

$$P_a(\rho) = k \rho^{\gamma}$$
 with $k = \frac{p_a}{\rho_a^{\gamma}}$ where γ is set to 7/5.

where $\mathbf{U}_{\mathbf{a}}(t,x,y,z) = (U_a,V_a,W_a)$ the velocity, $P_a(t,x,y,z)$ the pressure, $\rho_a(t,x,y,z)$ the density.

AIR LAYER : COMPRESSIBLE EULER'S EQUATIONS

Compressible Euler's equations

$$\begin{array}{lll} \partial_t \rho_a + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}}) &=& 0, & \text{on } \mathbb{R} \times \Omega_{t,a} \\ \partial_t (\rho_a \mathbf{U}_{\mathbf{a}}) + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}} \otimes \mathbf{U}_{\mathbf{a}}) + \nabla P_a &=& 0, & \text{on } \mathbb{R} \times \Omega_{t,a} \end{array}$$

with

$$P_a(\rho) = k \rho^{\gamma}$$
 with $k = \frac{p_a}{\rho_a^{\gamma}}$ where γ is set to 7/5.

where $\mathbf{U}_{\mathbf{a}}(t, x, y, z) = (U_a, V_a, W_a)$ the velocity, $P_a(t, x, y, z)$ the pressure, $\rho_a(t, x, y, z)$ the density.

- Write non dimensional form of Euler equations using the parameter $\epsilon = H/L \ll 1$ and takes $\epsilon = 0$.
- Equality of the pressure of air and water $P_a = P_w$ at the free surface interface.
- ullet Section averaging Averaged nonlinearity \sim Nonlinearity of the averaged.

• Introduce
$$\mathcal{A}(t,x) = \int_{\Omega_a} dy dz$$
, $uv(t,x) = \frac{1}{\mathcal{A}(t,x)} \int_{\Omega_a} U_a(t,x,y,z) dy dz$,
 $M = \overline{\rho}/\rho_0 \mathcal{A}$, $D = Mv$ and $c_a^2 = \frac{\partial p}{\partial \rho} = k\gamma \left(\frac{\rho_0 M}{\mathcal{A}}\right)^{\gamma-1}$.

Air Layer : compressible Euler's Equations

Compressible Euler's equations

$$\begin{array}{lll} \partial_t \rho_a + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}}) &=& 0, & \text{on } \mathbb{R} \times \Omega_{t,a} \\ \partial_t (\rho_a \mathbf{U}_{\mathbf{a}}) + \operatorname{div}(\rho_a \mathbf{U}_{\mathbf{a}} \otimes \mathbf{U}_{\mathbf{a}}) + \nabla P_a &=& 0, & \text{on } \mathbb{R} \times \Omega_{t,a} \end{array}$$

with

$$P_a(\rho) = k \rho^{\gamma}$$
 with $k = \frac{p_a}{\rho_a^{\gamma}}$ where γ is set to 7/5.

where $\mathbf{U}_{\mathbf{a}}(t,x,y,z) = (U_a,V_a,W_a)$ the velocity, $P_a(t,x,y,z)$ the pressure, $\rho_a(t,x,y,z)$ the density.

- Write non dimensional form of Euler equations using the parameter $\epsilon=H/L\ll 1$ and takes $\epsilon=0.$
- Equality of the pressure of air and water $P_a = P_w$ at the free surface interface.
- ullet Section averaging Averaged nonlinearity \sim Nonlinearity of the averaged.

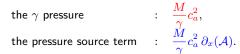
• Introduce
$$\mathcal{A}(t,x) = \int_{\Omega_a} dy dz$$
, $uv(t,x) = \frac{1}{\mathcal{A}(t,x)} \int_{\Omega_a} U_a(t,x,y,z) dy dz$,
 $M = \overline{\rho}/\rho_0 \mathcal{A}$, $D = Mv$ and $c_a^2 = \frac{\partial p}{\partial \rho} = k\gamma \left(\frac{\rho_0 M}{\mathcal{A}}\right)^{\gamma-1}$.

Air layer model : mean value on Ω_a

AIR LAYER MODEL

$$egin{array}{rcl} \partial_t M + \partial_x D &=& 0 \ \partial_t D + \partial_x \left(rac{D^2}{M} + rac{M}{\gamma} c_a^2
ight) &=& rac{M}{\gamma} c_a^2 \, \partial_x(\mathcal{A}) \end{array}$$

where



- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

The two-layer model

 $\mathcal{A} + A = S$ where S = S(x) denotes the pipe section

TWO-LAYER MODEL

$$\begin{aligned} \partial_t M + \partial_x D &= 0\\ \partial_t D + \partial_x \left(\frac{D^2}{M} + \frac{M}{\gamma} c_a^2 \right) &= \frac{M}{\gamma} c_a^2 \partial_x (S - A)\\ \partial_t A + \partial_x Q &= 0\\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + g I_1(x, A) \cos \theta + \frac{A}{(S - A)} \frac{M}{\gamma} c_a^2 \right) &= -g A \partial_x Z\\ &+ g I_2(x, A) \cos \theta \\ &+ \frac{A}{(S - A)} \frac{M}{\gamma} c_a^2 \partial_x A \end{aligned}$$

1 Physical and mathematical motivations

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

3 NUMERICAL APPROXIMATION

- The kinetic scheme
- A numerical experiment

MATHEMATICAL ENTROPY AND ENERGETICALLY CLOSED SYSTEM

Inergies

$$E_a = \frac{Mv^2}{2} + \frac{c_a^2 M}{\gamma(\gamma - 1)}$$
 and $E_w = \frac{Au^2}{2} + gA(h_w - I_1(x, A)/A)\cos\theta + gAZ$

satisfy the following entropy flux equalities :

$$\partial_t E_a + \partial_x H_a = \frac{c_a^2 M}{\gamma(S - A)} \,\partial_t A$$

and

$$\partial_t E_w + \partial_x H_w = -\frac{c_a^2 M}{\gamma(S-A)} \partial_t A$$

where

$$H_a = \left(E_a + \frac{c_a^2 M}{\gamma}\right) v \text{ and } H_w = \left(E_w + gI_1(x, A)\cos\theta + A\frac{c_a^2 M}{(S - A)}\right) u .$$

MATHEMATICAL ENTROPY AND ENERGETICALLY CLOSED SYSTEM

Inergies

$$E_a = \frac{Mv^2}{2} + \frac{c_a^2 M}{\gamma(\gamma - 1)}$$
 and $E_w = \frac{Au^2}{2} + gA(h_w - I_1(x, A)/A)\cos\theta + gAZ$

satisfy the following entropy flux equalities :

and

$$\partial_t E_w + \partial_x H_w = \underbrace{-\frac{c_a^2 M}{\gamma(S-A)} \partial_t A}_{\uparrow}$$

 $\partial_t E_a + \partial_x H_a = \left[\frac{c_a^2 M}{\gamma(S-A)} \partial_t A\right]$

where

2

$$H_a = \left(E_a + \frac{c_a^2 M}{\gamma}\right) v \text{ and } H_w = \left(E_w + gI_1(x, A)\cos\theta + A\frac{c_a^2 M}{(S - A)}\right) u .$$

The total energy satisfies
$$\partial_t \mathcal{E} + \partial_x \mathcal{H} = \begin{bmatrix} 0 \end{bmatrix}.$$

A CONDITIONALLY HYPERBOLIC SYSTEM : EIGENSTRUCTURE

• Quasi-linear form : $\mathbf{W} = (M, D, A, Q)^t$

$$\partial_t \mathbf{W} + \mathcal{D}(x, \mathbf{W}) \partial_X \mathbf{W} = 0$$

with

$$\mathcal{D} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ c_a^2 - v^2 & 2v & \frac{M}{S - A}c_a^2 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{A}{(S - A)}c_a^2 & 0 & c_w^2 + \frac{AM}{(S - A)^2}c_a^2 - u^2 & 2u \end{pmatrix}$$

where $c_m := c_w^2 + \frac{AM}{(S-A)^2} c_a^2$: water sound speed under the air effect.

A CONDITIONALLY HYPERBOLIC SYSTEM : EIGENSTRUCTURE

• Quasi-linear form : $\mathbf{W} = (M, D, A, Q)^t$

$$\partial_t \mathbf{W} + \mathcal{D}(x, \mathbf{W}) \partial_X \mathbf{W} = 0$$

with

$$\mathcal{D} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ c_a^2 - v^2 & 2v & \frac{M}{S - A}c_a^2 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{A}{(S - A)}c_a^2 & 0 & c_w^2 + \frac{AM}{(S - A)^2}c_a^2 - u^2 & 2u \end{pmatrix}$$

where $c_m := c_w^2 + \frac{AM}{(S-A)^2}c_a^2$: water sound speed under the air effect.

Writing

$$F = \frac{v-u}{c_m}, \quad \sqrt{H} = \frac{c_a}{c_m}, \quad c_m = \sqrt{c_w^2 + sc_a^2} \text{ with } s = \frac{AM}{(S-A)^2} \ge 0,$$

the characteristic polynom reads $P(x = \lambda/cm) =$

$$x^{4} - 2(2+F)x^{3} + \left((1+F)(5+F) - H\right)x^{2} + 2\left(H - (1+F)^{2}\right)x - sH^{2}$$

where λ stands for an eigenvalue of \mathcal{D} .

M. Ersoy (IMATH)

All the root of Equation P are real if and only if one of the following conditions holds :

(i)
$$\Delta_3 > 0$$
, $\Delta_5 > 0$ and $\Delta_7 \ge 0$,

(*ii*) $\Delta_3 \ge 0$, $\Delta_5 = 0$ and $\Delta_7 = 0$

where Δ_3 , Δ_5 , Δ_7 are the inner determinant of the discriminant of P.

All the root of Equation P are real if and only if one of the following conditions holds :

(i)
$$\Delta_3 > 0$$
, $\Delta_5 > 0$ and $\Delta_7 \ge 0$,

(*ii*) $\Delta_3 \ge 0$, $\Delta_5 = 0$ and $\Delta_7 = 0$

where Δ_3 , Δ_5 , Δ_7 are the inner determinant of the discriminant of P.

• From physical consideration, $\Delta_3 > 0$ and $\Delta_5 > 0 \Longrightarrow$ hyperbolic $\iff \Delta_7 \ge 0$.

All the root of Equation P are real if and only if one of the following conditions holds :

(i)
$$\Delta_3 > 0$$
, $\Delta_5 > 0$ and $\Delta_7 \ge 0$,

(*ii*)
$$\Delta_3 \ge 0$$
, $\Delta_5 = 0$ and $\Delta_7 = 0$

where Δ_3 , Δ_5 , Δ_7 are the inner determinant of the discriminant of P.

• From physical consideration, $\Delta_3 > 0$ and $\Delta_5 > 0 \implies$ hyperbolic $\iff \Delta_7 \ge 0$. • i.e.

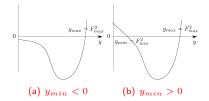


FIGURE: Behavior of the polynomial $\Delta_7(y)$

All the root of Equation P are real if and only if one of the following conditions holds :

(i)
$$\Delta_3 > 0$$
, $\Delta_5 > 0$ and $\Delta_7 \ge 0$,

(*ii*)
$$\Delta_3 \ge 0$$
, $\Delta_5 = 0$ and $\Delta_7 = 0$

where Δ_3 , Δ_5 , Δ_7 are the inner determinant of the discriminant of P.

- From physical consideration, $\Delta_3 > 0$ and $\Delta_5 > 0 \Longrightarrow$ hyperbolic $\iff \Delta_7 \ge 0$.
- Then,

THEOREM (ERSOY et al., M2AN,13)

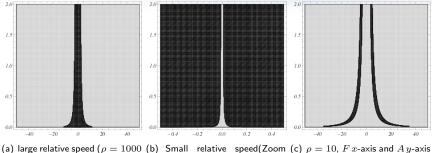
The two-layer system is strictly hyperbolic if

• $y = F^2 \ge F_{max}^2 := y_{max}^2 \iff$ large relative speed

▶ $y_{min} > 0$ and $0 \leqslant F^2 \leqslant y_{min} = F_{min}^2 \iff$ small relative speed

where $s=rac{
ho}{
ho_0}rac{A}{S-A}\simrac{
ho_2}{
ho_1}<1$ as in the two-layer shallows water equations.

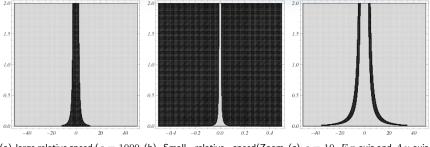
Hyperbolic region : examples



(a) large relative speed ($\rho = 1000$ (b) Small relative speed (Zoom (c) $\rho = 10$, F x-axis and A y-axis (air density), F x-axis and A y- on : $\rho = 1000$, F x-axis and A y- axis)

FIGURE: black grey = non hyperbolic region

Hyperbolic region : examples



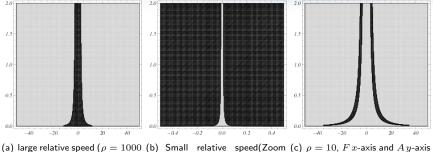
(a) large relative speed ($\rho = 1000$ (b) Small relative speed(Zoom (c) $\rho = 10$, Fx-axis and Ay-axis (air density), Fx-axis and Ay- on : $\rho = 1000$, Fx-axis and Ay- axis) axis)

FIGURE: black grey = non hyperbolic region

As a consequence

- system may lose its hyperbolicity.
- solver based on the computation of eigenvalues are useless.

Hyperbolic region : examples



(a) large relative speed ($\rho = 1000$ (b) Small relative speed (Zoom (c) $\rho = 10$, F x-axis and A y-axis (air density), F x-axis and A y- on : $\rho = 1000$, F x-axis and A y-axis (axis)

FIGURE: black grey = non hyperbolic region

As a consequence

- system may lose its hyperbolicity.
- solver based on the computation of eigenvalues are useless.

1 Physical and mathematical motivations

- Air entrainement
- Previous works

2) The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

3 NUMERICAL APPROXIMATION

- The kinetic scheme
- A numerical experiment

1 Physical and mathematical motivations

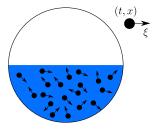
- Air entrainement
- Previous works

2 The two layer model

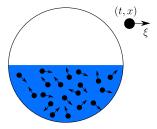
- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

- The kinetic scheme
- A numerical experiment

As in gas theory, Describe the macroscopic behavior from particle motions, here, assumed fictitious by introducing $\begin{cases} a \chi \text{ density function and} \\ a \mathcal{M}(t, x, \xi; \chi) \text{ maxwellian function (or a Gibbs equilibrium)} \end{cases}$

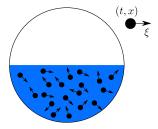


As in gas theory, Describe the macroscopic behavior from particle motions, here, assumed fictitious by introducing $\begin{cases} a \chi \text{ density function and} \\ a \mathcal{M}(t, x, \xi; \chi) \text{ maxwellian function (or a Gibbs equilibrium)} \end{cases}$



i.e., transform the nonlinear system into a kinetic transport equation on \mathcal{M} .

As in gas theory, Describe the macroscopic behavior from particle motions, here, assumed fictitious by introducing $\begin{cases} a \chi \text{ density function and} \\ a \mathcal{M}(t, x, \xi; \chi) \text{ maxwellian function (or a Gibbs equilibrium)} \end{cases}$



i.e., transform the nonlinear system into a kinetic transport equation on \mathcal{M} . Thus, to be able to define the numerical *macroscopic fluxes* from the microscopic one.

....Faire d'une pierre deux coups...

PRINCIPLE DENSITY FUNCTION

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

PRINCIPLE GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

then we define the Gibbs equilibrium by

$$\mathcal{M}(t, x, \xi) = \frac{A}{b} \chi\left(\frac{\xi - u}{b}\right)$$

PRINCIPLE GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

then we define the Gibbs equilibrium by

$$\mathcal{M}(t, x, \xi) = \frac{A}{b} \chi\left(\frac{\xi - u}{b}\right)$$

then

MICRO-MACROSCOPIC RELATIONS

$$A = \int_{\mathbb{R}} \mathcal{M}(t, x, \xi) d\xi$$
$$Au = \int_{\mathbb{R}} \xi \mathcal{M}(t, x, \xi) d\xi$$
$$Au^{2} + Ab^{2} = \int_{\mathbb{R}} \xi^{2} \mathcal{M}(t, x, \xi) d\xi$$

M. Ersoy (IMATH)

KINETIC INTERPRETATION

THE KINETIC FORMULATION [PERTHAME, OXFORD LECT. SER. IN MATH. AND ITS APPLIC., 02]

(A,Q) is solution of the (air or water) system if and only if ${\cal M}$ satisfies the transport equation :

 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t, x, \xi)$ is a collision kernel satisfying a.e. (t, x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 \ , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

KINETIC INTERPRETATION

The kinetic formulation [Perthame, Oxford Lect. Ser. in Math. and its Applic., 02]

(A,Q) is solution of the (air or water) system if and only if ${\cal M}$ satisfies the transport equation :

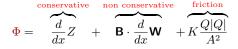
 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t, x, \xi)$ is a collision kernel satisfying a.e. (t, x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

General form of the source terms :



- conservative term : classical upwind
- non conservative term : mid point rule (DLM, 95)
- friction : dynamic topography (Ersoy, Ph.D.)

• Recalling that Z is constant per cell

- Recalling that Z is constant per cell
- Then $\forall (t,x) \in [t_n, t_{n+1}[\times \overset{\circ}{m_i}]$

$$Z'(x) = \mathbf{0}$$

- Recalling that ${\cal Z}$ is constant per cell
- Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$

$$Z'(x) = 0$$

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} = \mathcal{K}(t, x, \xi)$$

- $\bullet\,$ Recalling that Z is constant per cell
- Then $\forall (t,x) \in [t_n,t_{n+1}[\times \overset{\circ}{m_i}]$

$$Z'(x) = 0$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0\\ f(t_n, x, \xi) &= \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \sqrt{h(t, x)} \chi \left(\frac{\xi - u(t_n, x, \xi)}{\sqrt{h(t, x)}} \right) \end{cases}$$

by neglecting the collision kernel.

- Recalling that Z is constant per cell
- Then $\forall (t,x) \in [t_n,t_{n+1}[\times \overset{\circ}{m_i}]$

$$Z'(x) = 0$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0\\ f(t_n, x, \xi) &= \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \sqrt{h(t, x)} \chi \left(\frac{\xi - u(t_n, x, \xi)}{\sqrt{h(t, x)}} \right) \end{cases}$$

by neglecting the collision kernel.

• i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

- Recalling that \boldsymbol{Z} is constant per cell
- Then $\forall (t,x) \in [t_n,t_{n+1}] \times \overset{\circ}{m_i}$

$$Z'(x) = 0$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \sqrt{h(t, x)} \chi \left(\frac{\xi - u(t_n, x, \xi)}{\sqrt{h(t, x)}} \right) \end{cases}$$

by neglecting the collision kernel.

• i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

• i.e.

$$\mathbf{U}_{i}^{n+1} = \begin{pmatrix} A_{i}^{n+1} \\ Q_{i}^{n+1} \end{pmatrix} \stackrel{def}{\coloneqq} \int_{\mathbb{R}} \begin{pmatrix} 1 \\ \xi \end{pmatrix} f_{i}^{n+1}(\xi) d\xi$$

- Recalling that \boldsymbol{Z} is constant per cell
- Then $\forall (t,x) \in [t_n,t_{n+1}] \times \overset{\circ}{m_i}$

$$Z'(x) = 0$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \sqrt{h(t, x)} \chi \left(\frac{\xi - u(t_n, x, \xi)}{\sqrt{h(t, x)}} \right) \end{cases}$$

by neglecting the collision kernel.

• i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

• i.e.

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(F_{i+1/2}^{-} - F_{i-1/2}^{+} \right) \text{ with } F_{i\pm\frac{1}{2}}^{\pm} = \int_{\mathbb{R}} \xi \left(\begin{array}{c} 1\\ \xi \end{array} \right) \, \mathcal{M}_{i\pm\frac{1}{2}}^{\pm}(\xi) \, d\xi.$$

1 Physical and mathematical motivations

- Air entrainement
- Previous works

2 The two layer model

- Fluid Layer : incompressible Euler's Equations
- Air Layer : compressible Euler's Equations
- The two-layer model
- Properties

③ NUMERICAL APPROXIMATION

- The kinetic scheme
- A numerical experiment

DE L'AIR DANS LES TUYAUX

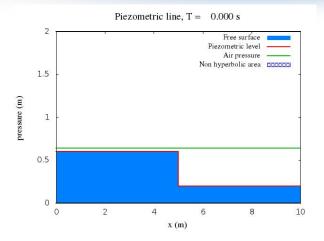


FIGURE: "Dam break in presence of air in a closed water pipe."

CONCLUSION

• Existence of a convex entropy function \Rightarrow admissible weak solutions

- Existence of a convex entropy function \Rightarrow admissible weak solutions
- System is hyperbolic even for large relative speed

- Existence of a convex entropy function \Rightarrow admissible weak solutions
- System is hyperbolic even for large relative speed
- Advantages of the kinetic scheme :

- Existence of a convex entropy function \Rightarrow admissible weak solutions
- System is hyperbolic even for large relative speed
- Advantages of the kinetic scheme :
 - easy implementation

- Existence of a convex entropy function \Rightarrow admissible weak solutions
- System is hyperbolic even for large relative speed
- Advantages of the kinetic scheme :
 - easy implementation
 - ▶ no use of eigenvalues ⇒ computation in non hyperbolic region

- Existence of a convex entropy function \Rightarrow admissible weak solutions
- System is hyperbolic even for large relative speed
- Advantages of the kinetic scheme :
 - easy implementation
 - ▶ no use of eigenvalues ⇒ computation in non hyperbolic region
 - apparition of vaccum, drying and flooding are obtained

- Existence of a convex entropy function \Rightarrow admissible weak solutions
- System is hyperbolic even for large relative speed
- Advantages of the kinetic scheme :
 - easy implementation
 - ▶ no use of eigenvalues ⇒ computation in non hyperbolic region
 - apparition of vaccum, drying and flooding are obtained
 - equilibrium states are well-approximated

- Existence of a convex entropy function ⇒ admissible weak solutions
- System is hyperbolic even for large relative speed
- Advantages of the kinetic scheme :
 - easy implementation
 - ▶ no use of eigenvalues ⇒ computation in non hyperbolic region
 - apparition of vaccum, drying and flooding are obtained
 - equilibrium states are well-approximated

A LOT OF THINGS ... TO DO

- air entrapment and mixed flows
- more realistic models based on

Thank you

for your

attention

INNER DETERMINANT

		2 1	2.11	1	~	-	~	~		X
			607	1	a_0	a_1	a_2	a_3	a_4	1
$\begin{pmatrix} a_0 & a \end{pmatrix}$		2	10		0	a_0	a_1	a_2	a_3	
$\Delta_3 = \begin{bmatrix} 0 & 4a \end{bmatrix}$	ι_0 30	a_1 ,	$\Delta_5 =$	=	0	0	$4a_0$	$3a_1$	$2a_2$,
$\Delta_3 = \begin{pmatrix} 0 & 4a \\ 4a_0 & 3a \end{pmatrix}$	1 ₁ 20	a_2		sa	0	$4a_0$	$3a_1$	$2a_2$	a_3	
3				4	a_0	$3a_1$	$2a_2$	a_3	0)
	-									_
	$\int a_0$	a_1	a_2	a_3	a_4	0	0			
	0	a_0	a_1	a_2	a_3	a_4	0			
	0	0	a_0	a_1	a_2	a_3	a_4			
$\Delta_7 =$	0	0	0	$4a_0$	$3a_1$	2a2	$a_{2} a_{3}$			
	0	0	$4a_0$	$3a_1$	$2a_2$	a ₃	0			
	0	$4a_0$	$3a_1$	$2a_2$	a_3	0	0			
	$\sqrt{4a_0}$	$3a_1$	$2a_2$	a_3	0	0	0			

TOTAL HEAD

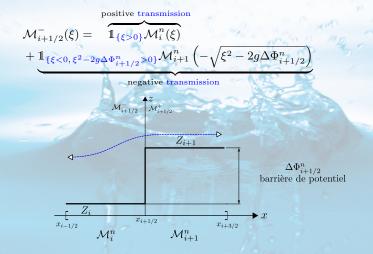
THEOREM

For smooth solutions, the velocities u and v satisfy

$$\partial_t v + \partial_x \left(\frac{v^2}{2} + \frac{c_a^2}{\gamma - 1} \right) = 0 ,$$

$$\partial_t u + \partial_x \left(\frac{u^2}{2} + gh_w(A)\cos\theta + gZ + \frac{c_a^2 M}{\gamma(S - A)} \right) = 0 .$$

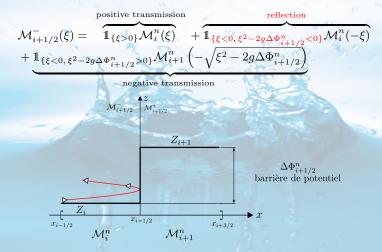
THE MICROSCOPIC FLUXES INTERPRETATION : POTENTIAL BAREER



 $\Delta \Phi_{i+1/2} := \Delta Z_{i+1/2} = Z_{i+1} - Z_i$

The microscopic fluxes

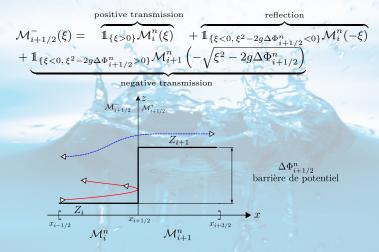
INTERPRETATION : POTENTIAL BAREER



 $\Delta \Phi_{i+1/2} := \Delta Z_{i+1/2} = Z_{i+1} - Z_i$

The microscopic fluxes

INTERPRETATION : POTENTIAL BAREER



 $\Delta \Phi_{i+1/2} := \Delta Z_{i+1/2} = Z_{i+1} - Z_i$