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UNSTEADY MIXED )

o Free surface area (SL)
sections are not completely filled and the flow is incompressible. . .

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



UNSTEADY MIXED

o Free surface area (SL)
sections are not completely filled and the flow is incompressible. . .

@ Pressurized area (CH)
sections are non completely filled and the flow is compressible. ..

z = R(z)

Piezometric line
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UnsTrapy MXED RS

o Free surface area (SL)
sections are not completely filled and the flow is incompressible. . .

@ Pressurized area (CH)
sections are non completely filled and the flow is compressible. . .

@ Transition point

z = R(z)
Piezometric line
z2=Z(x)
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EXAMPLES OF PIPES

Orange-Fish tunnel

Forced pipe problems .. .at Minnesota
http://www.sewerhistory.org/grfx/
misc/disaster.htm
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PREVIOUS WORKS |

FOR FREE SURFACE FLOWS :

GENERALLY
Saint-Venant equations :
O A + 0,Q =0,
0Q + 0» (Q +gIl(A)) =0
A(t,x) : wet area
with Q(t, x) dlscharge.
I (A) . hydrostatic pressure
g : gravity
Advantage

o Conservative formulation — Easy numerical implementation

ﬁ Hamam and McCorquodale (82), Trieu Dong (91), Musandji Fuamba (02), Vasconcelos et al (06)
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PREVIOUS WORKS |

FOR PRESSURIZED FLOWS :

GENERALLY
Allievi equations :

2

8tp + _890Q = Oa
gS

0:Q + gS0p =0

p(t,x) . pressure
.. Q(t,z) : discharge
with c(t, x) . sound speed
S(x) . section
Advantage

o Compressibility of water is taking into account = Sub-atmospheric flows
and over-pressurized flows are well computed

Drawback

@ Non conservative formulation = Cannot be, at least easily, coupled to
Saint-Venant equations

ﬁ Winckler (93), Blommaert (00)
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PREVIOUS WORKS

FOR MIXED FLOWS :

GENERALLY
Saint-Venant with Preissmann slot artifact :

Thente
O A+ 0,Q =0,
2

9 Q + 0y (?4 +911(A)) =0

Advantage

@ Only one model for two types of flows.
Drawbacks

@ Incompressible Fluid = Water hammer not well computed

@ Pressurized sound speed ~ +/S/Tiente = adjustment of Tiente
@ Depression = seen as a free surface state

@ Preissmann (61), Cunge et al. (65), Baines et al. (92), Garcia-Navarro et al. (94), Capart et al. (97), Tseng (99)
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OUR GOAL :

@ Use Saint-Venant equations for free surface flows
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OUR GOAL :

@ Use Saint-Venant equations for free surface flows

o Write a pressurized model
> which takes into account the compressibility of water
> which takes into account the depression
> similar to Saint-Venant equations
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OUR GOAL :

@ Use Saint-Venant equations for free surface flows

@ Write a pressurized model
> which takes into account the compressibility of water

> which takes into account the depression
> similar to Saint-Venant equations

@ Get one model for mixed flows

To be able to simulate, for instance :

C. Bourdarias and S. Gerbi

A finite volume scheme for a model coupling free surface and pressurized flows in pipes.
J. Comp. Appl. Math., 209(1) :109-131, 2007.
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3D INCOMPRESSIBLE EULER EQUATION:

po(U+U-VU)+Vp = poF

Method : o |
@ Write Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter ¢ = H/L
and takes ¢ = 0.

@ Section averaging U2 ~UU and UV ~ U V.
© Introduce Ay (t,x) : wet area, Q4 (t, x) discharge given by :

Ag(t,x) = / dydz, Qgq(t,z) = Aq(t,z)u(t,x)
JQ(t,x)

1 .
_— Ul(t,x) dydz
AS‘I (ZL ;l;> v/Q</,..’I,‘> ( ’ ) ’
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3D INCOMPRESSIBLE EULER EQUATIONS

po(U+U-VU)+Vp = poF

Method : ) _ - _
@ Wirite Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter ¢ = H/L
and takes € = 0.

@ Section averaging U2 ~UU and UV ~UV.
@ Introduce A (¢, x) : wet area, Qg (t,z) discharge given by :

Ag(t,z) = /)’ )(]g/dz, Qu(t,x) = Ag(t, x)u(t, z)
J2(t,x)

1 s
u(t,r) = ——— / Ut,z) dydz
J.-F. Gerbeau, B. Perthame ‘_1 sl <2L (l/') JQ(t,7)

Derivation of viscous Saint-Venant System for Laminar Shallow Water ; Numerical Validation.
Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89-102, 2001.

F. Marche

Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and ca
European Journal of Mechanic B/ Fluid, 26 (2007), 49-63.
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3D INCOMPRESSIBLE EULER EQUATIONS

po(U+U-VU)+Vp = poF

Method : ) _ - _
@ Wirite Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter ¢ = H/L
and takes € = 0.

@ Section averaging U2 ~UU and UV ~UV.
@ Introduce Ay (t,x) : wet area, Qg (t, x) discharge given by :

Ag(t,z) = /)’ )(lg/dz, Qu(t,x) = Ag(t, x)u(t, z)
JQ(t,x)
1

(t, ) = ——— U(t,x) dydz
11( 1> 4*1(11) '/SZ(/..IJ) < I) o
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DERIVATION OF THE FRE_

3D INCOMPRESSIBLE EULER EQUATIONS
podiv(U) =0
po(U+U-VU)+Vp = poF

Method : . _ - _
@ Write Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter ¢ = H/L
and takes € = 0.

@ Section averaging U2 ~UU and UV ~UV.
@ Introduce A (¢, x) : wet area, Qg (t,z) discharge given by :

Asl(t,z) - / dde, Qsl(tax) - Asl(tvx)u(tvx)
JQ(t,x)

u(t,x) = Ul(t,x) dydz

i
Asi(t, ) Joe)
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8t‘Asl + 8szl = 07
Q% dz
8tC?sl + 0y Ay +psl(xa Asl) = _gAle + P’I"s[(ZE, Asl) - G(.’L‘, Asl)
with
ps = gli(x,Ag)cosf : hydrostatic pressure law
Prg = gly(z,Ag)cosf : pressure source term
_d
G = gAsde— cos f : curvature source term
T
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THE FREE SURFACE—

8,51431 + aacQsl =
Q2
6thl + 890 < =4 psl(% Asl)) =

Asl

with

ps = gli(z,Ag)cosf
Prg = gly(z,Aq)cosb

_d
G = gAgz— cosf

dx

1
K e -
K'SQRh(ASl)‘l/3

0,
dZ
gAsl —I—Prsl(x Ag) — Gz, Agl)

Qsl |Qsl |
Asl

friction added after the derivation

- gK(x, Aq)

: hydrostatic pressure law

: pressure source term

: curvature source term

: Manning-Strickler law

-
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3D ISENTROPIC COMPRESSIBLE EQUATIO
Owp + div(pU) =0

0:(pU) + div(pU @ U) + Vp = pF

with —
D= Pa+ P 2p0 with ¢ sound speed
c

Method :
@ Write Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter e = H/L
and takes € = 0.

@ Section averaging pU =~ pU and pU? ~ pU U.
@ Introduce Ay, (¢, x) : equivalent wet area, Q. (t, z) discharge given by :

Aun(t, ) = %5(1-), Qun(t, ) = Aun(t, 2)ult, z)

u(t,z) =

1 .
Ul(t,x) dydz
S(x) ./sz(;p) L2y
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3D ISENTROPIC COMPRESSIBLE EQUATIONS
Owp + div(pU) =0
0:(pU) + div(pU @ U) + Vp = pF

with —
D= Pa+ P 2p0 with ¢ sound speed
c

Method :
@ Write Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter e = H/L
and takes € = 0.

@ Section averaging pU =~ pU and pU? ~ pU U.
@ Introduce Ay, (¢, x) : equivalent wet area, Q. (t, z) discharge given by :
Acp(t,z) = pﬁS(.I?), Qen(t, ) = Acp(t, x)u(t, x)
0

o
(t,x) = U(t,z) dydz
u(t,) = 5 '/M (t,) dy
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Denrvation oF T ARSI
3D ISENTROPIC COMPRESSIBLE EQUATIONS
Owp + div(pU) =0

0:(pU) + div(pU @ U) + Vp = pF
with

D= Pa+ P _2p0 with ¢ sound speed
c
Method :
@ Write Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter e = H/L
and takes € = 0.

@ Section averaging pU ~ pU and pU2 ~pU U.
@ Introduce A, (t, x) : equivalent wet area, Q. (¢, x) discharge given by :

Ap(t,z) = %S(.I?). Qen(t, ) = Acp(t, x)u(t, x)

= —— Ul(t,z) dydz
S (l) -/52(:1‘) ( 4

M. Ersoy (BCAM)
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DERIVATION OF THE PR_

3D ISENTROPIC COMPRESSIBLE EQUATIONS

Op + div(pU) =0
Ot(pU) + div(pU @ U) + Vp = pF

with

D= Pa+ & —2p0 with ¢ sound speed
C
Method :

@ Write Euler equations in curvilinear coordinates.

@ Write equations in non-dimensional form using the small parameter e = H/L
and takes € = 0.

@ Section averaging pU ~ pU and pU2 ~ pU U.

@ Introduce A, (¢, x) : equivalent wet area, Q). (¢, ) discharge given by :

Aun(t,z) = %S(:p), Qun(t, ) = Aen(t, 2)ult, z)

u(t,x) =

1
U(t,x) dydz
5@ /m) Eold

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme LM Jean Leray 14 / 49
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OrAch + 0:Qcp, = 0,
Q% dZ
81‘,62¢:h + aav A +pch(5€, Ach) = _gAch% + P’I"ch(ZL‘, Ach) - G(LII, Ach)
with
Dch = CQ(Ach -9) : acoustic type pressure law
A ds
Prog, = (2 1) =2 . pressure source term
S dx
_d
G = gAchza cos : curvature source term
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8tAch + 83:Qch = 07
Q2 dZ
81562(:h + ax A +pch(-%", Ach) = _gAch ‘|‘ P'r'ch(x Ach) G(.’E, Ach)
o gK(IE,S) Qch|Qch|
Ach
friction added after the derivation
with
Dch = A(Aa - 9) : acoustic type pressure law
A dsS
Prog, = ¢ ( ch _ 1) —= . pressure source term
S dx
_d
G = gActh— cos : curvature source term
T

1

K = W : Manning-Strickler law ‘
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MODELS ARE FORMALLY CLOSE ...

aiEAsl + 696@3!
atQSl + az (

2
s

l
+ Dsi
Asl

8tAch + aoc Qch
2

athh + &x <QCh + Den (xaAch)>

Ach

0,
dz

—g Asl — + Prsl (x7Asl)
dx

—G(l’, Asl )

ke, 210l
sl

0,
dZ
—9 Ach —— + Prep (2, Acn)
dx
—G(l’, Ach )
—gK(.'E, S )QCh|QCh|

Ach
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MODELS ARE FORMALLY CLOSE ...

atAsl + 8szl = 0)
2 dzZ
athl +az (3: + Dsi (vasl)) = —g Asl % + Prsl (I7Asl)
—G(a?, Asl )
Qsl|Qsl|
gK(x’ @) Asl
OAch + 0:Qch = 0,
Q% dy
6thh + 0y A + Den (xaAch) = -9 Ach E_ + Prey ($7Ach)
ch C
—G(.’L’, AC )
—gK(ZL‘,@) Qch|Qch|
Ach

Continuity criterion
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MODELS ARE FORMALLY CLOSE ...

8tAsl + ansl = 07
2 dZ
athl + 0, (% + Psi (x,Asl)) = _9%9_ + Prg ($7Asl)
sl axr
- ( ) )
Qsl|Qsl|
gK z, sl ) Asl

8tAch + 890Qch = 07
2 b
6thh + 8x (gc: + Den (xaAch)) = —9@ + Prch (xaAch)

—gK(x, S )Qch|Qch|

Ach

« mixed »condition
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THE PFS MODEL

MODELS ARE FORMALLY CLOSE . ..

atAsl + aacQsl = O’
2 dz
sl
s z \ & = As 5
0iQq + 0 (Asl g Asl .
—G(a:, Asl
—gK(ZE, Asl )
atAch + anch = 07
2 dZ
8tc2ch + ax (ACh = —9 Ach 7
ch X
—G(.'L’, Ach
—gK(:c,

To be coupled
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T P
THE « MIXED »VARIABLE
We introduce a state indicator

P 1 if the flow is pressurized (CH),
1 0 if the flow is free surface (SL)

M. Ersoy (BCAM A Well Balanced Finite Volume Kinetic scheme



D DL
THE « MIXED »VARIABLE
We introduce a state indicator

P 1 if the flow is pressurized (CH),
1 0 if the flow is free surface (SL)

and the physical section of water S by :

S i E-—1,
S:S(Asl’E):{Asl it E—o
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THE « MIXED »VARIABLE
We introduce a state indicator

P 1 if the flow is pressurized (CH),
1 0 if the flow is free surface (SL)

and the physical section of water S by :

S if E=1,
S—S(Asl’E)_{ Asl if E=0.
We set
7 S_(Asl7 0)=Ag if SL
A = o = pﬁ S(Ag,1) = Ay if CH : the « mixed »variable
0
Q = Au :  the discharge

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



THE « MIXED »VARIABLE
We introduce a state indicator

P 1 if the flow is pressurized (CH),
1 0 if the flow is free surface (SL)

and the physical section of water S by :

S=S(Asl,E>={ I

Asl lf = 0
We set
7 S_(Asl, 0)=Ag if SL
A = ,0_05 = Io%s(Aslv )= A, if CH the « mixed »variable
Q = Au :  the discharge

Continuity of S at transition point
-
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CONSTRUCTION OF THE « MIXED »PRES

@ Continuity of S = continuity of p at transition point
—
p(z, A, E) = c*(A—S) + gl (x,S) cos 0

A Well Balanced Finite Volume Kinetic scheme



CONSTRUCTION OF THE « MIXED »PRESSU

@ Continuity of S = continuity of p at transition point
—
p(z, A, E) = c*(A—S) + gl (x,S) cos 0

@ Similar construction for the pressure source term :
d
Pr(z, A, E) = ¢? <§ _ 1) d_f + gl2(z,S) cosd

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



at(A) + 890 (Q) =0
2
0@ +0, (L4 pea.B) =941 2(0)
+Pr(z, A E)

—G(.?], Aa E)

L —gK(I,S)%

C. Bourdarias, M. Ersoy and S. Gerbi

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme.
Int. J. On Finite Volumes, 6(2) :1-47, 2009.

A Well Balanced Finite Volume Kinetic scheme



THE PFS MODEL

MATHEMATICAL PROPERTIES
@ The PFS system is strictly hyperbolic for A(t,z) > 0.
@ For regular solutions, the mean speed u = /A verifies
2
Oru + 0z <% +¢® In(A/S) 4+ g H(S) cosb + g Z> =—gK(z,S)uul
and for u = 0, we have :
¢ In(A/S) + gH(S) cosb + g Z = cte

where H(S) is the physical water height.
@ There exists a mathematical entropy
2
E(A,Q,S) = Q— +*AIn(A/S) + S + gz(x,S) cos 0 + gAZ

which satisfies

HE+ 8, (Eu+p(x,A,E)u) = —gAK(z,S)u’|ul <0

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme LM Jean Leray 21 /49



OUTLINE
ONLIINE

O A FINITE VOLUME FRAMEWORK
@ Kinetic Formulation and numerical scheme
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@ Numerical results
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1':—1/2 Ti -’tz+1/2
<l A -
- Ll

L

PFS equations under vectorial form :

OU(t,z) + 0, F(z,U) = S(t, x)
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FINITE VOLUME (V_

3 £
Tz Tz

i »
< Ll

L

PFS equations under vectorial form :

OU(t,z) + 0, F(z,U) = S(t, x)

cte per mesh 1

with U7’ ~ s U(ty,z)dx and S(t,x) constant per mesh,
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1 r
T4

13

Tit1/2

< A -
- Ll

L

El
Ti-1/2

PFS equations under vectorial form :

OU(t,z) + 0, F(z,U) = S(t, x)

ad r mesh 1
with U7’ PRI U(ty,z)dx and S(t,x) constant per mesh,
Az m

Cell-centered numerical scheme :
A"

Uit =y - =g (Fivp = Ficrpp) + A"S(UF)

where

bt
At"Si”z/ / S(t,x) dx dt
t m;

n

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



3 £
Tz Tz

< »
<« ’

L

PFS equations under vectorial form :

OU(t,z) + 0, F(z,U) = S(t, x)
cte per mesh 1

with U; N

U(tn, z) dz and S(t,z) constant per mesh,

Upwinded numerical scheme :

Uittt =uy - % (-fi+1/2 - ]T'iq/z)

F and F are consistent.

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



Our goal : define F; /5 in order to preserve continuous properties of the
PFS-model

Positivity of A ,

conservativity of A, discrete equilibrium, discrete entropy inequality

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



Positivity of A

te equilibrium
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ositivity © ,

conservativity of A, discrete equilibrium, discrete entropy inequality
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CHOICE OF THE NUMER_

Our goal : define F; /5 in order to preserve continuous properties of the
PFS-model

Positivity of A ,

conservativity of A, discrete equilibrium, discrete entropy inequality

VFRoe solver[BEGVF] Kinetic solver[BEG10]

ﬁ C. Bourdarias, M. Ersoy and S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme.
International Journal On Finite Volumes , Vol 6(2) 1-47, 2009.

Ia C. Bourdarias, M. Ersoy and S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms.
J. Sci. Comp.,pp 1-16, 10.1007/s10915-010-9456-0, 2011.

-
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PHILOSOPHY

As in kinetic theory of gases,

Describe the macroscopic behavior from particle motions, here, assumed fictitious
. . a x density function and
by introducing { X y

a M(t,x,&;x) maxwellian function (or a Gibbs equilibrium)

(t:)_»
3
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PHILOSOPHY

Describe the macroscopic behavior from particle motions, here, assumed fictitious
. . a x density function and
by introducing { X y

a M(t,z,&; x) maxwellian function (or a Gibbs equilibrium)

As in kinetic theory of gases,

(t,z)

i.e., transform the nonlinear system into a kinetic transport equation on M.
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PHILOSOPHY

As in kinetic theory of gases,

Describe the macroscopic behavior from particle motions, here, assumed fictitious

by introducin { a x density function and
y €1 a M(t, z,&; x) maxwellian function (or a Gibbs equilibrium)

(t,z)_>
3

i.e., transform the nonlinear system into a kinetic transport equation on M.

Thus, to be able to define the numerical macroscopic fluxes from the microscopic
one.

...Faire d’une pierre deux coups...

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme LM Jean Leray 26 / 49



PRINCIPLE

DENSITY FUNCTION

We introduce

A Well Balanced Finite Volume Kinetic scheme



GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce
@) =020, [ x@do =1, [ wx@ds =1,
R R

then we define the Gibbs equilibrium by

with

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



Since

%) = x(~w) 2 0, / x(@)di =1, / WPx(w)dw =1,

_ A(t,x) §—u(t, )
M, = 33 X < b(t, ) )

and

then
MICRO-MACROSCOPIC RELATIONS

A = M(t,x, &) dE
QR = ‘féM(tﬂEvg)dg
2 2 i 2
Fral = [ Moo
p

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme



PRINCIPLE [P02] B

THE KINETIC FORMULATION

(A4, Q) is solution of the PFS system if and only if M satisfy the transport
equation :

oM+ -0, M — gP O M =K(t,x,€)

where K(t, z, ) is a collision kernel satisfying a.e. (¢, z)

/RICd§=0,/R§ICd§:O

and ® are the source terms.

@ B. Perthame.

Kinetic formulation of conservation laws.
Oxford University Press.
Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.
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PRINCIPE e

THE KINETIC FORMULATION

(A4, Q) is solution of the PFS system if and only if M satisfy the transport
equation :

oM+ -0, M — gP O M =K(t,x,€)

where K(t, z, ) is a collision kernel satisfying a.e. (¢, z)

/RICdfzo,/RflCdfzo

and ® are the source terms.

General form of the source terms :

COIlSeI’V?LtiVe non COI]SeI'V?ltiVe friction
d d Q|Q|
b= —7 + B-
dx

with W = (Z, S, cos 0)
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@ Recalling that A, Q and Z, .S, cosf constant per mesh

o forgetting the friction : « splitting ». ..
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DISCRETIZATION -

@ Recalling that A, Q and Z, S, cos @ constant per mesh
o forgetting the friction : « splitting ». ..

Then Y(t, ) € [tn, tny1][Xx My

O(t,z) =0
since i d
b= —7+B- —W
dx + dx
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@ Recalling that A, Q and Z, .S, cosf constant per mesh
o forgetting the friction : « splitting ». ..

Then V(t,2) € [tn, tnsr[x My

O(t,z) =0
since d d
b= —27+B- —W
dx + dx
—
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SIMPLIFICATION OF _

@ Recalling that A, Q and Z, .S, cosf constant per mesh
o forgetting the friction : « splitting ». ..

Then V(t,2) € [tn, tnsr[x My

B(t,2) = 0
. ]
O=Z+B W
.
Of+E-0.f = 0
{ fln§) = Mitnag) 5 0mnEy (0]

by neglecting the collision kernel.

.
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On [tn, tnt1[xm;, we have :

{ O0f+&-0uf
ftn, 2,€)

[l
o

M (E)
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On [tn, tnt1[xm;, we have :

{ Of+&-0:f = 0

F(tn,,€) M (€)
- FFE) = ME©) + €50 (M3,,(6) - ME,(©))
: MOy My 4
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On [tn, tnt1[xm;, we have :

{ Of+&-0:f = 0

f (b, ,€) M)
i.e. A
FIFHE) = M) + 65— (M7, () - ME,(©)
where
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On [tn, tnt1[xm;, we have :

{atf+§'axf =0
fltns,6) = M)
i.e. A
FIFHE) = M) + 65— (M7, () - ME,(©)
or N _
urtt — ur - — (]—‘;1/2 fj_m)
with

oy = [e(4) M@
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INTERPRETATION : POTENTIAL BAREER

positive transmission

—_—
- _ n
i+1/2(€) = legpM; ()
n _ 2 _ n
+ ]1{€<0,52—29A<1>?+1/2>0}Mi+1 ( 5 29A(I)Z+1/2)
negative transmission
AZ
Mi—+1/2 M:rﬂ/z
------------------------------- >
,,,,,,,,, Zit1
o
A®?+1/2
barriere de potentiel
7.
r 1 1 »
wit1/a ey Tibage
i M

A Well Balanced



T wicroscopo Bl
INTERPRETATION : POTENTIAL BAREER

positive transmission reflection
M08 = Loy MP(€)  +Ljeco, 229007, <0y Mi'(=E)
+ Lg<o, 229007, >0 My (— £ —2gAQ7, /2>

negative transmission

AZ
Mz‘+1/2 M:»l/Z

Ziv1

Aq’?ﬂ/z

q\q\ barriere de potentiel

c Z; 1 >
T Tis1/2 T » T
Ti1/2 i/ Tiy3/2
n n
i Mi+1

A Well Balanced



THE MICROSCOPIC F_
INTERPRETATION : POTENTIAL BAREER

positive transmission reflection
_ - n n
Mii1)0(8) = Loy MP(€)  + Ljeco,e2—29n07, <0y Mi'(=E)
n _ 2 _ n
+ ]1{€<0,52—29A<1>?+1/2>0}Mi+1 ( 5 29A(I)Z+1/2>
negative transmission
B AZ
Mz‘+1/2 M:+1/2
B T >
Zit1
o
A(I>;'ﬂb-¢—1/2
q\_q\ barriere de potentiel
7.
L 7 1 » T
I'L—Ll/Z Tit1/2 11:3/2
n
M; Mi

A®} 5 may be interpreted as a time-dependent slope !
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THE MICROSCOPIC FW
INTERPRETATION : DYNAMIC SLOPE —> UPWINDE

positive transmission reflection
A~

M08 = LesopMP(€)  + Lieco, 229007, , <0} M7 (=€)

i+1/2
n _ 2 _ n
+ 1ge<o, 229007, ,>03 M5 ( 3 29A‘I’i+1/2>
negative transmission
B AZ
Mi+1/2 M¢++1/z
--------------------------- >
. Ziy1
PR
A"1>?-¢—1/2
q\_q\ barriere de potentiel
7.
L 2 1 : T
1151/2 Frhfe 11:3/2
n
M7 M

A®}\, ), may be interpreted as a time-dependent slope !

... we reintegrate the friction ...
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@ conservative 0, W :
Wi —W;

@ non-conservative BO, W : B
B(W,; 1 —W;)

where )
E:/ B(s, ¢(s,W;, W, 1)) ds
0
for the « straight lines paths », i.e.

qZS(S,Wi,WH_l) = SWH_] + (1 — S)Wi, CES [0, 1]

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products.
J. Math. Pures Appl. , Vol 74(6) 483-548, 1995.
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OUTLINE
ONLIINE

© UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED
AND FREE SURFACE)

O A FINITE VOLUME FRAMEWORK

@ The x function and well balanced scheme

@ CONCLUSION AND PERSPECTIVES
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Let us recall that we have to define a x function such that :

X(@) = x(~w) > 0, / X(@)dw =1, / Wy(w)do =1,

and M = —x (5—_u) satisfies the equation :

OM+E- 0, M—gPOM=0
and

x — definition of the macroscopic fluxes.
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We always have
o Conservativity of A holds for every .

@ Positivity of A holds for every x but for numerical purpose iff suppy is
compact to get a CFL condition.
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We always have

o Conservativity of A holds for every .

@ Positivity of A holds for every x but for numerical purpose iff suppy is
compact to get a CFL condition.

while
o discrete equilibrium,
o discrete entropy inequalities

strongly depend on the choice of the x function.
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We always have

o Conservativity of A holds for every .

@ Positivity of A holds for every x but for numerical purpose iff suppy is
compact to get a CFL condition.

while
o discrete equilibrium,
o discrete entropy inequalities

strongly depend on the choice of the x function.

In the following, we only focus on discrete equilibrium.

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme




OUTLINE

© UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED

AND FREE SURFACE)

@ Previous works
@ Formal derivation of the free surface and pressurized model

@ A coupling : the PFS-model

O A FINITE VOLUME FRAMEWORK
@ Kinetic Formulation and numerical scheme

@ The x function and well balanced scheme
1. Classical scheme fails in presence of complex source terms

@ Numerical results

@ CONCLUSION AND PERSPECTIVES
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STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free
surface flows, the following procedure fails for complex source terms :

Following [PSO01], choose x such that M(t, z,&; x) is the steady state solution at
rest, u =0 :

€0, M — gbIM = 0.

provides

3T1 — A? A2 JA2-LT ,, £
wa(w)—l—{l—l—w 5 X' (w) = 0 where w = .

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term.
Calcolo, 38(4) :201-231, 2001.
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STRATHE o
Even if the pipe is circular with uniform cross-sections, for instance for the free

surface flows, the following procedure fails for complex source terms :
Following [PS01], choose x such that M(¢,z,¢; x) is the steady state solution at
rest, u =0 :

& 0M —gP 0O M =0.

provides

3T 1, — A2 A2 ,a2-nr| .,
—_——— ~—
e’ B Y

Then, this equation is solvable as an ODE iff the coefficients («, 8,7) are
constants.

ﬁ B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term.

Calcolo, 38(4) :201-231, 2001 E
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STRATEES S
Even if the pipe is circular with uniform cross-sections, for instance for the free

surface flows, the following procedure fails for complex source terms :
Following [PS01], choose x such that M(¢,z,¢; x) is the steady state solution at
rest, u =0 :

& 0M —gP 0O M =0.

provides

3T 1, — A2 A2 ,a2-nr| .,
—_——— ~—
e’ B Y

Then, this equation is solvable as an ODE iff the coefficients («, 8,7) are
constants.

. . . . T T
For a rectangular pipe with uniform sections, we have («a, 8,7) = oL 2T, 3
with T' = cst the base of the pipe.

B B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term.
Calcolo, 38(4) :201-231, 2001
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IN THESE SETTINGS |
T o

T
With (a,ﬂ,’y) = (5,2T, 5) and

THEOREM

1 2\ 1/2
we get y(w) = = (1 — %) and the numerical scheme satisfies the following

+
properties :

e Positivity of A (under a CFL condition),
o Conservativity of A,
o Discrete equilibrium,

o Discrete entropy inequalities.

This results holds only for conservative terms 0, Z(x).

A similar result for pressurized flows, unusable in practice (see [PhDErsoy]
Chap. 2).

Er

Modeling, mathematical and numerical analysis of various compressible or incompressible flows in thin layer [Modélisation, analyse mathématique
et numérique de divers écoulements compressibles ou incompressibles en couche mince].
Université de Savoie, Chambéry, September 10, 2010

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme LM Jean Leray 38 /49



v 1042 ane NG

Then, the equation to solve is :
£ 0 M —gP 0O M = 0.

Complicate to solve — find an easy way to maintain, at least, discrete steady
states.

A Well Balanced Finite Volume Kinetic scheme



OUTLINE

© UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED

AND FREE SURFACE)

@ Previous works
@ Formal derivation of the free surface and pressurized model

@ A coupling : the PFS-model

O A FINITE VOLUME FRAMEWORK
@ Kinetic Formulation and numerical scheme
@ The x function and well balanced scheme

2. An alternative toward a Well-Balanced scheme

@ Numerical results

@ CONCLUSION AND PERSPECTIVES
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CORRECTION OF

The steady state is perfectly maintained iff
j':_;,_l/g(uza Uz+1a Z;, Z1,+1) fitl/g(ui—la Ui, 2,1, Zi) =0

7

with U = (A, Q), Z = "source terms”

Notations : F'; it1/2 the numerical flux of the homogeneous system, F it1/2 the numerical flux with source term and F' the flux of the PFS-model.
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CORRECTION OF THE M_

The steady state is perfectly maintained iff
j:-H_l/Q(Ula Ul+la ZZ) Zl-i—l) ﬁ:;l/g(ui—la Ui) Zi—l) Zl) =0

with U = (A, Q), Z = "source terms”
Let us recall that without sources, whenever the numerical flux is consistent, i.e.

VU = (AaQ) € RQ? Fi:l:l/Q(U7U) = F(U)7
we automatically have, whenever steady states occurs :

1+1/2(UZ7U2+1) Fitl/Q(Ui—laui) =0,

n+1l _ n
urtt = U7

Notations : F'; it1/2 the numerical flux of the homogeneous system, FEQ the numerical flux with source term and F' the flux of the PFS-model.
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CORRECTION OF THE M_

The steady state is perfectly maintained iff

K2

j':_;,_l/g(uu Uz+1a ZZyzl-‘rl) ‘%:;1/2(”7;—17 Ui)zi—lyzi) = O

with U = (A, Q), Z = "source terms”

Let us recall that without sources, whenever the numerical flux is consistent, i.e.

VU = (AaQ) € R27 Fi:l:l/Q(U7U) = F(U)7
we automatically have, whenever steady states occurs :

1+1/2(UZ7U2+1) Fitl/Q(Ui—laui) =0,

n+1 _ n
urtt = ur.

Correction of the numerical flux — toward a well balanced scheme

Notations : F'; it1/2 the numerical flux of the homogeneous system, FEQ the numerical flux with source term and F' the flux of the PFS-model.

-

M. Ersoy (BCAM) A Well Balanced Finite Volume Kinetic scheme LM Jean Leray
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IDEAS : replace
@ dynamic quantities U;_; and U;;1 by stationary profiles U:r_l and U,

e sources terms Z;_1 and Z;y1 by stationary profiles Z;” | and Z; ,
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DEFINITION OF THE NEW“

IDEAS : replace
@ dynamic quantities U;_; and U, by stationary profiles U:r ; and U;+1
@ sources terms Z;_1 and Z;, by stationary profiles Z _, and Z

With A | and A | computed from the steady states :

Vi { D(Ai_+1a Qi+1> Zz) = D(Ui—f—l, Zi-i-l)
"\ D(AL,Qi-1,2;) = D(Ui—1,Z;1)
Qz gH(A)cosO + gZ it E=0,

where D(U,Z) = 2A A2ln (g) + gH(S)cosO+gZ if E=1.

And (Z;,,,Z; ) are defined as follows :
B { Z, it A— = A
Zin it AL, £ A

Z; it Af =4
Zi_1 if Aj_l £ A;
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DEFINITION OF THE-

IDEAS : replace
@ dynamic quantities U;_; and U, by stationary profiles U:r_l and U,

e sources terms Z;_1 and Z;y1 by stationary profiles Z;” ; and Z, ,

Let us now consider
n+l _ g n
U =U;+

At — n - — n
A_ZL‘ (Fi_l’_%(u’b" Ai+1 7Q?+17Zi7 Zi+1 ) - F;r_%( A:’_—l 7Q?—17Uia Z?_—l 7Zi))
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DEFINITION OF THE NE\_.
IDEAS :

: replace
@ dynamic quantities U;_; and U, by stationary profiles U;r_l and U,
e sources terms Z;_1 and Z;41 by stationary profiles Z;” | and Z;, ,
Let us now consider

urtt = ur+

At™ _ " _

Ax (FZ+%(U?7 Ay Qi Zi 2o ) - FZF_%( 1, QisU thl ,Zi)
instead of the previous oke :

urtt = ur+

Atn — n n n

A_ﬂi (Fl_’_%(uia Ai+1 7Qi+17zi7 Zi+1 )_ Fl ( —1 7Qz 1’ l 1 7Z1))

&) @

Qi1 ( gi ) Qi1
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DEFINITION OF THE _

IDEAS : replace
@ dynamic quantities U;_; and U, by stationary profiles U ~;and U,

e sources terms Z;_1 and Z;y1 by stationary profiles Z;” ; and Z, ,

Let us now consider
U’n-‘rl U’I’L

Apn Lo .
E( l+%(Ui7 Ai+1 7Q;L+1’Z Z1+1 )_ Fj_,( i—1 7QZ 17 l 1 7Zi))

Then,

THEOREM

the numerical scheme is well-balanced.
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PROOF

@ the numerical flux is, by construc ,
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PROOF

@ the numerical flux is, by construction,
@ Let us assume that there exits n such that for every i :

Q? = QO’ D(U?’ ZZ) = hO'
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Proor e
@ the numerical flux is, by construction, co .

@ Let us assume that there exits n such that for every i :

Qi = Qo, D(U},Z;) = ho.

Then,
D(A; 1, Qit1,2Z:) = D(Uiy1,Ziy1) = ho, Vi

and especially, we have :

D(A;,1,Qiv1,Z;) = D(U;, Zy).
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@ the numerical flux is, by construction, consistent.

@ Let us assume that there exits n such that for every i :

Qi = Qo, D(U}, Z;) = ho.

Then,
D(A; 11, Qit1,Zi) = D(Uiy1,Zit1) = ho, Vi
and especially, we have :

D(Aj 1, Qit1,Zi) = D(U;, Zy).

The application A — D(A,Q, Z) being injective, provides A;, ; = A; and thus
Z;,, = Z; by construction. Similarly, we get A" | = A; and Z} | = Z;.
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Proor

@ the numerical flux is, by construction, consistent.
@ Let us assume that there exits n such that for every i :

Qi = Qo, D(U}, Z;) = ho.

Then,
D(A; 1, Qiv1,2Zi) = D(Uiy1,Ziy1) = ho, Vi
and especially, we have :

D(Aj 1, Qit1,Zi) = D(U;, Zy).

The application A — D(A,Q, Z) being injective, provides A;, | = A; and thus
Z;,, = Z; by construction. Similarly, we get A7 | = A; and Z} | = Z,.
Finally, since

F,_JFL(UZ‘L» i_+1?zi7Z;+1) (Uz 17Un i— 17Z)207

we get VI > n, Q' =Ql:= Q.
= B
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NUMERICAL PROPER’_

For instance, with the simplest x function [ABP00],
x(w) = T\/g [(—V3,V3] (w)

the following properties holds :

Positivity of A (under a CFL condition),
Conservativity of A,

Discrete equilibrium and,

Natural treatment of drying and flooding area.

for example

and analytical expression of the numerical macroscopic fluxes.

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids.
INRIA Report RR3989, 2000.
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OUTLINE :
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QUALITATIVE ANALYSIS OE

AND COMPARISON WITH THE WELL-BALANCED VFROE SCHEME

T= 0.000

Eau e
Ligne piezometrique

103

102

md'eau

101

0 100 200 300 400 500 600 700 800 900
m

@ upstream piezometric head 104 m

Niveau piezometrique aval
1032

103

102.8

1026

1024

m d’eau

102.2

102
101.8
1016

101.4

‘Hauteur piezo ——
haut du twyau

2 4 6 8 10 12 14

@ downstream piezometric head : Temps )
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CONVERGENCE

During unsteady flows ¢ = 100

0.8

0.6 F,

0.4

1

S -

Erreur L2 : Ligne piezometrique au tempst=100s

M. Ersoy (BCAM)

‘ ‘ ‘ Ordre VFRoe (polyfit) = 0.91301 —
VFRoe (sans polyfit) =======
Ordre FKA (polyfit) = 0.88039 - B
e FKA (sans polyfit)
1 1 1 1
2 2.2




Stationary ¢ = 500 s
Erreur L2 : Ligne piezometrique au temps t = 500 s
0 T T T

T T T
Ordre VFRoe (polyfit) = 1.0742 =
VFRoe (sans polyfit) =======
Ordre FKA (polyfit) = 1.0371 -
FKA (sans polyfit)

1
2.2
M. Ersoy (BCAM)
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Conservatlve and simple formulation :

— easy implementation even if source terms are complex

The most of the properties of the continuous model are maintained at
discrete level :

— positivity of the water area

— conservativity of the water area

— discrete equilibrium maintained
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Conservative and simple formulation :

— easy implementation even if source terms are complex

The most of the properties of the continuous model are maintained at
discrete level :

— positivity of the water area

— conservativity of the water area

— discrete equilibrium maintained

What about discrete entropy inequalities ?

— same difficulties as for discrete balance (see [PhDErsoy] Chap. 2 for further
details)
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