

A Well Balanced Finite Volume Kinetic (FVK) scheme for unsteady mixed flows in non uniform closed water pipes.

Mehmet Ersoy¹, Christian Bourdarias² and Stéphane Gerbi³

Laboratoire de Mathématiques Jean Leray, Nantes, the 24 March 2011

^{1.} BCAM, Spain, mersoy@bcamath.org

^{2.} LAMA-Savoie, France, christian.bourdarias@univ-savoie.fr

^{3.} LAMA-Savoie, France, stephane.gerbi@univ-savoie.fr

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A Finite Volume Framework

- Kinetic Formulation and numerical scheme
- $\bullet\,$ The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

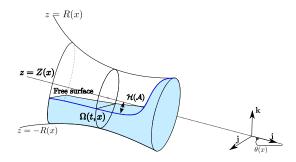
- Kinetic Formulation and numerical scheme
- The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

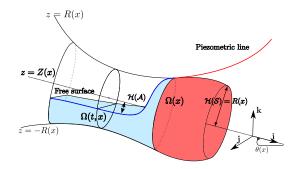


UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

• Pressurized area (CH) sections are non completely filled and the flow is compressible...

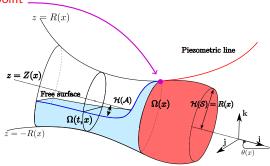


UNSTEADY MIXED FLOWS IN CLOSED WATER PIPES?

• Free surface area (SL)

sections are not completely filled and the flow is incompressible...

- Pressurized area (CH) sections are non completely filled and the flow is compressible...
- Transition point _



EXAMPLES OF PIPES

Orange-Fish tunnel

Forced pipe

Sewers ... in Paris

problems ...at Minnesota
http://www.sewerhistory.org/grfx/
misc/disaster.htm

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

Previous works

- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A Finite Volume Framework

- Kinetic Formulation and numerical scheme
- \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

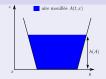
3 Conclusion and perspectives

PREVIOUS WORKS

For free surface flows :

GENERALLY Saint-Venant equations :

$$\begin{cases} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + gI_1(A)\right) = 0 \end{cases}$$



with	A(t,x)	:	wet area
	Q(t, x)	:	discharge
	$I_1(A)$:	hydrostatic pressure
	q	:	gravity

Advantage

 $\bullet\,$ Conservative formulation \longrightarrow Easy numerical implementation

Hamam and McCorquodale (82), Trieu Dong (91), Musandji Fuamba (02), Vasconcelos et al (06)

PREVIOUS WORKS

For pressurized flows :

GENERALLY Allievi equations :

$$\partial_t p + \frac{c^2}{gS} \partial_x Q = 0,$$

$$\partial_t Q + gS \partial_x p = 0$$

with	p(t,x)	:	pressure
	Q(t, x)	:	discharge
	c(t, x)	:	sound speed
	S(x)	:	section

Advantage

 \bullet Compressibility of water is taking into account \Longrightarrow Sub-atmospheric flows and over-pressurized flows are well computed

Drawback

 \bullet Non conservative formulation \Longrightarrow Cannot be, at least easily, coupled to Saint-Venant equations

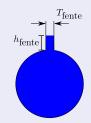
Winckler (93), Blommaert (00)

PREVIOUS WORKS

For **mixed** flows :

GENERALLY Saint-Venant with Preissmann slot artifact :

 $\left\{ \begin{array}{l} \partial_t A + \partial_x Q = 0, \\ \partial_t Q + \partial_x \left(\frac{Q^2}{A} + g I_1(A) \right) = 0 \end{array} \right.$



Advantage

• Only one model for two types of flows.

Drawbacks

- \bullet Incompressible Fluid \Longrightarrow Water hammer not well computed
- Pressurized sound speed $\simeq \sqrt{S/T_{\text{fente}}} \Longrightarrow$ adjustment of T_{fente}
- Depression \implies seen as a free surface state

Preissmann (61), Cunge et al. (65), Baines et al. (92), Garcia-Navarro et al. (94), Capart et al. (97), Tseng (99)

OUR GOAL :

• Use Saint-Venant equations for free surface flows

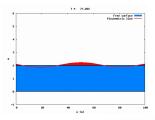
OUR GOAL :

- Use Saint-Venant equations for free surface flows
- Write a pressurized model
 - which takes into account the compressibility of water
 - which takes into account the depression
 - similar to Saint-Venant equations

OUR GOAL :

- Use Saint-Venant equations for free surface flows
- Write a pressurized model
 - which takes into account the compressibility of water
 - which takes into account the depression
 - similar to Saint-Venant equations
- Get one model for mixed flows

To be able to simulate, for instance :



. Bourdarias and S. Gerbi

A finite volume scheme for a model coupling free surface and pressurized flows in pipes.

J. Comp. Appl. Math., 209(1) :109-131, 2007.

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

A FINITE VOLUME FRAMEWORK

- Kinetic Formulation and numerical scheme
- The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) \ dydz$$

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

Method :

- Write Euler equations in curvilinear coordinates.
- Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) \, dy dz$$

J.-F. Gerbeau, B. Perthame

Derivation of viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, 2001.

F. Marche

Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanic B/Fluid, 26 (2007), 49–63.

M. Ersoy (BCAM)

A Well Balanced Finite Volume Kinetic scheme

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

Method :

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.

 $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

$$A_{sl}(t,x) = \int_{\Omega(t,x)} dy dz, \quad Q_{sl}(t,x) = A_{sl}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{A_{sl}(t,x)} \int_{\Omega(t,x)} U(t,x) \ dydz$$

3D Incompressible Euler equations

$$\begin{aligned} \rho_0 \mathrm{div}(\mathbf{U}) &= 0\\ \rho_0(\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U}) + \nabla p &= \rho_0 F \end{aligned}$$

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{U^2} \approx \overline{U} \overline{U}$ and $\overline{UV} \approx \overline{U} \overline{V}$.
- $\textcircled{\ }$ Introduce $A_{sl}(t,x)$: wet area, $Q_{sl}(t,x)$ discharge given by :

THE FREE SURFACE MODEL

$$\begin{aligned} \partial_t A_{sl} &+ \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} &+ \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl}(x, A_{sl}) - G(x, A_{sl}) \end{aligned}$$

with

$$p_{sl} = gI_1(x, A_{sl})\cos\theta$$
 : hydrostatic pressure law

$$Pr_{sl} = gI_2(x, A_{sl})\cos\theta$$

: pressure source term

$$G \qquad = \quad gA_{sl}\overline{z}\frac{d}{dx}\cos\theta$$

THE FREE SURFACE MODEL

$$\partial_t A_{sl} + \partial_x Q_{sl} = 0,$$

$$\partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl}(x, A_{sl}) \right) = -g A_{sl} \frac{dZ}{dx} + Pr_{sl}(x, A_{sl}) - G(x, A_{sl})$$

$$- \underbrace{gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}}}_{\text{friction added after the derivation}}$$

with

$$p_{sl} = gI_1(x, A_{sl})\cos\theta$$

$$Pr_{sl} = gI_2(x, A_{sl})\cos\theta$$

- : hydrostatic pressure law
- : pressure source term

$$G \qquad = \quad gA_{sl}\overline{z}\frac{d}{dx}\cos\theta$$

$$K = \frac{1}{K_s^2 R_h (A_{sl})^{4/3}}$$

: Manning-Strickler law

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- ⁽²⁾ Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \ dydz$$

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \ dydz$$

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- Section averaging $\overline{\rho U} \approx \overline{\rho} \overline{U}$ and $\overline{\rho U^2} \approx \overline{\rho} \overline{U} \overline{U}$.
- Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = \frac{1}{S(x)} \int_{\Omega(x)} U(t,x) \, dy dz$$

3D isentropic compressible equations

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{U}) &= 0\\ \partial_t(\rho \mathbf{U}) + \operatorname{div}(\rho \mathbf{U} \otimes \mathbf{U}) + \nabla p &= \rho \mathbf{F} \end{aligned}$$

with

$$p = p_a + \frac{\rho - \rho_0}{c^2}$$
 with c sound speed

Method :

- Write Euler equations in curvilinear coordinates.
- **②** Write equations in non-dimensional form using the small parameter $\epsilon = H/L$ and takes $\epsilon = 0$.
- $\label{eq:section} \textbf{ Section averaging } \overline{\rho U} \approx \overline{\rho} \overline{U} \text{ and } \overline{\rho U^2} \approx \overline{\rho} \overline{U} \, \overline{U}.$

Introduce $A_{ch}(t,x)$: equivalent wet area, $Q_{ch}(t,x)$ discharge given by :

$$A_{ch}(t,x) = \frac{\overline{\rho}}{\rho_0} S(x), \quad Q_{ch}(t,x) = A_{ch}(t,x)u(t,x)$$

$$u(t,x) = rac{1}{S(x)} \int_{\Omega(x)} U(t,x) \; dy dz$$

THE PRESSURIZED MODEL

$$\partial_t A_{ch} + \partial_x Q_{ch} = 0, \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) - G(x, A_{ch})$$

with

$$p_{ch} = c^{2}(A_{ch} - S) \qquad : \text{ acoustic type pressure law}$$

$$Pr_{ch} = c^{2}\left(\frac{A_{ch}}{S} - 1\right)\frac{dS}{dx} \qquad : \text{ pressure source term}$$

$$G = gA_{ch}\overline{z}\frac{d}{dx}\cos\theta \qquad : \text{ curvature source term}$$

THE PRESSURIZED MODEL

$$\begin{aligned}
\int \partial_t A_{ch} + \partial_x Q_{ch} &= 0, \\
\partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch}(x, A_{ch}) \right) &= -gA_{ch} \frac{dZ}{dx} + Pr_{ch}(x, A_{ch}) - G(x, A_{ch}) \\
&- \underbrace{gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}}}_{\text{friction added after the derivation}}
\end{aligned}$$

with

$$p_{ch} = c^{2}(A_{ch} - S) \qquad : \text{ acoustic type pressure}$$

$$Pr_{ch} = c^{2}\left(\frac{A_{ch}}{S} - 1\right)\frac{dS}{dx} \qquad : \text{ pressure source term}$$

$$G = gA_{ch}\overline{z}\frac{d}{dx}\cos\theta \qquad : \text{ curvature source term}$$

$$K = \frac{1}{K_{s}^{2}R_{h}(S)^{4/3}} \qquad : \text{ Manning-Strickler law}$$

law

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A Finite Volume Framework

- Kinetic Formulation and numerical scheme
- \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

Models are formally close ...

$$\begin{pmatrix} \partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\ -G(x, A_{sl}) &- gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$

$$\partial_t A_{ch} + \partial_x Q_{ch} = 0, \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch} (x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch} (x, A_{ch}) -G(x, A_{ch}) -gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}}$$

Models are formally close ...

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} &= 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\ &-G(x, A_{sl}) \\ &-gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$

Continuity criterion

Models are formally close ...

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} = 0, \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} + p_{sl} (x, A_{sl}) \right) = -g A_{sl} \frac{dZ}{dx} + Pr_{sl} (x, A_{sl}) \\ -G(x, A_{sl}) \\ -gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \end{cases}$$
$$= 0, \\ \partial_t A_{ch} + \partial_x Q_{ch} = 0, \\ \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} + p_{ch} (x, A_{ch}) \right) = -g A_{ch} \frac{dZ}{dx} + Pr_{ch} (x, A_{ch}) \\ -G(x, A_{ch}) \\ -G(x, A_{ch}) \\ -gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

« mixed »condition

M. Ersoy (BCAM)

Models are formally close ...

$$\begin{cases} \partial_t A_{sl} + \partial_x Q_{sl} \\ \partial_t Q_{sl} + \partial_x \left(\frac{Q_{sl}^2}{A_{sl}} - p_{sl}(x, A_{sl}) \right) &= -g A_{sl} \frac{dZ}{dx} - Pr_{sl}(x, A_{sl}) \\ -G(x, A_{sl}) - gK(x, A_{sl}) \frac{Q_{sl}|Q_{sl}|}{A_{sl}} \\ \partial_t Q_{ch} + \partial_x \left(\frac{Q_{ch}^2}{A_{ch}} - p_{ch}(x, A_{ch}) \right) &= -g A_{ch} \frac{dZ}{dx} - Pr_{ch}(x, A_{ch}) \\ -G(x, A_{ch}) - gK(x, S) \frac{Q_{ch}|Q_{ch}|}{A_{ch}} \end{cases}$$

To be coupled

M. Ersoy (BCAM)

A Well Balanced Finite Volume Kinetic scheme

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

The **PFS** model

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if } E = 1, \\ A_{sl} & \text{if } E = 0. \end{cases}$$

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if } E = 1, \\ A_{sl} & \text{if } E = 0. \end{cases}$$

We set

$$A = \frac{\bar{\rho}}{\rho_0} \mathbf{S} = \begin{cases} \mathbf{S}(A_{sl}, 0) = A_{sl} & \text{if SL} \\ \frac{\bar{\rho}}{\rho_0} \mathbf{S}(A_{sl}, 1) = A_{ch} & \text{if CH} \end{cases} :$$
$$Q = Au :$$

- the « mixed »variable
- : the discharge

The **PFS** model

THE « MIXED »VARIABLE We introduce a state indicator

$$E = \begin{cases} 1 & \text{if the flow is pressurized (CH),} \\ 0 & \text{if the flow is free surface (SL)} \end{cases}$$

and the physical section of water \boldsymbol{S} by :

$$\mathbf{S} = \mathbf{S}(A_{sl}, E) = \begin{cases} S & \text{if } E = 1, \\ A_{sl} & \text{if } E = 0. \end{cases}$$

We set

$$A = \frac{\bar{\rho}}{\rho_0} \mathbf{S} = \begin{cases} \mathbf{S}(A_{sl}, 0) = A_{sl} & \text{if SL} \\ \frac{\bar{\rho}}{\rho_0} \mathbf{S}(A_{sl}, 1) = A_{ch} & \text{if CH} \end{cases} : \text{ the « mixed » variable} \\ Q = Au & \text{: the discharge} \end{cases}$$

Continuity of **S** at transition point

The **PFS** model

CONSTRUCTION OF THE « MIXED »PRESSURE

• Continuity of $\mathbf{S} \Longrightarrow$ continuity of p at transition point \longrightarrow $p(x, A, E) = c^2(A - \mathbf{S}) + gI_1(x, \mathbf{S}) \cos \theta$

The **PFS** model

CONSTRUCTION OF THE « MIXED »PRESSURE

• Continuity of $\mathbf{S} \Longrightarrow$ continuity of p at transition point \longrightarrow $p(x, A, E) = c^2(A - \mathbf{S}) + qI_1(x, \mathbf{S}) \cos \theta$

• Similar construction for the pressure source term :

$$Pr(x, A, E) = c^2 \left(\frac{A}{\mathbf{S}} - 1\right) \frac{dS}{dx} + gI_2(x, \mathbf{S})\cos\theta$$

THE **PFS** MODEL

$$\begin{aligned} \zeta \ \partial_t(A) + \partial_x(Q) &= 0 \\ \partial_t(Q) + \partial_x \left(\frac{Q^2}{A} + p(x, A, E) \right) &= -g A \frac{d}{dx} Z(x) \\ &+ Pr(x, A, E) \\ &- G(x, A, E) \\ -g \, \mathbf{K}(x, \mathbf{S}) \frac{Q|Q|}{A} \end{aligned}$$

C. Bourdarias, M. Ersoy and S. Gerbi

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. Int. J. On Finite Volumes, 6(2):1-47, 2009.

The **PFS** model

MATHEMATICAL PROPERTIES

- The **PFS** system is strictly hyperbolic for A(t, x) > 0.
- $\bullet\,$ For regular solutions, the mean speed u=Q/A verifies

$$\partial_t u + \partial_x \left(\frac{u^2}{2} + c^2 \ln(A/S) + g \mathcal{H}(S) \cos \theta + g Z \right) = -g K(x, \mathbf{S}) u |u|$$

and for u = 0, we have :

$$c^2 \ln(A/\mathbf{S}) + g \mathcal{H}(\mathbf{S}) \cos \theta + g Z = cte$$

where $\mathcal{H}(\mathbf{S})$ is the physical water height.

• There exists a mathematical entropy

$$E(A,Q,S) = \frac{Q^2}{2A} + c^2 A \ln(A/\mathbf{S}) + c^2 S + g\overline{z}(x,\mathbf{S})\cos\theta + gAZ$$

which satisfies

$$\partial_t E + \partial_x \left(E \, u + p(x, A, E) \, u \right) = -g \, A \, K(x, \mathbf{S}) \, u^2 \, |u| \leqslant 0$$

OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

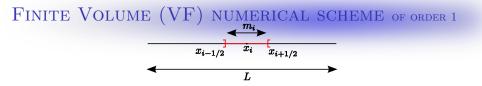
2 A Finite Volume Framework

• Kinetic Formulation and numerical scheme

$\bullet\,$ The χ function and well balanced scheme

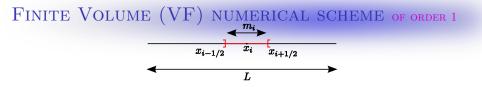
- 1. Classical scheme fails in presence of complex source terms
- 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives



PFS equations under vectorial form :

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$



PFS equations under vectorial form :

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$
 with $\mathbf{U}_i^n \stackrel{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx$ and $\mathcal{S}(t,x)$ constant per mesh,

FINITE VOLUME (VF) NUMERICAL SCHEME OF ORDER 1 $x_{i-1/2}$ x_i $x_{i+1/2}$ x_i $x_{i+1/2}$

PFS equations under vectorial form :

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$

with $\mathbf{U}_i^n \stackrel{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx$ and $\mathcal{S}(t,x)$ constant per mesh,

Cell-centered numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\mathcal{F}_{i+1/2} - \mathcal{F}_{i-1/2} \right) + \Delta t^{n} \mathcal{S}(\mathbf{U}_{i}^{n})$$

where

$$\Delta t^n \mathcal{S}_i^n \approx \int_{t_n}^{t_{n+1}} \int_{m_i} \mathcal{S}(t, x) \, dx \, dt$$

FINITE VOLUME (VF) NUMERICAL SCHEME OF ORDER 1 $x_{i-1/2}$ x_i $x_{i+1/2}$ x_i $x_{i+1/2}$

PFS equations under vectorial form :

$$\partial_t \mathbf{U}(t,x) + \partial_x F(x,\mathbf{U}) = \mathcal{S}(t,x)$$

with $\mathbf{U}_i^n \stackrel{\text{cte per mesh}}{\approx} \frac{1}{\Delta x} \int_{m_i} \mathbf{U}(t_n,x) \, dx$ and $\mathcal{S}(t,x)$ constant per mesh,

Upwinded numerical scheme :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2} - \widetilde{\mathcal{F}}_{i-1/2} \right)$$

 ${\mathcal F}$ and $\widetilde{{\mathcal F}}$ are consistent.

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

Our goal : define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

${\sf Positivity} \ {\sf of} \ A$

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mbox{Our goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality

 $\mbox{Our goal}$: define $\mathcal{F}_{i+1/2}$ in order to preserve continuous properties of the PFS-model

Positivity of \boldsymbol{A} ,

conservativity of A, discrete equilibrium, discrete entropy inequality


```
VFRoe solver[BEGVF]
```

Kinetic solver[BEG10]

C. Bourdarias, M. Ersoy and S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. International Journal On Finite Volumes, Vol 6(2) 1–47, 2009.

C. Bourdarias, M. Ersoy and S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms. J. Sci. Comp., pp 1-16, 10.1007/s10915-010-9456-0, 2011.

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

• Kinetic Formulation and numerical scheme

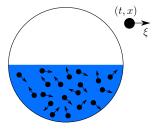
- The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

PHILOSOPHY

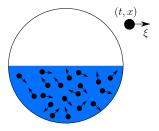
As in kinetic theory of gases,

Describe the macroscopic behavior from particle motions, here, assumed fictitious by introducing $\begin{cases} a \chi \text{ density function and} \\ a \mathcal{M}(t, x, \xi; \chi) \text{ maxwellian function (or a Gibbs equilibrium)} \end{cases}$



Philosophy

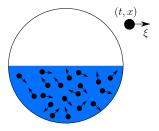
As in kinetic theory of gases, Describe the macroscopic behavior from particle motions, here, assumed fictitious by introducing $\begin{cases} a \ \chi \ density \ function \ and \\ a \ \mathcal{M}(t, x, \xi; \chi) \ maxwellian \ function \ (or \ a \ Gibbs \ equilibrium) \end{cases}$



i.e., transform the nonlinear system into a kinetic transport equation on \mathcal{M} .

Philosophy

As in kinetic theory of gases, Describe the macroscopic behavior from particle motions, here, assumed fictitious by introducing $\begin{cases} a \ \chi \ density \ function \ and \\ a \ \mathcal{M}(t, x, \xi; \chi) \ maxwellian \ function \ (or \ a \ Gibbs \ equilibrium) \end{cases}$



i.e., transform the nonlinear system into a kinetic transport equation on \mathcal{M} . Thus, to be able to define the numerical *macroscopic fluxes* from the microscopic one.

....Faire d'une pierre deux coups...

PRINCIPLE DENSITY FUNCTION

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

Principle

GIBBS EQUILIBRIUM OR MAXWELLIAN

We introduce

$$\chi(\omega) = \chi(-\omega) \ge 0$$
, $\int_{\mathbb{R}} \chi(\omega) d\omega = 1$, $\int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1$,

then we define the Gibbs equilibrium by

.

$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$
$$b(t, x) = \sqrt{\frac{p(t, x)}{A(t, x)}}$$

with

Principle

Since

$$\chi(\omega) = \chi(-\omega) \ge 0 , \quad \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \quad \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 ,$$
$$\mathcal{M}(t, x, \xi) = \frac{A(t, x)}{b(t, x)} \chi\left(\frac{\xi - u(t, x)}{b(t, x)}\right)$$

then

and

MICRO-MACROSCOPIC RELATIONS

$$A = \int_{\mathbb{R}} \mathcal{M}(t, x, \xi) d\xi$$
$$Q = \int_{\mathbb{R}} \xi \mathcal{M}(t, x, \xi) d\xi$$
$$\frac{Q^{2}}{A} + \underbrace{A b^{2}}_{p} = \int_{\mathbb{R}} \xi^{2} \mathcal{M}(t, x, \xi) d\xi$$

PRINCIPLE [P02]

THE KINETIC FORMULATION

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t,x,\xi)$ is a collision kernel satisfying a.e. (t,x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

B. Perthame.

Kinetic formulation of conservation laws. Oxford University Press. Oxford Lecture Series in Mathematics and its Applications, Vol 21, 2002.

PRINCIPE

The kinetic formulation

(A,Q) is solution of the PFS system if and only if ${\mathcal M}$ satisfy the transport equation :

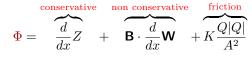
 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = \mathcal{K}(t, x, \xi)$

where $\mathcal{K}(t,x,\xi)$ is a collision kernel satisfying a.e. (t,x)

$$\int_{\mathbb{R}} \mathcal{K} d\xi = 0 \ , \ \int_{\mathbb{R}} \xi \, \mathcal{K} d\xi = 0$$

and Φ are the source terms.

General form of the source terms :



with $\mathbf{W} = (Z, S, \cos \theta)$

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$ $\Phi(t,x) = 0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- Recalling that A,Q and $Z,S,\cos\theta$ constant per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i} \Phi(t,x)=0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} = \mathcal{K}(t, x, \xi)$$

SIMPLIFICATION OF THE TRANSPORT EQUATION

- $\bullet~\mbox{Recalling that}~A,Q~\mbox{and}~Z,S,\cos\theta~\mbox{constant}$ per mesh
- forgetting the friction : « splitting »...

Then $\forall (t,x) \in [t_n,t_{n+1}[\times \stackrel{\circ}{m_i}]$ $\Phi(t,x)=0$

since

$$\Phi = \frac{d}{dx}Z + \mathbf{B} \cdot \frac{d}{dx}\mathbf{W}$$

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0\\ f(t_n, x, \xi) &= \mathcal{M}(t_n, x, \xi) \stackrel{def}{:=} \frac{A(t_n, x, \xi)}{b(t_n, x, \xi)} \chi\left(\frac{\xi - u(t_n, x, \xi)}{b(t_n, x, \xi)}\right) \end{cases}$$

by neglecting the collision kernel.

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f &= 0\\ f(t_n, x, \xi) &= \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

where

$$\mathbf{U}_{i}^{n+1} = \left(\begin{array}{c} A_{i}^{n+1} \\ Q_{i}^{n+1} \end{array}\right) \stackrel{def}{\mathrel{\mathop:}=} \int_{\mathbb{R}} \left(\begin{array}{c} 1 \\ \xi \end{array}\right) \, f_{i}^{n+1}(\xi) \, d\xi$$

On $[t_n, t_{n+1}] \times m_i$, we have :

$$\begin{cases} \partial_t f + \xi \cdot \partial_x f = 0\\ f(t_n, x, \xi) = \mathcal{M}_i^n(\xi) \end{cases}$$

i.e.

$$f_i^{n+1}(\xi) = \mathcal{M}_i^n(\xi) + \xi \frac{\Delta t^n}{\Delta x} \left(\mathcal{M}_{i+\frac{1}{2}}^-(\xi) - \mathcal{M}_{i-\frac{1}{2}}^+(\xi) \right)$$

or

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{\Delta x} \left(\widetilde{\mathcal{F}}_{i+1/2}^{-} - \widetilde{\mathcal{F}}_{i-1/2}^{+} \right)$$

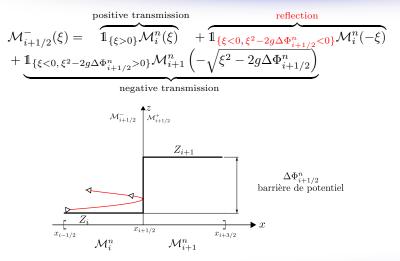
with

$$\widetilde{\mathcal{F}}_{i\pm\frac{1}{2}}^{\pm} = \int_{\mathbb{R}} \xi \begin{pmatrix} 1 \\ \xi \end{pmatrix} \mathcal{M}_{i\pm\frac{1}{2}}^{\pm}(\xi) \, d\xi.$$

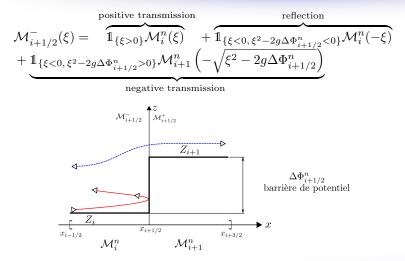
INTERPRETATION : POTENTIAL BAREER

positive transmission $\mathcal{M}_{i+1/2}^{-}(\xi) = \qquad \overbrace{\mathbb{1}_{\{\xi > 0\}}}^{-} \widetilde{\mathcal{M}_{i}^{n}(\xi)}$ $+ \mathbb{1}_{\{\xi < 0, \xi^2 - 2g\Delta\Phi_{i+1/2}^n > 0\}} \mathcal{M}_{i+1}^n \left(-\sqrt{\xi^2 - 2g\Delta\Phi_{i+1/2}^n} \right)$ negative transmission $\mathcal{M}_{i+1/2}^{-} \begin{bmatrix} z \\ \mathcal{M}_{i+1/2}^{+} \end{bmatrix}$ Z_{i+1} $\Delta \Phi^n_{i+1/2}$ barrière de potentiel $\blacktriangleright x$ $x_{i+1/2}$ $x_{i-1/2}$ $x_{i+3/2}$ \mathcal{M}_{i+1}^n \mathcal{M}^n_i

INTERPRETATION : POTENTIAL BAREER

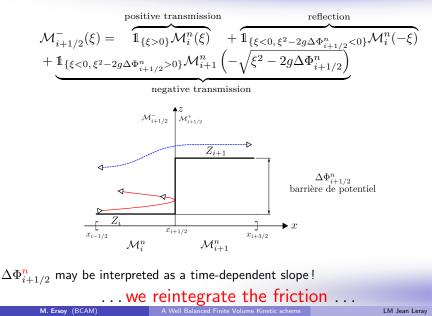


INTERPRETATION : POTENTIAL BAREER



 $\Delta \Phi_{i+1/2}^n$ may be interpreted as a time-dependent slope!

INTERPRETATION : DYNAMIC SLOPE \implies Upwinding of the friction



31 / 49

Upwinding of the source terms : $\Delta \Phi_{i+1/2}$

• conservative $\partial_x W$:

$$\mathbf{W}_{i+1} - \mathbf{W}_i$$

• non-conservative $\mathbf{B}\partial_x \mathbf{W}$:

$$\overline{\mathbf{B}}(\mathbf{W}_{i+1} - \mathbf{W}_i)$$

where

$$\overline{\mathbf{B}} = \int_0^1 \mathbf{B}(s, \phi(s, \mathbf{W}_i, \mathbf{W}_{i+1})) \; ds$$

for the « straight lines paths », i.e.

$$\phi(s, \mathbf{W}_i, \mathbf{W}_{i+1}) = s\mathbf{W}_{i+1} + (1-s)\mathbf{W}_i, \, s \in [0, 1]$$

G. Dal Maso, P. G. Lefloch and F. Murat.

Definition and weak stability of nonconservative products. J. Math. Pures Appl., Vol 74(6) 483–548, 1995.

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

A FINITE VOLUME FRAMEWORK

• Kinetic Formulation and numerical scheme

$\bullet\,$ The χ function and well balanced scheme

- 1. Classical scheme fails in presence of complex source terms
- 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

$\chi = ???$ IN PRACTICE ???

Let us recall that we have to define a χ function such that :

$$\chi(\omega) = \chi(-\omega) \ge 0 , \ \int_{\mathbb{R}} \chi(\omega) d\omega = 1, \\ \int_{\mathbb{R}} \omega^2 \chi(\omega) d\omega = 1 ,$$

and $\mathcal{M} = \frac{A}{b} \chi\left(\frac{\xi - u}{b}\right)$ satisfies the equation :
 $\partial_t \mathcal{M} + \xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = 0$

and

 $\chi \longrightarrow$ definition of the macroscopic fluxes.

Properties related to χ

We always have

- Conservativity of A holds for every χ .
- Positivity of A holds for every χ but for numerical purpose iff supp χ is compact to get a CFL condition.

Properties related to χ

We always have

- Conservativity of A holds for every χ .
- Positivity of A holds for every χ but for numerical purpose iff supp χ is compact to get a CFL condition.

while

- discrete equilibrium,
- discrete entropy inequalities

strongly depend on the choice of the χ function.

Properties related to χ

We always have

- Conservativity of A holds for every χ .
- Positivity of A holds for every χ but for numerical purpose iff supp χ is compact to get a CFL condition.

while

- discrete equilibrium,
- discrete entropy inequalities

strongly depend on the choice of the χ function.

In the following, we only focus on discrete equilibrium.

• Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

- Kinetic Formulation and numerical scheme
- The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free surface flows, the following procedure fails for complex source terms :

Following [PS01], choose χ such that $\mathcal{M}(t,x,\xi;\chi)$ is the steady state solution at rest, u=0 :

$$\xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0.$$

provides

$$\frac{3\,T\,I_1 - A^2}{2\,I_1}w\chi(w) + \left\{\frac{A^2}{I_1} - w^2\frac{A^2 - I_1\,T}{2\,I_1}\right\}\chi'(w) = 0 \text{ where } w = \frac{\xi}{b}\,.$$

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term. *Calcolo*, 38(4) :201–231, 2001.

STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free surface flows, the following procedure fails for complex source terms : Following [PS01], choose χ such that $\mathcal{M}(t, x, \xi; \chi)$ is the steady state solution at rest, u = 0:

$$\xi \cdot \partial_x \mathcal{M} - g\Phi \,\partial_\xi \mathcal{M} = 0.$$

provides

$$\underbrace{\frac{3TI_1 - A^2}{2I_1}}_{\alpha} w\chi(w) + \left\{ \underbrace{\frac{A^2}{I_1}}_{\beta} - w^2 \underbrace{\frac{A^2 - I_1 T}{2I_1}}_{\gamma} \right\} \chi'(w) = 0.$$

Then, this equation is solvable as an ODE iff the coefficients (α, β, γ) are constants.

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term. Calcolo, 38(4) :201-231, 2001.

STRATEGY

Even if the pipe is circular with uniform cross-sections, for instance for the free surface flows, the following procedure fails for complex source terms : Following [PS01], choose χ such that $\mathcal{M}(t, x, \xi; \chi)$ is the steady state solution at rest, u = 0:

$$\xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = 0.$$

provides

$$\underbrace{\frac{3TI_1 - A^2}{2I_1}}_{\alpha} w\chi(w) + \left\{ \underbrace{\frac{A^2}{I_1}}_{\beta} - w^2 \underbrace{\frac{A^2 - I_1 T}{2I_1}}_{\gamma} \right\} \chi'(w) = 0.$$

Then, this equation is solvable as an ODE iff the coefficients (α,β,γ) are constants.

For a rectangular pipe with uniform sections, we have $(\alpha, \beta, \gamma) = \left(\frac{T}{2}, 2T, \frac{T}{2}\right)$ with T = cst the base of the pipe.

B. Perthame and C. Simeoni

A kinetic scheme for the Saint-Venant system with a source term. *Calcolo*, 38(4):201–231, 2001.

IN THESE SETTINGS With $(\alpha, \beta, \gamma) = \left(\frac{T}{2}, 2T, \frac{T}{2}\right)$ and

THEOREM

we get $\chi(w) = \frac{1}{\pi} \left(1 - \frac{w^2}{4} \right)_+^{1/2}$ and the numerical scheme satisfies the following

properties :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Discrete equilibrium,
- Discrete entropy inequalities.
- This results holds only for conservative terms $\partial_x Z(x)$.
- A similar result for pressurized flows, unusable in practice (see [PhDErsoy] Chap. 2).

M. Ersoy

Modeling, mathematical and numerical analysis of various compressible or incompressible flows in thin layer [Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince]. Université de Savoie, Chambéry, September 10, 2010. Then, the equation to solve is :

$$\xi \cdot \partial_x \mathcal{M} - g \Phi \, \partial_\xi \mathcal{M} = 0.$$

Complicate to solve \longrightarrow find an easy way to maintain, at least, discrete steady states.

• Unsteady mixed flows : PFS equations (Pressurized and Free Surface)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

- Kinetic Formulation and numerical scheme
- The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

CORRECTION OF THE MACROSCOPIC FLUXES

The steady state is perfectly maintained iff

$$\widetilde{\mathcal{F}}_{i+1/2}^{-}(\mathbf{U}_i,\mathbf{U}_{i+1},\mathbf{Z}_i,\mathbf{Z}_{i+1}) - \widetilde{\mathcal{F}}_{i-1/2}^{+}(\mathbf{U}_{i-1},\mathbf{U}_i,\mathbf{Z}_{i-1},\mathbf{Z}_i) = \mathbf{0}$$

with $\mathbf{U} = (A, Q), \ \mathbf{Z} =$ "source terms"

Notations : $F_{i\pm 1/2}$ the numerical flux of the homogeneous system, $F_{i\pm 1/2}$ the numerical flux with source term and F the flux of the PFS-model.

CORRECTION OF THE MACROSCOPIC FLUXES

The steady state is perfectly maintained iff

$$\widetilde{\mathcal{F}}_{i+1/2}^{-}(\mathbf{U}_i,\mathbf{U}_{i+1},\mathbf{Z}_i,\mathbf{Z}_{i+1}) - \widetilde{\mathcal{F}}_{i-1/2}^{+}(\mathbf{U}_{i-1},\mathbf{U}_i,\mathbf{Z}_{i-1},\mathbf{Z}_i) = 0$$

with $\mathbf{U} = (A, Q), \ \mathbf{Z} =$ "source terms"

Let us recall that without sources, whenever the numerical flux is consistent, i.e.

$$\forall \mathbf{U} = (A, Q) \in \mathbb{R}^2, \, F_{i \pm 1/2}(\mathbf{U}, \mathbf{U}) = F(\mathbf{U}),$$

we automatically have, whenever steady states occurs :

$$F_{i+1/2}^{-}(\mathbf{U}_{i},\mathbf{U}_{i+1}) - F_{i-1/2}^{+}(\mathbf{U}_{i-1},\mathbf{U}_{i}) = \mathbf{0},$$

i.e.,

$$\mathbf{U}_i^{n+1} = \mathbf{U}_i^n.$$

Notations : $F_{i\pm 1/2}$ the numerical flux of the homogeneous system, $F_{i\pm 1/2}$ the numerical flux with source term and F the flux of the PFS-model.

CORRECTION OF THE MACROSCOPIC FLUXES

The steady state is perfectly maintained iff

$$\widetilde{\mathcal{F}}_{i+1/2}^{-}(\mathbf{U}_i,\mathbf{U}_{i+1},\mathbf{Z}_i,\mathbf{Z}_{i+1}) - \widetilde{\mathcal{F}}_{i-1/2}^{+}(\mathbf{U}_{i-1},\mathbf{U}_i,\mathbf{Z}_{i-1},\mathbf{Z}_i) = 0$$

with $\mathbf{U} = (A, Q), \ \mathbf{Z} =$ "source terms"

Let us recall that without sources, whenever the numerical flux is consistent, i.e.

$$\forall \mathbf{U} = (A, Q) \in \mathbb{R}^2, \, F_{i \pm 1/2}(\mathbf{U}, \mathbf{U}) = F(\mathbf{U}),$$

we automatically have, whenever steady states occurs :

$$F_{i+1/2}^{-}(\mathbf{U}_{i},\mathbf{U}_{i+1}) - F_{i-1/2}^{+}(\mathbf{U}_{i-1},\mathbf{U}_{i}) = 0,$$

i.e.,

$$\mathbf{U}_i^{n+1} = \mathbf{U}_i^n.$$

Correction of the numerical flux \rightarrow toward a well balanced scheme Notations : $F_{i\pm 1/2}$ the numerical flux of the homogeneous system, $\widetilde{F_{i\pm 1/2}}$ the numerical flux with source term and F the flux of the PFS-model.

DEFINITION OF THE NEW FLUXES : M-SCHEME

IDEAS : replace

- dynamic quantities U_{i-1} and U_{i+1} by stationary profiles U_{i-1}^+ and U_{i+1}^-
- sources terms \mathbf{Z}_{i-1} and \mathbf{Z}_{i+1} by stationary profiles \mathbf{Z}_{i-1}^+ and \mathbf{Z}_{i+1}^-

Definition of the New Fluxes : M-scheme IDEAS : replace

• dynamic quantities U_{i-1} and U_{i+1} by stationary profiles U_{i-1}^+ and U_{i+1}^-

• sources terms \mathbf{Z}_{i-1} and \mathbf{Z}_{i+1} by stationary profiles \mathbf{Z}_{i-1}^+ and \mathbf{Z}_{i+1}^- With A_{i+1}^- and A_{i-1}^+ computed from the steady states :

$$\forall i, \begin{cases} D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) &= D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) \\ D(A_{i-1}^+, Q_{i-1}, \mathbf{Z}_i) &= D(\mathbf{U}_{i-1}, \mathbf{Z}_{i-1}) \end{cases}$$

where $D(\mathbf{U}, \mathbf{Z}) = \frac{Q^2}{2A} + \begin{cases} g\mathcal{H}(A)\cos\theta + gZ & \text{if } E = 0, \\ c^2\ln\left(\frac{A}{S}\right) + g\mathcal{H}(S)\cos\theta + gZ & \text{if } E = 1. \end{cases}$

And $(\mathbf{Z}_{i+1}^{-}, \mathbf{Z}_{i-1}^{+})$ are defined as follows :

$$\mathbf{Z}_{i+1}^{-} = \begin{cases} \mathbf{Z}_{i} & \text{if } A_{i+1}^{-} = A_{i} \\ \mathbf{Z}_{i+1} & \text{if } A_{i+1}^{-} \neq A_{i} \end{cases}$$
$$\mathbf{Z}_{i-1}^{+} = \begin{cases} \mathbf{Z}_{i} & \text{if } A_{i-1}^{+} = A_{i} \\ \mathbf{Z}_{i-1} & \text{if } A_{i-1}^{+} \neq A_{i} \end{cases}$$

DEFINITION OF THE NEW FLUXES : M-SCHEME

IDEAS : replace

- dynamic quantities U_{i-1} and U_{i+1} by stationary profiles U_{i-1}^+ and U_{i+1}^-
- sources terms \mathbf{Z}_{i-1} and \mathbf{Z}_{i+1} by stationary profiles \mathbf{Z}_{i-1}^+ and \mathbf{Z}_{i+1}^-

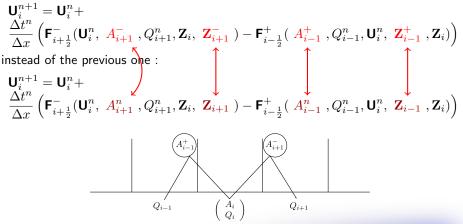
Let us now consider

$$\begin{split} \mathbf{U}_{i}^{n+1} &= \mathbf{U}_{i}^{n} + \\ \frac{\Delta t^{n}}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n}, \ A_{i+1}^{-}, Q_{i+1}^{n}, \mathbf{Z}_{i}, \ \mathbf{Z}_{i+1}^{-} \) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\ A_{i-1}^{+}, Q_{i-1}^{n}, \mathbf{U}_{i}^{n}, \ \mathbf{Z}_{i-1}^{+}, \mathbf{Z}_{i}) \right) \end{split}$$

DEFINITION OF THE NEW FLUXES : M-SCHEME IDEAS : replace

• dynamic quantities U_{i-1} and U_{i+1} by stationary profiles U_{i-1}^+ and U_{i+1}^-

• sources terms Z_{i-1} and Z_{i+1} by stationary profiles Z_{i-1}^+ and Z_{i+1}^- Let us now consider



DEFINITION OF THE NEW FLUXES : M-SCHEME

IDEAS : replace

- dynamic quantities U_{i-1} and U_{i+1} by stationary profiles U_{i-1}^+ and U_{i+1}^-
- sources terms \mathbf{Z}_{i-1} and \mathbf{Z}_{i+1} by stationary profiles \mathbf{Z}_{i-1}^+ and \mathbf{Z}_{i+1}^-

Let us now consider

$$\begin{split} \mathbf{U}_{i}^{n+1} &= \mathbf{U}_{i}^{n} + \\ \frac{\Delta t^{n}}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n}, \ A_{i+1}^{-}, Q_{i+1}^{n}, \mathbf{Z}_{i}, \ \mathbf{Z}_{i+1}^{-}) - \mathbf{F}_{i-\frac{1}{2}}^{+}(\ A_{i-1}^{+}, Q_{i-1}^{n}, \mathbf{U}_{i}^{n}, \ \mathbf{Z}_{i-1}^{+}, \mathbf{Z}_{i}) \right) \end{split}$$

Then,

THEOREM

the numerical scheme is well-balanced.

• the numerical flux is, by construction, consistent.

- the numerical flux is, by construction, consistent.
- Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

- the numerical flux is, by construction, consistent.
- Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

Then,

$$D(A_{i+1}^{-}, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) = h_0, \, \forall i$$

and especially, we have :

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_i, \mathbf{Z}_i).$$

- the numerical flux is, by construction, consistent.
- Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

Then,

$$D(A_{i+1}^{-}, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) = h_0, \, \forall i$$

and especially, we have :

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_i, \mathbf{Z}_i).$$

The application $A \to D(A, Q, Z)$ being injective, provides $A_{i+1}^- = A_i$ and thus $\mathbf{Z}_{i+1}^- = \mathbf{Z}_i$ by construction. Similarly, we get $A_{i-1}^+ = A_i$ and $\mathbf{Z}_{i-1}^+ = \mathbf{Z}_i$.

- the numerical flux is, by construction, consistent.
- Let us assume that there exits n such that for every i:

$$Q_i^n = Q_0, \ D(\mathbf{U}_i^n, \mathbf{Z}_i) = h_0.$$

Then,

$$D(A_{i+1}^{-}, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_{i+1}, \mathbf{Z}_{i+1}) = h_0, \, \forall i$$

and especially, we have :

$$D(A_{i+1}^-, Q_{i+1}, \mathbf{Z}_i) = D(\mathbf{U}_i, \mathbf{Z}_i).$$

The application $A \to D(A, Q, Z)$ being injective, provides $A_{i+1}^- = A_i$ and thus $\mathbf{Z}_{i+1}^- = \mathbf{Z}_i$ by construction. Similarly, we get $A_{i-1}^+ = A_i$ and $\mathbf{Z}_{i-1}^+ = \mathbf{Z}_i$. Finally, since

$$\mathbf{F}_{i+\frac{1}{2}}^{-}(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{-},\mathbf{Z}_{i},\mathbf{Z}_{i+1}^{-})-\mathbf{F}_{i-\frac{1}{2}}^{+}(\mathbf{U}_{i-1}^{+},\mathbf{U}_{i}^{n},\mathbf{Z}_{i-1}^{+},\mathbf{Z}_{i})=0,$$

we get $\forall l \geqslant n, \ Q_i^{l+1} = Q_i^l := Q_0.$

NUMERICAL PROPERTIES

For instance, with the simplest χ function [ABP00],

$$\chi(\omega) = \frac{1}{2\sqrt{3}} \mathbb{1}_{\left[-\sqrt{3},\sqrt{3}\right]}(\omega)$$

the following properties holds :

- Positivity of A (under a CFL condition),
- Conservativity of A,
- Discrete equilibrium and,
- Natural treatment of drying and flooding area.

and analytical expression of the numerical macroscopic fluxes.

E. Audusse and M-0. Bristeau and B. Perthame.

Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report RR3989, 2000.

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

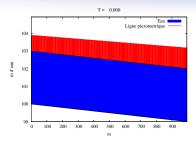
2 A Finite Volume Framework

- Kinetic Formulation and numerical scheme
- The χ function and well balanced scheme
 - Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

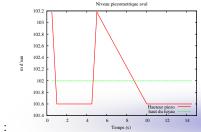
3 Conclusion and perspectives

QUALITATIVE ANALYSIS OF CONVERGENCE

AND COMPARISON WITH THE WELL-BALANCED VFROE SCHEME



• upstream piezometric head 104 m

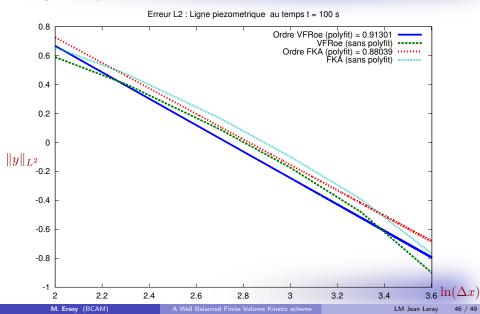


• downstream piezometric head :

M. Ersoy (BCAM)

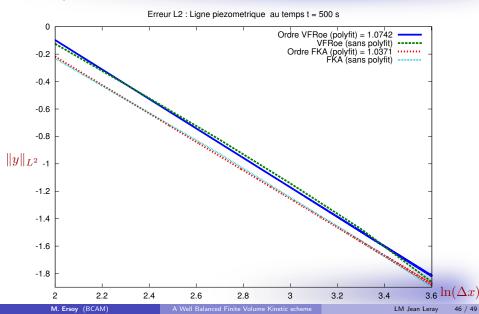
CONVERGENCE

During unsteady flows $t = 100 \ s$



CONVERGENCE

Stationary $t = 500 \ s$



OUTLINE

UNSTEADY MIXED FLOWS : PFS EQUATIONS (PRESSURIZED AND FREE SURFACE)

- Previous works
- Formal derivation of the free surface and pressurized model
- A coupling : the PFS-model

2 A FINITE VOLUME FRAMEWORK

- Kinetic Formulation and numerical scheme
- \bullet The χ function and well balanced scheme
 - 1. Classical scheme fails in presence of complex source terms
 - 2. An alternative toward a Well-Balanced scheme
- Numerical results

3 Conclusion and perspectives

CONCLUSION

Conservative and simple formulation :

 $\longrightarrow\,$ easy implementation even if source terms are complex

The most of the properties of the continuous model are maintained at discrete level :

- $\longrightarrow\,$ positivity of the water area
- $\longrightarrow\,$ conservativity of the water area
- \longrightarrow discrete equilibrium maintained

CONCLUSION AND PERSPECTIVES

Conservative and simple formulation :

 $\longrightarrow\,$ easy implementation even if source terms are complex

The most of the properties of the continuous model are maintained at discrete level :

- \longrightarrow positivity of the water area
- \longrightarrow conservativity of the water area
- \longrightarrow discrete equilibrium maintained

What about discrete entropy inequalities?

→ same difficulties as for discrete balance (see [PhDErsoy] Chap. 2 for further details)

Thank you

for your

YOUL

attention

2+3 tane dis !!! 20 Mars 2011