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What is a transient mixed flow in closed pipes

Free surface (FS) area : only a part of the section is filled.

Pressurized (P) area : the section is completely filled.
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Some closed pipes

a forced pipe a sewer in Paris

The Orange-Fish Tunnel (in Canada)
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Euleur Incompressible equations

div(ρ0 U) = 0
∂t (ρ0 U) + ρ0 U · ∇(ρ0 U) +∇P = ρ0F

Figure: Geometric characteristics of the free surface domain
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The framework

The domain ΩF (t) of the flow at time t : the union of sections Ω(t , x)
orthogonal to some plane curve C lying in (O, i,k) following main flow axis.
ω = (x ,0,b(x)) in the cartesian reference frame (O, i, j,k) where k follows the
vertical direction; b(x) is then the elevation of the point ω(x ,0,b(x)) over the
plane (O, i, j)
Curvilinear variable defined by:

X =

∫ x

x0

√
1 + (b′(ξ))2dξ

where x0 is an arbitrary abscissa. Y = y and we denote by Z the
B-coordinate of any fluid particle M in the Serret-Frenet reference frame
(T,N,B) at point ω(x ,0,b(x)).
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The derivation of the FS model

1 write the Euler equations in a curvilinear reference frame,
2 ε = H/L with H (the height) and L (the length) and take ε = 0 in the Euler

curvilinear equations,
3 the conservative variables A(t ,X ): the wet area, Q(t ,X ) the discharge

defined by

A(t ,X ) =

∫
Ω(t,X)

dYdZ , Q(t ,X ) = A(t ,X )U

U(t ,X ) =
1

A(t ,X )

∫
Ω(t,X)

U(t ,X ) dYdZ .

4 approximation :U2 ≈ U U and U V ≈ U V .
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The FS-Model


∂tA + ∂X Q = 0

∂tQ + ∂X

(
Q2

A
+ gI1(X ,A) cos θ

)
= gI2(X ,A) cos θ − gA sin θ

−gAZ (X ,A)(cos θ)′

(1)

I1(X ,A) =

∫ h

−R
(h − Z )σ dZ : the hydrostatic pressure term

I2(X ,A) =

∫ h

−R
(h − Z )∂Xσ dZ : the pressure source term

p̃ = ρ0(h(t ,X )− Z ) cos θ : the hydrostatic pressure.

Z =

∫
Ω(t,X)

Z dY dZ : the center of mass

We add the Manning-Strickler friction term of the form

Sf (A,U) = K (A)U|U| .
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Euleur compressible equations

∂tρ+ div(ρU) = 0, (2)

∂t (ρU) + div(ρU⊗ U) +∇p = F, (3)

Linearized pressure law:

p = pa +
ρ− ρ0

βρ0

c =
1√
βρ0
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The derivation of the P-Model

1 write the Euler equations in a curvilinear reference frame,
2 ε = H/L with H (the height) and L (the length) and takes ε = 0 in the

Euler curvilinear equations,
3 the conservative variables A(t ,X ): the wet equivalent area, Q(t ,X ) the

equivalent discharge defined by

A =
ρ

ρ0
S , Q = AU

U(t ,X ) =
1

S(,X )

∫
S(X)

U(t ,X ) dYdZ .

4 Approximation :ρU2 ≈ ρU U and ρU ≈ ρU.
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The P-Model



∂t (A) + ∂X (Q) = 0

∂t (Q) + ∂X

(
Q2

A
+ c2A

)
= −gA sin θ − gAZ (X ,S)(cos θ)′

+c2A
S′

S

(4)

c2A : the pressure term
c2A S′

S : the pressure source term due to geometry changes
gAZ (X ,S)(cos θ)′ : the pressure source term due to the curvature
Z : the center of mass.
We add the Manning-Strickler friction term of the form

Sf (A,U) = K (A)U|U| .
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The PFS-model



∂t (A) + ∂x (Q) = 0

∂t (Q) + ∂x

(
Q2

A
+ p(x ,A,S)

)
= −g A

d
dx

Z (x)

+Pr(x ,A,S)
−G(x ,A,S)
−g A K (x ,S) u |u|

.

A =
ρ

ρ0
S : wet equivalent area,

Q = A u : discharge,
S the physical wet area.

The pressure is p(x ,A,S) = c2 (A− S) + g I1(x ,S) cos θ.
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Source terms

The pressure source term:

Pr(x ,A,S) =
(
c2 (A/S − 1)

) d
dx

S + g I2(x ,S) cos θ,

the z−coordinate of the center of mass term:

G(x ,A,S) = g A Z (x ,S)
d
dx

cos θ,

the friction term:
K (x ,S) =

1
K 2

s Rh(S)4/3 .

Ks > 0 is the Strickler coefficient,
Rh(S) is the hydraulic radius.

[BEG09] C. Bourdarias, M. Ersoy and S. Gerbi. A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume
scheme. IJFV , 2009.
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Mathematical properties
The PFS system is strictly hyperbolic for A(t , x) > 0.

For smooth solutions, the mean velocity u = Q/A satisfies

∂tu + ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + g Z

)
= −g K (x ,S) u |u|

.

and u = 0 reads: c2 ln(A/S) + gH(S) cos θ + g Z = 0.

It admits a mathematical entropy

E(A,Q,S) =
Q2

2A
+ c2A ln(A/S) + c2S + gZ (x ,S) cos θ + gAZ

which satisfies the entropy inequality

∂tE + ∂x (E u + p(x ,A,S) u) = −g A K (x ,S) u2 |u| 6 0
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The Kinetic Formulation (KF) [P02]

With
χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,
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The Kinetic Formulation (KF) [P02]

With
χ(ω) = χ(−ω) ≥ 0 ,

∫
R
χ(ω)dω = 1,

∫
R
ω2χ(ω)dω = 1 ,

we define the Gibbs equilibrium

M(t , x , ξ) =
A

c(A)
χ

(
ξ − u(t , x)

c(A)

)
with

c(A) =

√
g

I1(x ,A)

A
cos θ in the FS zones and,

c(S) =

√
g

I1(x ,S)

S
cos θ + c2 in the P zones.
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The Kinetic Formulation (KF) [P02]

We have the macroscopic-microscopic relations:

A =

∫
R
M(t , x , ξ) dξ

Q =

∫
R
ξM(t , x , ξ) dξ

Q2

A
+ Ac(A)2 =

∫
R
ξ2M(t , x , ξ) dξ
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The Kinetic Formulation (KF) [P02]

The Kinetic Formulation
(A,Q) is a strong solution of PFS-System if and only ifM satisfies the kinetic
transport equation:

∂tM+ ξ · ∂xM− gΦ(x ,A,S) ∂ξM = K (t , x , ξ)

for some collision term K (t , x , ξ) which satisfies for a.e. (t , x)∫
R

K dξ = 0 ,
∫
R
ξ Kd ξ = 0

Φ takes into account all the source terms.

[P02] B. Perthame. Kinetic formulation of conservation laws. Oxford University Press. Oxford Lecture Series in Mathematics and its Applications, Vol 21,
2002.
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The source terms

If , Φ reads:
Conservative︷ ︸︸ ︷

d
dx

Z − c2

g
d
dx

ln(S) +

Non conservative product︷ ︸︸ ︷
Z (x ,S)

d
dx

cos θ

+
d
dx

∫
x

K (x ,S)u|u|dx

If , Φ reads:

Conservative︷ ︸︸ ︷
d
dx

Z +

Non conservative product︷ ︸︸ ︷
γ(x ,A) cos θ

A
d
dx

ln(A) + Z (x ,A)
d
dx

cos θ

+
d
dx

∫
x

K (x ,S)u|u|dx

Back
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The mesh and the unknowns

Geometric terms and unknowns are piecewise constant approximations on the
cell mi at time tn:

Geometric terms
Si , cos θi

Macroscopic unknowns

Wn
i = (An

i ,Q
n
i ), un

i =
Qn

i

An
i

Microscopic unknown

Mn
i (ξ) =

An
i

cn
i
χ

(
ξ − un

i

cn
i

)
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The mesh and the unknowns

Consequently Φn
i is null on mi .

Indeed, we have:
d
dx

(1mi Z ) = 0,

d
dx

(ln(1mi S)) = 0,

d
dx

(1mi cos θ) = 0,

d
dx

∫
x

K (x ,S)u|u|dx = 0 Go

[PS01] B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source term. Calcolo, Vol 38(4) 201–231, 2001
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Discretisation of the kinetic transport equation

Neglecting the collision term, the transport equation reads on [tn, tn+1[×mi :

∂

∂t
f + ξ · ∂

∂x
f = 0

with f (tn, x , ξ) =Mn
i (ξ) for x ∈ mi and thus it is discretised on mi as:

f n+1
i (ξ) =Mn

i (ξ) +
∆tn

∆x
ξ
(
M−

i+ 1
2
(ξ)−M+

i− 1
2
(ξ)
)
,
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The macroscopic unknowns

Although f n+1
i is not a Gibbs equilibrium, we have :

Wn+1
i =

(
An+1

i
Qn+1

i

)
def
:=

∫
R

(
1
ξ

)
f n+1
i (ξ) dξ

−→Mn+1
i defined without using the collision kernel : it is a way to perform all

collisions at once
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The macroscopic scheme

Finally the kinetic scheme reads:

Wn+1
i = Wn

i +
∆tn

∆x
(F−

i+ 1
2
− F +

i− 1
2
)

with the interface fluxes

F±
i+ 1

2
=

∫
R
ξ

(
1
ξ

)
M±

i+ 1
2
(ξ) dξ

where the microscopic fluxes are defined following e.g. [BEG09b, PS01]:
[BEG09b] C. Bourdarias and M. Ersoy and S. Gerbi. A kinetic scheme for pressurised flows in non uniform closed water pipes. Monografias de la Real

Academia de Ciencias de Zaragoza, Vol 31 1–20, 2009.

S. Gerbi (LAMA, UdS, Chambéry) Mixed flows in closed pipes Beijing 2010 24 / 33



The microscopic fluxes

The microscopic fluxes are given by

Expression ofM−,n
i+1/2 ,M

+,n
i+1/2

M−,ni+1/2 =

positive transmission︷ ︸︸ ︷
1{ξ>0}Mn

i (ξ) +

reflection︷ ︸︸ ︷
1{

ξ<0,ξ2−2g∆φn
i+1/2<0

}Mn
i (−ξ)

+ 1{
ξ<0,ξ2−2g∆φn

i+1/2>0
}Mn

i+1

(
−
√
ξ2 − 2g∆φn

i+1/2

)
︸ ︷︷ ︸

negative transmission

M+,n
i+1/2 =

negative transmission︷ ︸︸ ︷
1{ξ<0}Mn

i+1(ξ) +

reflection︷ ︸︸ ︷
1{

ξ>0,ξ2+2g∆φn
i+1/2<0

}Mn
i+1(−ξ)

+ 1{
ξ>0,ξ2+2g∆φn

i+1/2>0
}Mn

i

(√
ξ2 + 2g∆φn

i+1/2

)
︸ ︷︷ ︸

positive transmission

(5)
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The potential barrer and the physical interpretation

The potential barrier ∆φn
i±1/2 has the following expression:

∆φn
i+1/2 =



[[
Z +

∫
x

K (x ,S)u|u|dx
]]

i+1/2

−c2

g
[[ln(S)]]i+1/2

+ [[cos θ]]i+1/2

∫ 1

0
Z (s, ψS(s))ds if En

i = 1

[[
Z +

∫
x

K (x ,A)u|u|dx
]]

i+1/2

− [[A]]i+1/2

∫ 1

0

γ(s, ψA(s))

ψA(s)
(ψcos θ)ds

+ [[cos θ]]i+1/2

∫ 1

0
Z (s, ψA(s))ds if En

i = 0

where ψA (resp. ψS) is the straight lines path connecting the left state Ai (resp.
Si ) to the right one Ai+1 (resp. Si+1).

S. Gerbi (LAMA, UdS, Chambéry) Mixed flows in closed pipes Beijing 2010 26 / 33



The potential barrer and the physical interpretation

The term ξ2 ± 2g∆φn
i+1/2 is the jump condition for a particle with the kinetic

speed ξ which is necessary to
be reflected: this means that the particle has not enough kinetic energy
ξ2/2 to overpass the potential barrier (reflection in (5)),
overpass the potential barrier with a positive speed (positive transmission
in (5)),
overpass the potential barrier with a negative speed (negative
transmission in (5)).
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The potential barrer and the physical interpretation

Figure: The potential barrier:

Top: the physical configuration.
Middle: the characteristic solution in (X ,Ξ)-plane.
Bottom: the characteristic solution in (x , t)-plane.

S. Gerbi (LAMA, UdS, Chambéry) Mixed flows in closed pipes Beijing 2010 26 / 33



Outline

1 Modelisation: the pressurised and free surface flows model
The free surface model
The pressurised model
The PFS-model : a natural coupling

2 The kinetic approach
The Kinetic Formulation
The kinetic scheme : the case of a non transition point
The case of a transition point

3 Numerical experiments

4 Conclusion and perspectives

S. Gerbi (LAMA, UdS, Chambéry) Mixed flows in closed pipes Beijing 2010 27 / 33



The case of a transition point

Figure: Free Surface / Pressurised

We have 5 unknowns : U+,U−,w .
5 equations :

1 2 jumps conditions
2 2 relations to computeM+,n

i+1/2

3 Conservation of energy
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State update

never

t = t t = t
 n  n+1

yes, if

t = t t = t
 n  n+1

yes, if

t = t t = t
 n  n+1

A    >= A maxi
n+1

A    < A
i

n+1
max
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Properties of the numerical scheme

We choose [ABP00]:
[ABP00] E. Audusse and M-0. Bristeau and B. Perthame. Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA

Report RR3989, 2000.

χ(ω) =
1

2
√

3
1[−
√

3,
√

3](ω)

We assume a CFL condition. Then

Properties of the numerical scheme
The kinetic scheme keeps the wetted area An

i positive,
Drying and flooding are treated.
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A water-hammer test

An injection test

A double dam break
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Conclusion
Easy implementation of source terms
Very good agreement for uniform case
Drying and flooding area are computed

Perspective
Air entrainment treated as a bilayer fluid flow (in progress).
Diphasic approach to take into account air entrapment,
evaporation/condensation and cavitation.
Network of pipes to model town sewers.
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Thank you for your attention
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