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The Saint-Venant-Exner model
Saint-Venant equations for the hydrodynamic part:

∂th + div(q) = 0,

∂tq + div
(

q ⊗ q
h

)
+∇

(
g

h2

2

)
= −gh∇b

(1)

+

a bedload transport equation for the morphodynamic part:

∂tb + ξdiv(qb(h,q)) = 0 (2)
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∂th + div(q) = 0,

∂tq + div
(

q ⊗ q
h

)
+∇

(
g

h2
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)
= −gh∇b

(1)

+

a bedload transport equation for the morphodynamic part:

∂tb + ξdiv(qb(h,q)) = 0 (2)

with
I h the water height from the surface z = b(t , x),
I q = hu the water discharge,
I qb the sediment discharge (given by an empirical law: Grass

equation [G81], The Meyer-Peter and Műller equation [MPM48]),
I and ξ = 1/(1− ψ) the porosity of the sediment layer.

[MPM48] E. Meyer-Peter and R. Müller, Formula for bed-load transport, Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., 39–64, 1948.

[G81] A.J. Grass, Sediment transport by waves and currents, SERC London Cent. Mar. Technol. Report No. FL29 , 1981.
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Vlasov equation for sediments

∂t f + divx (vf ) + divv ((F + ~g)f ) = r∆v f (3)
where

I f the density of particles,
I ~g is the gravity vector (0,0,−g)t , and
I F is the Stokes drag force:

F =
6πµa

M
(u − v) with a = cte the radius,

M = ρp
4
3
πa3 the mass,

ρp the mass density of sediments,
and µ a characteristic viscosity,
u velocity of the fluid

(4)

I r∆v f is the Brownian motion of the particles with r > 0 is the
velocity of the diffusivity given by the Einstein formula:

r =
kT
M

6πµa
M

=
kT
M

9µ
2a2ρp

(5)

in which k is the Boltzmann constant, T > 0 is the temperature
of the suspension, assumed constant.



Compressible Navier-Stokes equations


∂tρw + div(ρw u) = 0,
∂t (ρw u) + divx(ρw u⊗ u) + ∂x3 (ρw uv) +∇xp(ρ)

= divx (µ1(ρ)Dx(u)) + ∂x3

(
µ2(ρ)(∂x3u +∇xu3)

)
+∇x (λ(ρ)div(u))

+F,
∂t (ρw u3) + divx(ρw uu3) + ∂x3 (ρw u2

3) + ∂x3p(ρ)

= divx

(
µ2(ρ)(∂x3u +∇xu3)

)
+ ∂x3 (µ3(ρ)∂x3u3) + ∂x3 (λ(ρ)div(u))

p = p(t , x) = g
h(t ,x)

4ρf
ρ2(t , x)

(6)
with u = (u,u3), x = (x, x3) and µi 6= µj .

I ρw the density of the fluid, ρs the macroscopic density of

sediments, ρ = ρw + ρs with ρs =

∫
R3

f dv ,

I F the coupling of fluid-sediment interaction, including the gravity
source term:

F = −
∫

R3
Ffdv + ρw~g (7)

[BM10] D. Bresch and G. Métivier, Anelastic Limits for Euler Type Systems, In preparation, 2010.



Fluid sediment coupling



∂t f + divx (vf ) + divv

((
6πµa

M
(u − v) + ~g

)
f
)

=
kT
M

9µ
2a2ρp

∆v f ,

∂tρw + div(ρw u) = 0,
∂t (ρw u) + divx(ρw u⊗ u) + ∂x3 (ρw uv) +∇xp(ρ)

= divx (µ1(ρ)Dx(u)) + ∂x3

(
µ2(ρ)(∂x3u +∇xu3)

)
+∇x (λ(ρ)div(u))
+F,

∂t (ρw u3) + divx(ρw uu3) + ∂x3 (ρw u2
3) + ∂x3p(ρ)

= divx

(
µ2(ρ)(∂x3u +∇xu3)

)
+ ∂x3 (µ3(ρ)∂x3u3)

+∂x3 (λ(ρ)div(u))
(8)



With boundary conditions:

free surface: a normal stress continuity.
movable bed: a general wall-law condition and continuity of the

velocity at the interface x3 = b(t ,x).
kinematic: ??? , replaced with the equation:

S = ∂tb +

√
1 + |∇xb|2u|x3=b · nb (9)

and S −
√

1 + |∇xb|2u|x3=b · nb may plays the role of incoming and
outgoing particles.
[MSR03] N. Masmoudi and L. Saint-Raymond, From the Boltzmann Equation to the Stokes-Fourier System in a Bounded Domain,

Communications on pure and applied mathematics, 53(9):1263–1293,2003.



Dimensionless number and asymptotic ordering

Let
I
√
θ be the fluctuation of kinetic velocity,

I U be a characteristic vertical velocity of the fluid,
I T be a characteristic time,
I τ be a relaxation time,
I L be a characteristic vertical height,

and

B =

√
θ

U
, C =

T

τ
, F =

gT√
θ
, E =

2
9

( a
L

)2 ρp

ρf
C (10)

with the following asymptotic regime:

ρp

ρf
= O(1), B = O(1), C =

1
ε
, F = O(1), E = O(1). (11)

[GJV] T. Goudon and P-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes Equations. I. Light particles regime,
Indiana Univ. Math. J., 53(6):1495–1515,2004.



Approximation at main order with respect to ε

Asymptotic expansion of f , u, p and ρ as: f = f 0 + εf 1 + O(ε2), . . .
Then at order 1/ε divv ((u0 − v)f 0 −∇v f 0) = 0,∫

R3 (v − u0)f 0 dv = 0.
(12)

Let ρs and V be the macroscopic density and the macroscopic speed
V of particles: (

ρs
ρsV

)
=

∫
R3

(
1
v

)
f dv (13)

Then Equations (12) provide:

f 0 =
1

(2π)3/2 ρ
0
s e−

1
2‖u

0−v‖2
and V 0 = u0. (14)



Approximation at main order with respect to ε

Then at order 1: Integrating Vlasov equation against 1 and v :
∂tρ

0
s + Bdiv(ρ0

su0) = 0

∂t (ρ
0
su0) + Bdivx (ρ0

s u0 ⊗ u0) + B∇x (ρ0
s)

=

∫
R3

(u0 − v)f 1 dv +

∫
R3

u1f 0 dv − Fρ0
s
~k

(12)

On the other hand, the dimensionless CNSEs (Σ being the anisotropic
viscous tensor):

∂tρ
0
w + Bdiv(ρ0

w u0) = 0,
∂t (ρ

0
w u0) + Bdivx (ρ0

w u0 ⊗ u0) + B∇xp0 = 2 E
(

div(Σ0 : D(u0))

+∇(λdiv(u0))
)

+

∫
R3

(v − u0)f 1 dv −
∫

R3
u1f 0 dv − Fρ0

w
~k .

(13)



Adding two system and returning to physical variables,
we obtain the “mixed” model:



∂tρ+ div(ρu) = 0,
∂t (ρu) + divx(ρu⊗ u) + ∂x3 (ρuv) +∇xP
= divx (µ1(ρ)Dx(u)) + ∂x3

(
µ2(ρ)(∂x3u +∇xu3)

)
+∇x (λ(ρ)div(u))

∂t (ρu3) + divx(ρuu3) + ∂x3 (ρu2
3) + ∂x3P

= divx

(
µ2(ρ)(∂x3u +∇xu3)

)
+ ∂x3 (µ3(ρ)∂x3u3)

+∂x3 (λ(ρ)div(u))

(14)

where
P = p + θρs.
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Asymptotic analysis: “thin layer”

I Vertical movements are assumed small with respect to horizontal
one,

I Vertical length is assumed small with respect to horizontal one,

i.e. we compare:
I L and L (the characteristic length of the domain),
I U and U (the characteristic horizontal velocity of the fluid) .
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We introduce a small parameter such as:

ε ≈ L
L
≈ U

U
.

and
I T such as T = L/U,
I ρ such as P = ρU2,

t̃ =
t
T
, x̃ =

x
L
, ỹ =

y
L
, ũ =

u
U
, ṽ =

v
U
,

p̃ =
P
p̄
, ρ̃ =

ρ

ρ̄
, ρ̃s =

ρs

ρ̄
, H̃ =

H
L
, b̃ =

b
L
,

λ̃ =
λ

λ̄
, µ̃j =

µj

µ̄j
, j = 1,2,3.



Asymptotic ordering

With
µi (ρ)

Rei
= εi−1νi (ρ), i = 1,2,3 and

λ(ρ)

Reλ
= ε2γ(ρ). (15)

where
Fr =

U√
g L

, Rei =
ρUL
µi

, Reλ =
ρUL
λ

. (16)

is the Froude number Fr , the Reynolds number associated to the
viscosity µi (i=1,2,3), Rei and the Reynolds number associated to the
viscosity λ, Reλ .
We also set

S = εU.



Hydrostatic approximation
We write the “mixed” system under the non-dimensionnal form with
u = u0 + εu1 gives:

∂tρ+ divx (ρu) + ∂y (ρv) = 0

∂t (ρu) + divx (ρu ⊗ u) + ∂y (ρ vu) +
1

F 2
r
∇xp(ρ) = divx (ν1Dx (u))

+∂y

(
ν2

1
ε
∂y u1

)
,

h(t , x)ρ(t , x , y) = 2(H(t , x)− y)
(17)

where u0 is again written as u. Free surface condition:
−ν1Dx (u)∇xH +

(
ν2

1
ε
∂y u1

)
= 0

p(ρ) = 0

(18)

Go



and bottom condition:

−ν1Dx (u)∇xb + ν2
1
ε
∂y u1 =

(
K1(u)
K2(u)

)
,

ν2∂y u · ∇xb = 0,

∂tb + u(t , x ,b) · ∇xb − v(t , x ,b) =
S
εU

S

(19)

Back



On the other hand, we have:

∂y (ν2∂y u) = O(ε), (ν2∂y u)|y=H = O(ε), (ν2∂y u)|y=b = O(ε).

which imply:
u(t , x , y) = u(t , x) + O(ε).
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The mass equation
For any function f , we note the mean value of f over the vertical as

h(t , x)f (t , x) =

∫ H

b
f dz.

Hydrostatic equation hρ = 2(H − z)→∫ H

b
ρdz =

1
h

∫ H

b
hρdz =

2
h

∫ H

b
(H − z) dz = h. (20)

The mean pressure is written as follows:∫ H

b
hρ2 dz =

4
3

h2. (21)

Using
I Leibniz formulas,
I Free surface condition and bottom condition,
I u = u + O(ε),
I Equation (20),

we obtain the averaged mass equation:

∂th + div(hū) = 0



The momentum equation
Proceeding as before : integrating the horizontal momentum
equations for b 6 z 6 H gives:

∂t (h u) + divx (h u ⊗ u) +
1

3 F 2
r
∇x (h2)

+
(
ρu (∂tb + u · ∇xb − w)

)
|z=b
∇xb

−
(
ρu (∂tH + u · ∇xH − w)

)
|z=H
∇xH

= divx (

∫ H

b
D(u − u) dz + (ν1)hD(u))

+
(ν2

ε
∂zu1 − ν1Dx (u)∇xb

)
|z=b

+
(
ν1D(ū)∇xH − ν2

ε
∂zu1

)
|z=H

Back



I Using boundary conditions Go on term Go1 ,
I u = u + O(ε),
I setting S = 0 (for the sake of simplicity),

we finally obtain:

∂t (hū) + div(hū ⊗ ū) +
1

3 F 2
r
∇h2

= − h
F 2

r
∇b + div(hD(ū))−

(
K1(u)
K2(u)

) (22)

Remark
S 6= 0 modify the hydrodynamic part of the flow by adding a source
term to the:

I mass equation: −2S,
I momentum equations: −2uS.
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Although the MENT model is close to SVEEs, we also have, freely,
stability and existence result of weak solution
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The viscous model [ZLFN08]

We set u∇xb − v = div(αhu |u|k − βν∇b) for some α and β satisfying
some relation The model:

∂th + div(hu) = 0

∂t (hu) + div(hu ⊗ u) + gh∇
(

h
3

+ b
)

= 2νdiv(hD(u))

∂tb + div(αhu |u|k − βνId∇b) = 0

(23)

If

L2(Ω) 3 h|t=0 = h0 > 0, b|t=0 = b0 ∈ L2(Ω), hu|t=0 = m0 (24)

and
|m0|2 /h0 ∈ L1(Ω), ∇

√
h0 ∈ L2(Ω)2 (25)

where Ω = T 2 is the torus.
[ZLFN08] J-D Zabsonré and C. Lucas and E. Fernández-Nieto, An Energetically Consistent Viscous Sedimentation Model, Mathematical

Models and Methods in Applied Sciences 19(3):477–499, 2009.



The stability result

Then the main result presented here, is a straightforward
consequence to the one presented in [ZLFN08], is:

Theorem
Let α, β and γ = γ(α, β), δ = δ(β) (called stability coefficient) such as

0 < β < 2, α > 0

φ(β) =
2

2− β
> 0,

γ(α, β) = 3αφ(β) > 0,
δ(β) = φ(β)− 1 > 0.

(26)



The stability result

Then the main result presented here, is a straightforward
consequence to the one presented in [ZLFN08], is:

Theorem
Let (hn,un,bn) be a sequence of weak solutions of (23) with initial
conditions (24)-(25), in the following sense: ∀k ∈ [0,1/2]:

I System (23) holds in (D′((0,T )× Ω))
4 with (24)-(25),

I Energy (26), Entropy (28) and the following regularities are
satisfied:
√

hu ∈ L∞(0,T ; (L2(Ω))2)
√

h∇u ∈ L2(0,T ; (L2(Ω))4)
h1/(k+2)u ∈ L∞(0,T ; (Lk+2(Ω))2) h/3 + b ∈ L∞(0,T ; L2(Ω)),

∇(h/3) +∇b ∈ L2(0,T ; (L2(Ω))2) ∇
√

h ∈ L∞(0,T ; (L2(Ω))2),
h1/k D(u)2/k ∈ Lk (0,T ; (Lk (Ω))4).



The stability result

Then the main result presented here, is a straightforward
consequence to the one presented in [ZLFN08], is:

Theorem
If hn

0 > 0 and the sequence (hn
0,u

n
0 ,m

n
0)→ (h0,u0,m0) converges in

L1(Ω) then, up to a subsequence, the sequence (hn,un,mn)
converges strongly to a weak solution of (23) and satisfy Energy (26),
Entropy (28) inequalities.



Outline of the proof

Lemma (Energy)
Let (h,u,b) be a regular solution of (23) and γ, δ satisfying condition
(26). Then we have:

d
dt

∫
Ω

h |u|2

2
+
γ(α, β)

k + 2
h |u|k+2 + gφ(β)

(√
3
2

b +

√
1
6

h

)2

+ δ(β)h
|ψ|2

2
dx

+2ν
∫

Ω

h
(

1 + (1− 2k) |u|k
)
|D(u)|2 + δ(β) |A(u)|2 dx

+gν
∫

Ω

∣∣∣∇(√3φ(β)βb +
√

2/3δ(β)h
)∣∣∣2 dx 6 0

(26)
where ψ = u + 2ν∇ ln h.



Proof of Lemma 4.1

We multiply the momentum equation by u + γu |u|k and using the
mass equation for h and b and integrate by parts to obtain:

d
dt

∫
Ω

h |u|2

2
+

γ

k + 2
h |u|k+2 dx

+2ν
∫

Ω
h |D(u)|2 − γdiv(hD(u)) · u |u|k dx

+g
∫

Ω

∂th2/6 + b∂th + hγ/(3α)∂tb + γ/(2α)∂tb2 dx

+gν
∫

Ω

βγ/(3α)∇b · ∇h + βγ/α |∇b|2 dx = 0

(27)

But, sign of terms in red are unknown, we have to get more additional
information to conclude: this is achieved with the mathematical
entropy, BD-entropy.



The BD-entropy

Lemma
Let (h,u,b) be a regular solution of (23). Then the following equality
holds:

1
2

d
dt

∫
Ω

h |ψ|2 dx +

∫
Ω

2ν |A(u)|2 dx

+

∫
Ω

g/6∂th2 + 2gν/3 |∇h|2 + gb∂th + 2gν∇b · ∇h dx = 0

(28)



Proof of Lemma 4.2

I take the gradient of the mass equation,
I multiply by 2ν and write the terms ∇h as h∇ ln h to obtain:

∂t (2νh∇ ln h) + div (2νh∇ ln h ⊗ u) + div
(
2νh∇tu

)
= 0 (29)

I sum Equation (29) with the momentum equation of System (23)
to get the equation:

∂t (hψ) + div (ψ ⊗ hu) + h∇(h/3 + b) + 2νdiv (hA(u)) (30)

where ψ = u + 2ν∇ ln h the BD multiplier and 2A(u) = ∇u −∇tu
the vorticity tensor.

I multiply the previous equation by ψ and integrate by parts �



End of the proof of Theorem

Add result of the first lemma to the result of the second lemma
multiplied by δ provides finish the proof.

�
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The Grass model

If we assume that the morphodynamic bed-load transport equation is
given by:

∇xb − v = div(hu)

which means that the sediment layer level evolves as the fluid height.
Thus, the model reduces to :

∂th + div(hu) = 0,

∂t (hu) + div(hu ⊗ u) + gh∇
(

h
3

+ b
)

= 2νdiv(hD(u))

−
(

K1(u)
K2(u)

)
,

∂tb + div(hu) = 0.

(31)

Mass equation for h and solid transport equation for b gives:

b(t , x) = h(t , x)− b0(x) (32)

for some given data b0.



The Grass model

Existence result under the regularity assumption on b0 > 0 [BGL05]
In spite of the pressure term h2/3, result [BGL05] remains true if we
add a friction term r0u + r1u |u| (that we do not write for simplicity in
the below inequalities but required for stability).
[BGL05] D. Bresch and M. Gisclon and C.K. Lin, An example of low Mach number effects for compressible flows with nonconstant density

(height) limit, M2AN, 39(3):477–486, 2005.



The Grass model

The energy equality is:

Lemma
Let (h,u,b) be a regular solution of (31), then the inequality holds:

1
2

d
dt

∫
Ω

h |u|2 dx + g
h2

6
+ g

b2
0

2
dx

+2ν
∫

Ω

h |D(u)|2 dx 6
∫

Ω

g
b2

0

2
dx

(31)



The Grass model

The BD-entropy is given by:

Lemma
Let (h,u,b) be a regular solution of (31), then the inequality holds:

1
2

d
dt

∫
Ω

h |ψ|2 + g
h2

6
dx

+

∫
Ω

2ν |A(u)|2 dx + 2gν
∫

Ω

5
3
|∇h|2 6

∫
Ω

g
b2

0

2
+ gν |∇b0|2 dx

(31)
Then it is sufficient to have b0 ∈ L2(0,T ; L2(Ω) to apply obtain the
existence result in [BGL05].
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I find appropriate kinematic boundary condition
I Write a 2D numerical code to compare to existing result
I Similar model is written in closed pipes (but no up to date no

stability result)

Remark
All this work remains true is we consider INSEs instead of CNSEs



Thank you for your attention
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