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Navier-Stokes equations (NSEs) or Euler equations (EEs) on
Q = {(z,y) € R*; H < L} "thin layer domain”

1 [Ped]

Hydrostatic approximation (asymptotic analysis with e = H/L = W/V <« 1 and
rescaling z =z /L, § = y/H, @ = u/U @& = w/W )— Primitive equations (PEs)

1 [GP]

Averaged PEs with respect to depth or altitude y — Saint-Venant Equations
(SVEs)

J. Pedlowski

Geophysical Fluid Dynamics.
2nd Edition, Springer-Verlag, New-York, 1987

J-F Gerbeau and B. Perthame

Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation.
Discrete Contin. Dyn. Syst. Ser. B, 1(1), 2001.
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@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
» Principally horizontal movements
> Density stratified
@ Modeling (neglecting phenomena such as the evaporation and solar heating) :
Compressible Navier-Stokes equations
Hydrostatic approximation — Compressible Primitive Equations (CPEs)

d
—p+pdvU = 0
dtd
9 (pv) +div(pUv) +9yp(p) = — pg +divy(oy)

plp) = p

ood
wnthazzat—i—u-vm—l—vay

and o,, xx component of the viscous stress strensor

-
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@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
> Principally horizontal movements
» Density stratified
@ Modeling (neglecting phenomena such as the evaporation and solar heating) :
Compressible Navier-Stokes equations
Hydrostatic approximation — Compressible Primitive Equations (CPEs)
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ATMOSPHERE DYNAMIC -

@ Dynamic :
» Compressible fluid
> Small vertical extension with respect to horizontal
> Principally horizontal movements
» Density stratified : p = £(t, as)e*g/CQy
@ Modeling (neglecting phenomena such as the evaporation and solar heating) :
Compressible Navier-Stokes equations
Hydrostatic approximation — Compressible Primitive Equations (CPEs)

%p—i—pdivU = 0
poutVep = diva(og) + f
yp(p) = S P9
plp) = cp

Ia M. Ersoy and T. Ngom
Existence of a global weak solution to one model of Compressible Primitive Equations.
Submitted, 2010.

@ M. Ersoy, T. Ngom and M. Sy
Compressible primitive equations : formal derivation and stability of weak solutions.
Nonlinearity, 24(1), pp 79-96, 2011 E
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mathematical fluid dynamics. Vol. Ill, 2004.) : here

viscosities depend on the density and are anisotropic.

Questions concerning existence of weak solutions :
@ With constant non anisotropic viscous term ?

J.L. Lions and R. Temam and S. Wang, Nonlinearity, 5(2), pp 237-288,
1992.

-
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the literature (see, for instance, R. Temam and M. Ziane Handbook of
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viscosities depend on the density and are anisotropic.

Questions concerning existence of weak solutions :
@ With constant non anisotropic viscous term ?
@ J.L. Lions and R. Temam and S. Wang, Nonlinearity, 5(2), pp 237-288,
1992.
@ For a particular for the two dimensional model of Compressible Primitive
Equations 7
@ B. V. Gatapov and A. V. Kazhikhov, Siberian Mathematical Journal, 46(5),
pp 805-812, 2005.
@ For the two dimensional model of Compressible Primitive Equations with
anisotropic and density dependent viscosities ?
& M. Ersoy and T. Ngom, Submitted
@ For the three dimensional model of Compressible Primitive Equations with
anisotropic and density dependent viscosities ?

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 6 /27



FRAMEWORK & SURVEN -

=8

Main difference with respect to the constant viscous term (classicél) found in
the literature (see, for instance, R. Temam and M. Ziane Handbook of
mathematical fluid dynamics. Vol. Ill, 2004.) : here

viscosities depend on the density and are anisotropic.

Questions concerning existence of weak solutions :
@ With constant non anisotropic viscous term ?
@ J.L. Lions and R. Temam and S. Wang, Nonlinearity, 5(2), pp 237-288,
1992.
@ For a particular for the two dimensional model of Compressible Primitive
Equations 7
@ B. V. Gatapov and A. V. Kazhikhov, Siberian Mathematical Journal, 46(5),
pp 805-812, 2005.
@ For the two dimensional model of Compressible Primitive Equations with
anisotropic and density dependent viscosities ?
& M. Ersoy and T. Ngom, Submitted
@ For the three dimensional model of Compressible Primitive Equations with
anisotropic and density dependent viscosities ?

@Partially @ M. Ersoy, T. Ngom and M. Sy, Nonlinearity, 24(1), pp 79-96,
2011.

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 6 /27



OUTLINE
ONILTITUE {

© MAIN RESULTS
o Existence result for the 2D-CPEs
@ A stability result for the 3D-CPEs



OUTLINE
ool g

© INTRODUCTION

© MAIN RESULTS
@ Existence result for the 2D-CPEs

© PERSPECTIVES



A USEFUL CHANGE OFE w
Let us consider the following two dimensional problem :

dip+pdivU = 0
Pt 0 = Bulbnlt )00 + Oy (ealt )00 )
c“Oyp = —gp

on Q={(z,9);0<z <!, 0<y<h} with:

Ujg=0 = Ujg= = O7 Vjy=0 = Vly=h = O, (9yu|y:0 = 8yu|y:h =0

_ 2
Ujt=0 = ug(z,y), Plt=0 = o(w)e a/y

where 0 <m < & < M < 0.

and U = (u,v) € R?

or equivalently, in conservative form :

Oep + 0z (pu) + 0y (pv) = 0
B (pu) + 9z (pu?) + 9y(puv) + Fop = 0u(ni(t, x,y)0pu)
+0, (v2(t, x,y)Oyu)
cOp = —gp

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 9 /27



MODEL FORMALLY Cm
AROUND A USEFUL CHANGE OF —

Find a change of variables to get a similar model as in B. V. Gatapov and
A. V. Kazhikhov, Siberian Mathematical Journal, 46(5), pp 805-812, 2005.,
ie.,
using the hydrostatic equation 028yp(t,x, y) = —gp(t,x,y)
map

p(t, x,y)—E(t, %)

so-called stratified property of the density

M. Ersoy (IMATH)




A USEFUL CHANGE.__

Perform the following steps

Oip + 0z(pu) + 9y (pv) 0
O (pu) + 0, (pu?) + Oy (puv) + Aop = 0.(1(t,x,y)0,u)
+0y(va(t, z, y)Oyu)
Foyp = —gp

Then,

o Set p(t,,y) = &(t,x)e” 2V, v (t,2,y) = e Y, wa(t, z,y) = rae?,
g
(171, 72) € R? and multiply by e7¥

N 1%



Perform the following steps

Ol + 0p(Eu) + €7V, (e~ V) = 0
By (€u) + 0u(Eu?) + 7Y, (Cue™ 7V0) + P0,E = T1Oppu
+V_26c%y8y(ec%y8yu)

e (0, 460y (7)) = —¢g
Then,
o Set p(t,x,y) = E(t,x)e” =Y, vt x,y) = vre =Y, vo(t,,y) = e,
(171, 172) € R? and multiply by ey

M. Ersoy (IMATH)



Perform the following steps

E + 0y (Cu) + e 2Y9, (€™ F%) = 0
Dy (€u) + 0, (u?) + €20, (Cue™ 2V0) + 0,6 = T1Oppu
47362299, (e Y D,u)

5062 (0,9 40, (7)) = —¢g
Then,
o Set p(t,x,y) = E(t,x)e” =Y, vt x,y) = vre =Y, vo(t,,y) = e,
(171, 172) € R? and multiply by ey

9 -9
o Set 0,- =e2Y0y-and w =e 2Y0

M. Ersoy (IMATH)



Perform the following steps

O+ 0, (§u) +0.(w) = 0
8t(£u) + 0: (5"2) +0. (éuw) + 028905 = D10zu+720..u
0.6 = 0

Then,
o Set p(t,z,y) = E(t,x)e” =Y, wi(t,w,y) = e Y, vo(t,x,y) = e,
(171, 172) € R? and multiply by ey
o Set 9. = e¥d,- and w = e~ =Yy

M. Ersoy (IMATH)



A USEFUL CHANGE OF VARIABLESSESNIOI

Finally, we get :

€ + 0, (Eu +azg§w) = 0

at(§u> + aﬂi(qu) +0 (é.uw) +c amg = V_lazxu + V_28zzu
0, = 0
or equivalently, in non-conservative form :
dif +&divl = 0
gau + 62826 = V_lazmu + V_2622u
0.¢§ = 0

with U := (u, w), Dﬂt =0, +U -V, V:= (am,az)t, div:=0, + 9,
and corresponds exactly to the model studied by B. V. Gatapov and
A. V. Kazhikhov, Siberian Mathematical Journal, 46(5), pp 805-812, 2005. :
existence of weak solutions global in time for the model with (p,u) is then a
straightforward consequence.

IMATH, December 15, 2011 9 / 27



MAIN RESULT |

THEOREM

Assume that initial data (§o,uo) satisfies :

(€0,u0) € WH(Q),  uojpmo = tojzey = 0.

Then p(t, z,y) is a bounded strictly positive function and (1)-(2) has a weak
solution in the following sense : a weak solution of (1)-(2) is a collection (p,u,v)

of functions such that p > 0 and
pE LOO(OaTa W1’2(Q))) 6tp € L2(05T7 L2(Q))7

u € L*(0,T; W*2(Q)) nWh2(0,T; L*(2)), v € L*(0,T; L*())

which satisfies (1) in the distribution sense; in particular, the integral identity
holds for all ¢|—r = 0 with compact support :

T
[ [ puoo s pu.o+ puvd.o + po.6+ poodadyi
0 Q

T
= —/ / 10:u05¢ + V20, u0y ¢ dxdydt —l—/ UoPoP|i—o drdy
0 Jo Q

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 10 / 27
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The 3D-CPES
(z,y);z €T, 0<y<1}:

Let us consider the following model on Q = {(z, y);
%p + pdivU = 0,
put Vap = 2divy (11 (t, 2, y) Dy (u)) + 0y (1a(t, z,y)Oyu), (1)
Oyp = —9p
plp) =cp
with
periodic conditions on 02,
Vly=0 = Vjy=r =0,
yuy,_o = Oyu,_py =0.
and
U(O, Zz, y) = Uo(l', y)v )
p(0,z,y) = Eo(x)e 9/
where

0<&(z) < M < +o0.

M. Ersoy (IMATH)



Let us multiply the previous system by U, we get :

p (p|u|2+plnp—p+1)dxdy+/2V1|Dx(u)|2+1/2|8§u|dmdy+/pgvdxdy
Q Q Q

where / pgvdzxdy > 07 <07
Q

M. Ersoy (IMATH) [ ¥



Let us multiply the previous system by U, we get :

d
7 (plul> +plnp—p+1) dﬂcdy+/ 2V1|Dx(u)|2+u2|8§u|dmdy+/pgvdxdy
Q Q Q

where / pgvdzxdy > 07 <07
Q
Could we simply multiply by u instead of U?

M. Ersoy (IMATH) CPEs



Let us multiply the previous system by U, we get :

d
7 (plul> +plnp—p+1) dxdy+/ 2V1|Dx(u)|2+V2|8§u|d:cdy+/pgvdxdy
Q Q Q

where / pgvdzxdy > 07 <07

Q
Could we simply multiply by u instead of U?
No, we loss information on v.




ENERGY ESTIMATES &2 |

Let us multiply the previous system by U, we get :

d
pn (p|u|2+plnp—p+1)dxdy+/ 21/1|Dz(u)|2+V2|8§u|dxdy+/pgvdxdy
Q Q Q

where / pgvdxdy > 07 <07

Could Wg simply multiply by u instead of U?

No, we loss information on wv.

However, if the rhs of the hydrostatic equation is zero, then we obviously get the
following relation on the vertical speed

O, w = —%divm(fﬁzu)

and constitute a crucial information to get additional estimates.
Consequently, we systematically perform the previous change of variables, i.e.
changes (p,u,v) in (§,u,w).

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 13 /27



If we choose the previous viscosities, we get :

d .
Eﬁ + &divl = 0,

d
U+ Vop = 7180 + 720,y u,
0uE = 0

M. Ersoy (IMATH)



ViscostTies 722

If we choose the previous viscosities, we get :

d .
Ef + &divU = 0,

d
U+ Vop = 7180 + 720,y u,
0uE = 0

@ energy estimates OK'!

; -



VISCOSITIES ? ? 2 -

If we choose the previous viscosities, we get :

d .
aﬁ + &divU =0,

d
gau + vmp =71Azu+ V_28yyua
0o = 0

@ energy estimates OK'!

@ No way to establish an existence results# : Lagrangian coordinates approach
as in B. V. Gatapov and A. V. Kazhikhov, Siberian Mathematical Journal,
46(5), pp 805-812, 2005. fails.

4. up to our knowledge -

M. Ersoy (IMATH)



VISCOSITIES ? 7 2 —

Choose v (t, xz,y) = v1p(t,z,y) and vo(t, z,y) = Dap(t, z,y)e*?
with 7; > 0, we get :

d .
ag + §(dlku + azw) =0,

§%u + 2V ,€ = 20 div, (€D (u)) + 20, (Eva(t, x, 2)0u), 2)
azé = Oa
pE) =c*¢

Then,
@ Existence?7?7?

@ Stability of weak solutions : Yes!!! by adding a regularizing term (combined
to viscous term) allows to pass to the limit in the non-linear term {u ® u
(BD-entropy).

M. Ersoy (IMATH)




WITH THESE SETTIN_

Multiply by U, the energy reads :

d
% (g + (EIn€ — ¢ +1)) dadz + / €(201|Dy(u)|? + 22]0,u?) dadz
Q,
+r/ €|u)® dedz < 0
Q/
®3)
which provides the uniform estimates :
\/gu is bounded in L*>(0, T; (L*(
¢5u is bounded in L3(0, T; (L(
V/€0,u is bounded in L?(0, T} (L*(
V€D, (u) is bounded in L?(0, T; (LQ(QI
€In¢ — € + 1 is bounded in L>(0,T; L*()).

M. Ersoy (IMATH)



WITH THESE SETTINGS -
Following BD the strong convergence of \/Eu required to pass to the limit in the
non linear term £u ® u is obtained by the BD entropy :

Take the gradient of the mass equation, multiply by 20, write the term V£ as
&V, In €, combine with the momentum equations, to get the entropy inequality :

1d
2dt o (§|u+2171vx1n£|2+2(§log§—§+1)) drdz

+/ 201€|0,w|? + 201€| Ay (u)]? + 72€|0,u|? dzdz
Q/
+/ ré|ul® + 2017 u|uV € + 851 |V /€| dadz = 0. (4)
Q/
which gives the following estimates :

V /€ is bounded in L=(0,T; (L*(2))%),
V/€0.w is bounded in L*(0,T; L*(Q)),
V€A, (u) is bounded in L?(0, T} (LAADoN2

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 16 / 27



Define the set of function p € PE(u,v;y, po) which satisfy

p € L0, T; L*(), VP € L¥(0,T; H' (),

Jau € L2(0,T: (L2(Q))?), v € L0, T; L3(9)),
VD) € L2(0,T: (IX(0))), ooy € LX(0,7: 1*(),
Vs e X0, T (I())

with p > 0 and where (p, \/pu, \/pv) satisfies :

{ Oip + dive (y/py/pu) + 0y (v/py/pv) = 0, (5)
Pt=0 = Po-

M. Ersoy (IMATH)



WITH THESE SETTIN
Define the integral operators, for any smoo mpact

support such as (T, z,y) =0 and ¢o = P10 :
Alp,u,v;0,dy) = / / pudyp dzdydt
/ / (2v1(t,z,y)pDy(u) — pu @ u) : Voo dedydt

//rp|u|ug0d;z:dydt //pdlv ) dxdydt

/ / udy (va(t, x, y)0yp) dedydt

— / / pvuldyp drdydt
0o Ja

T
B(p,u,v;so,dy)=/ /pwpdﬂcdydt
0 Q

and
Clp,u;p,dy) = /th:oun:owo dzdy

M. Ersoy (IMATH) CPEs



DEFINITION

A weak solution of 3D-CPEs on [0, 7] x €, with boundary conditions and initial
conditions, is a collection of functions (p,u,v) such as p € PE(u,v;y, po) and the
following equality holds for all smooth test function ¢ with compact support such

as <p(T,x,y) =0 and Yo = Pt=0 -

A(p,u,v;0,dy) + B(p,u,v; ¢, dy) = C(p,u; p,dy) .

-

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 19 /27



THEOREM

Let (pn,un,v,) be a sequence of weak solutions of 3D-CPEs, with boundary
conditions and initial conditions, satisfying entropy inequalities (3) and (4) such as

pn 20, pg— poin L'(Q), pgug — poug in L' ().

Then, up to a subsequence,

o p, converges strongly in C°(0,T; L3/2(Q)),

o \/pnu,, converges strongly in L(0,T; (L*/2(2))?),

o pnuy converges strongly in L(0,T; (L*(Q))?) for all T > 0,
(Prs /Prlin, \/Pnvn) converges to a weak solution of (5),

(pn, U, vy,) satisfies the energy inequality (3), the entropy inequality (4) and
converges to a weak solution of (1).

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 20 /27



MAIN STEPS OF THE _

To show the compactness of sequences (&, u,,, wy,) in appropriate space function
we follow the work of Mellet et al. [MV07] :

@ show the strong convergence of the sequence /&,
@ we seek bounds of \/&,u,, and /&, wy,

@ prove the weak convergence of &,u,,,
@ prove the convergence of \/&,u,,.
which ends the proof.

A. Mellet and A. Vasseur

On the barotropic compressible Navier-Stokes equations.
Comm. Partial Differential Equations, 32(1-3), pp 431-452, 2007.

M. Ersoy (IMATH)
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Several aspects on the well-posedness of these equations are still open.

@ Unicity for the 2D problem ?
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Several aspects on the well-posedness of these equations are still open :

@ Unicity for the 2D problem ?

@ A Challenging Mathematical problem :
At least in a "thin-layer” domain, could we expect the well-posedness of the
compressible Navier-Stokes equations with the equation of state p(p) = p
using the results obtained for the 2D-CPEs?

M. Ersoy (IMATH)



OPEN PROBLEMS R

Several aspects on the well-posedness of these equations are still open :
@ With the obtained estimates for the 3D-CPEs, could we construct an
approximate sequence of solutions ?
@ Unicity for the 2D problem?
@ A Challenging Mathematical problem :
At least in a "thin-layer” domain, could we expect the well-posedness of the

compressible Navier-Stokes equations with the equation of state p(p) = p
using the results obtained for the 2D-CPEs?

M. Ersoy (IMATH) CPEs IMATH, December 15, 2011 23 /27
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One more thing
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Equations are

d 5 W # v constant viscosities
P + Vap = pAgu + v u, Temperature
3yp =—gp, p= I P q amount of water in air
d p+ pdivU = 0, Qr heat diffusic?n frpm sun
dt Qq molecular diffusion

D T 1D d
Cth ——EP QT, %z 3t+u~Vx+v6‘y

q=0Qq 5= tU-v

M. Ersoy (IMATH)



Equations are

d 5 it # v constant viscosities
P + Vap = pAgu + v u, T Temperature
%,p =—gp, p=cp q amount of water in air
L4 pdivU =0, Qr heat dlffusu).n frF)m sun
dt Qq molecular diffusion

D T 1D 0 d
Cpm —;EP— T %: 3t+u~Vx+'u6y
Eq = Ql] E = +U-V

@ Use the pressure as a vertical coordinate p <> y.
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Equations are

d it # v constant viscosities
u—|—pr:,quu+l/8§u, T

p dt Temperature
Byp =—gp, p= 2 P q amount of water in air
ip + pdivU = 0, Qr heat diffusio.n frF)m sun
dt Qq molecular diffusion

D T 1D d
%y —;ﬁP—Q% %: O +u -V, + v,

@ Use the pressure as a vertical coordinate p <> y.

o Write equations in spherical coordinate (p, 8, p) and introduce geopotential
¢ = gy(t,,0,p)
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Equations are

d 5 it # v constant viscosities
Pt + Vap = pAgu + v u, T Temperature
%,p =—gp, p=cp q amount of water in air
L4 pdivU =0, Qr heat dlffusm.n fr.om sun
d Qq molecular diffusion

D T 1D 0 d
ot T oD T %z O +u-V, +vd,
ﬁq = Qq E = +U-V

@ Use the pressure as a vertical coordinate p < .

o Write equations in spherical coordinate (p, 8, p) and introduce geopotential
¢ = gy(t,¢,0.p)
@ Mass equation becomes free div equation : div, ,U =0
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Equations are

d 5 it # v constant viscosities
Pt + Vap = pAgu + v u, T Temperature
%,p =—gp, p=cp q amount of water in air
L4 pdivU =0, Qr heat dlffusm.n fr.om sun
d Qq molecular diffusion

D T 1D d
" bi T oDl T e 5 B, +u-V, + 00,
ﬁq = Qq E = +U-V

@ Use the pressure as a vertical coordinate p < .

o Write equations in spherical coordinate (p, 8, p) and introduce geopotential
¢ =gy(t,¢,0,p)
@ Mass equation becomes free div equation : div, ,U =0
@ Conclusion with Leray’'s results.
an :
-
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Equations are

d
%6 + f(azu + azw) =0, d

d ith — = .
p—tu-l-axf:AU, with dt = 8t+u Vx—l-vaz
0.6 = 0.
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MAIN STEPS : 2D-_

Equations are

d
Eg + 6(8111 + azw) =0, d

d ith — = .
p_tu+8$£ — AU, with dt = 8t +u Vz +Uaz
0.6 = 0.

d 2
@ a priori estimates : —/ fu— +E&né — €+ 1dadz -I-/ (Vu)? dadz
o Write mean equations in Lagrangian coordinates : 7 =t and

n:/owf(t,s)ds
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MAIN STEPS : 2D-C_‘

Equations are
E4+ &0 u+0,w) =0
l x z )

d
d ith — = .
p tu+8m£:AU, with at = 8t+u Vgpl—vaz
9.6 = 0.

d 2
@ a priori estimates : —/ §u— +&né — £+ 1dadz +/ (Vu)? dedz
@ Write mean equations in Lagrangian coordinates : 7 = ¢ and
n= / g(tv S) ds
0

@ Show by standard argument (Gronwall inequality, Cauchy-Schwartz,...) that
the density is bounded from below and above
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MAIN STEPS : 2D-CP_

Equations are

d
E& + f(azu + azw) =0, d
d ith — = .
p_tu +8m£ _ AU, with dt = 8,5 +u Vz +U6z
0.6 = 0.

d 2
@ a priori estimates : —/ §u— +&né — £+ 1dadz +/ (Vu)? dedz
@ Write mean equations in Lagrangian coordinates : 7 = ¢ and
n= / f(t, 8) ds
0

@ Show by standard argument (Gronwall inequality, Cauchy-Schwartz,...) that
the density is bounded from below and above

@ Write mean-oscillation equations and apply a Schauder fixed point theorem

return
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@ x = (z1,x2) horizontal and y vertical coordinate,

@ U= (u= (u1,usz),v) velocity vector (horizontal and vertical component),
@ p density,

@ p barotropic pressure,

@ g gravity constant,

o ¢? usually set to RT where R is the specific gas constant for the air and 7

the temperature,

div, := 0y, + Op,, Dy = (Vo + VL) /2,

o vi(t,x,y) # va(t, x,y) represent the anisotropic pair of viscosity depending
on the density p,

D
(] Ht—at"_uv,
° %:zﬁt—i-u'vz-i-va,

0 2D, (u) =V,u+Viu= (5’in;‘ + O, ui)

1<0,j<2 7
-
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