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THEMATIQUES DE RECHERCHE

@ Modélisation de la dynamique de I'atmosphére et analyse mathématique (existence
et stabilité).

@ Analyse d'E.D.P. hyperbolique a gradient discontinu (Probléme de Riemann, solveur
de Godunov).

@ Systéme hyperbolique avec termes sources (modélisation des écoulements en
conduite fermée, modeéle PFS, schéma numérique VF, schéma “well-balanced”,
entropique, schéma cinétique, VFRoe,. . .).

o Lois de conservation scalaire stationnaire et contréle (analyse de solution
stationnaire en temps fini, contréle, ADM,. . .)

o Cinétique (sédimentation, Vlasov, Exner)
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MATHEMATICAL FRAMEWORK

We focus on general non linear hyperbolic conservation laws

{ ow | 0f(w)

_ +
5o =0, (t2) eR" xR 1)

wo(z) = w(0,z), v € R.

where w € R? stands for the vector state and f the flux governing the physical
description of the flow (Gas dynamics, fluid dynamics, road traffic, ... ).

Numerical solution of (1) is a challenging problem since it is well known that solutions
can and will breakdown at a finite time even if the initial data are smooth.

@ Serre. Systems of conservation laws (99-00) ;
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where w € R? stands for the vector state and f the flux governing the physical
description of the flow (Gas dynamics, fluid dynamics, road traffic, ... ).

Numerical solution of (1) is a challenging problem since it is well known that solutions
can and will breakdown at a finite time even if the initial data are smooth.

Several attempts to the construction of

o high order numerical scheme and NOSC schemes — large complexity

have been proposed to try to capture efficiently discontinuous solutions.
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MATHEMATICAL FRAMEWORK

We focus on general non linear hyperbolic conservation laws

ow | If(w) _ +
74‘770,@,%‘)6]1{ x R (1)

wo(z) = w(0,z), v € R.

where w € R? stands for the vector state and f the flux governing the physical
description of the flow (Gas dynamics, fluid dynamics, road traffic, ... ).

Numerical solution of (1) is a challenging problem since it is well known that solutions
can and will breakdown at a finite time even if the initial data are smooth.
Several attempts to the construction of

o high order numerical scheme and NOSC schemes — large complexity

@ adaptive grids — well-known for FE methods and should provide an efficient
framework for FV methods

have been proposed to try to capture efficiently discontinuous solutions.

@ Serre. Systems of conservation laws (99-00) ; LeVeque. Numerical methods for conservation laws (92); Puppo. ICOSAHOM, (02); Karni,
Kurganov and Petrova. J. Comput. Phys. (02) ; Karni and Kurganov Adv. Comput. Math. (05), Puppo, preprint, (11).
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A1MS&MOTIVATIONS

Our aim is then to compute such solutions
@ accurately
o fastly

i.e., we make use of :
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A1MS&MOTIVATIONS

Our aim is then to compute such solutions
@ accurately
o fastly

i.e., we make use of :

@ automatic refinement tools based on entropy production

Puppo. ICOSAHOM, (02) ; Golay. CRAS, (05)
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A1MS&MOTIVATIONS

Our aim is then to compute such solutions
@ accurately
o fastly
i.e., we make use of :
@ automatic refinement tools based on entropy production

@ multi-time step technique

both we will save the computational time keeping the order of acuracy in Finite Volume
framework

ﬁ Puppo. ICOSAHOM, (02) ; Golay. CRAS, (05) ~ Harten. Comm. on Pure and Appl. Math., (95); Gottschlich-Miiller and Miiller. Hyperbolic

problems : Theory, numerics, applications, (99); Cohen, Kaber, Muller, and Postel. Mathematics of Computation, (03); Altmann, Belat, Gutnic,
Helluy, Mathis, Sonnendriicker, Angulo, and Hérard. ESAIM, (09); Puppo. preprint, (11)
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MATHEMATICAL ENTROPY : ADAPTIV_

The concept of entropy refers to the convex continuous entropy s(w) of flux ¢ (w), for
which one has

ontw) | 20(w) {

= 0 classical solution
< 0 weak solution (discontinuous solution)

ot ox

with
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MATHEMATICAL ENTROPY : ADAPTIVE STRATEGY

The concept of entropy refers to the convex continuous entropy s(w) of flux ¢ (w), for

which one has
I (w) {

0 classical solution

Os(w) n =
< 0 weak solution (discontinuous solution)

ot ox

with

/l/)l — Slfl

It provides an a posteriori error indicator and a useful tool to construct automatic
refinement.

ﬁ Puppo. ICOSAHOM, (02); Puppo. preprint, (11)
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We automatically construct

@ low resolution (coarsest cells) whenever it fails to be zero for smooth flows

@ high resolution (fine cells) whenever solution develops shocks




How ?

We automatically construct

@ low resolution (coarsest cells) whenever it fails to be zero for smooth flows

@ high resolution (fine cells) whenever solution develops shocks

But the CFL condition implies a time restriction since At = — where h is the meshsize of
e
the finest cells

— CPU time increases rapidly !
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How ?

We automatically construct

@ low resolution (coarsest cells) whenever it fails to be zero for smooth flows

@ high resolution (fine cells) whenever solution develops shocks

But the CFL condition implies a time restriction since At = — where h is the meshsize of
e
the finest cells

— CPU time increases rapidly !

Nonetheless, using multi time steps method one can save the CPU-time.
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FINITE VOLUME FORMULATION
R
Cr. |Cil=nh
|Ck| = i
>

-
. £
Tro172 Tk @pgrye

Integrating

ow  Of(w)

ot T 0

Is(w)  Op(w)

<
ot + or 0
over each cells Ci X (tn,tnt1) we obtain :
tn41
w(tnss, @) do— | w (b, ) dm+/ Fw(t,2is1/2)) — Fw(t,2i 1)) dt = 0

Ck Ck tn

S = s(w(tn+1,x))d:n—/ s(w(tn,x))dm—i—/th Ww(t, g1 /2)) — B(w(t, 211 )2)) d

C Cy n

where

S

N

0.

It is called the density of entropy production.
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FACTS ON FINITE VOLUME FORMULATION& APPROXIMATION

For any discretisation of the finite volume formulation of the system, S fails to be zero
even if the solution is smooth.

As a consequence, it can be used as a local error indicator for smooth flows and a priori
reaches large negative value when a shock crosses the cell.

More precisely, one has
THEOREM (Puppro 02)
= O(h") for smooth flow
— | O(1/h) for discontinuous flow

where 1 is the order of the Finite Volume approximation.
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Choosing

I . L i
Fy1/2(wy, wiyq) as a suitable approximation of St / fw(zpsy2,s)ds,
n Jt,

noting 6t,, = tp4+1 — t,, and

wy ~ — w (z,t,) dr
hi Jo,
we obtain : 5t
wz#—l = wZ - h—: (Flzl+1/2 - Fl;n—l/2) ’

M. Ersoy (IMATH)
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FINITE VOLUME APPROXIMATION -

Choosing
1 tn41
Fi1/2(wy, wiy1) as a suitable approximation of . / fw(rrpsi/2,s)ds,
n J,

noting 6t,, = tp4+1 — t,, and

1
wy ~ —/ w (z,t,) dr
hi Jo,

we obtain : 5t

,w;b+1 = wZ - hi;l (Fkn+1/2 - Fk"71/2) ’
Similarly, one has
s, Sk + Yitr172 — Yi—1/2
Otn hi ’
which is the numerical density of entropy production.

We note
P = Siiotnhs
n,k
the total numerical entropy production. .
-



HOW TO DEFINE THE NUMERICAL ENTR_

For the Godunov scheme, we have F}, 1 /2(wy;, wj 1) = f(wy11/2) where w5 is the
exact solution of Riemann problem with data (wy, wy ;).

Thus, the numerical entropy flux is defined as

* . * n n
Wyt1/2 = Wit1/2 (wg, wk+1)

i.e., one has

ntl _ ¢n w; — p(wy_
5 — sy sy +¢( k+1/2) (Wi—1/2)

<0.
Ot hi
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HOW TO DEFINE THE NUMERICAL ENTROPY PRODUCTION ?

For the Godunov scheme, we have Fj, 1 /2(wy;, wyy1) = f(wi11/2) where wy /5 is the
exact solution of Riemann problem with data (wg, wgy1).

Thus, the numerical entropy flux is defined as

* _ * n n
Wit1/2 = Wit1/2 (wg, wk+1)

i.e., one has

o = sZ’H — sy " ¢(w1:+1/2) - ¢(w,§_1/2) <0

Otn ha, =
For other numerical scheme for which the interface state w™ is not known, one can use
wi + wi

o either wy /o as 5

but S < 0 is not automatically satisfied.
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exact solution of Riemann problem with data (wg, wgy1).

Thus, the numerical entropy flux is defined as

* . * n n
Wyt1/2 = wk+1/2(wk , wk+1)

i.e., one has

" SZ+1 — sy ¢(w1:+1/2) - ¢(w2_1/g)
Otn hi
For other numerical scheme for which the interface state w™ is not known, one can use
wy + Wi

o either wy /5 as 5

@ or

n n 1 .tn+l
Yrg1/2 (Wi, wiy) & St / Y(w(xpt1/2,5)ds,
n Jy

n

already used to define Fi o /o(wy, wisq)).
/ +

but Sy < 0 is not automatically satisfied.
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MESH REFINEMENT PROCESS : NOTATIONS

| | |
Ckono ICkoow I Ckoonl Ck(n

Let ky the index which makes reference to the macro cell k and b a binary number which
contains the hierarchical information of a sub-cell. The level of a sub-cell C, is defined
as the length(b) — 1.

M. Ersoy (IMATH) Entropy production NTM 16 / 31



MESH REFINEMENT PROCESS : CRITERION

We first define a mesh refinement criterion S. For instance, it can be the mean value over
the domain Q : 1
S=_—=—) Sy
12 kz o
b

or simply a fixed small parameter.

We then define two coefficients atmin and aunaz, which determine the ratio of numerical
production of entropy leading to mesh refinement or mesh coarsening.

Thus, for each cell Cy,, :
e if Si, > Samaz, the mesh is refined and split into two sub-cells C,, and Ch,,,

o if Sp,, < Samin and Sk, < Smin, the mesh is coarsened into a cell Cy, .
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MESH REFINEMENT PROCESS : REFINE
“

o If a cell Cy, is split into two sub-cells ialized as

follows :

Fr,—1/2 Fr 412

| y X |

S — n
Wy =W

S R— n
Wi, =W,

Y
Fry—1/2=Fp,1/2 Fryt1/2 =Fr,1/2

Ch, Fryot1/2 Z glz;;?alﬂ Conn




MESH REFINEMENT PROCESS : REFINEMENT& UNREFINEMENT

o If a cell Cy, is split into two sub-cells C,, and Cy,,, new subcells are initialized as

follows :
Ch,
Fr1/2 Wl Fryt1/2
14
v P Wi =W y
Fro12=Fp,1y2 Wk = Wiy ' ' Fryt1/2 =Fr,1/2
F =F; _
Chao fuo1/2 — f(i;i})l“ Chyy
o if two sub-cells Ck,, and Cy,, is merged, the new cell Cy, is initialized as follows :
Cy.
Fr,-1/2 N Fpo-1/2 wp = et Wiy Frpt1/2 = Fryer2
b
™
W Wi
Frp-1/2 kuo " Fry+1/2
Ckbo Fkbo+l/2 Fkb171/2 Ckbl

For practical purpose we impose a maximal level.
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the numerical scheme being stable under a CFL condition

Otn

i, o ax ADwf) <1

—> the less hy the less 6t

— time restriction
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(S

the numerical scheme being stable under a CFL condition

Otn

- max A(Dw f) < 1

— the less hy the less 6t

— time restriction

One can overpass using local time step method and save the CPU time

M. Ersoy (IMATH) Entropy production
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PRINCIPLE& NOTATIONS

Compute first the numerical approximation on all finest cells (following an hierarchical
algorithm) and update the value of w at time ¢,,11. For the sake of clarity, let us note

OF (wi—1, Wi, wit1) = (Fiq jo (Wi, wig1) — Fiy o (wr—1, wi))

EXAMPLE (LOCAL TIME STEP)

Ck-1, Choo Ckooo Croot
n n n o
b=t, } Wh—1 Voo W kaoo Wkoot
micro time step : dt,
here N =2
M. Ersoy (IMATH) Entropy production

macro time step : At, = 2N§tn

NTM

N : stands for the maximum level
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PRINCIPLE& NOTATIONS

Compute first the numerical approximation on all finest cells (following an hierarchical
algorithm) and update the value of w at time ¢,,11. For the sake of clarity, let us note
OF (wi—1, Wk, wiy1) = (Fiiy o (Wi, wii1) — Fioy o (wi—1, wi))

EXAMPLE (LOCAL TIME STEP)

C}c710 Ck()() Ck()()[] Ck()()l

n n n eon

b=ty } Wk—1, } koo Wikooo W kaor
n o

Wikaoo[Wkoor

ny
w =
kooo
Wkooo — Fu k00 (Wkoo s Wkooo » Whoo1 )
000
wZ;Ol =
Wioor — I kooo (wkooof Wkoo1 ) Wk+1
001
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EXAMPLE (LOCAL TIME STEP)

Ck*lo C}c()() C}c()()[] C}c()()l
n n 0
b=ty } Wk—1, Wioo Wikooo W kaor
no
w,> =
m Y m L W koo
Wi—1p = k=19 Wkoo = Wioo|—haoo[" koo ni 0t SF™
koo k000 (wkflm Wk wkooo)
hkoo
na na | ne -
koo | WkoooVkoor kjoo
wyl  — Otn OF (W, w Wio: )
ko000 h kooo koo» Wkooor» Wkoo1
kooo
no —
koo1 —
w;l  — Otn OF* (w w w
ko1 h kooo \ Pkooo» Wkoo1 > Wk+1
koo1
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PRINCIPLE& NOTATIONS
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EXAMPLE (LOCAL TIME STEP)

Ck*lu Ck()() Ck()()[] Ck()()l
n n n on ,
. Wik—1g koo Wiknoo W kan 'LU,Z'+11 =
-1
wp? | — Stn OF3, (w w w
k=lo = p, k—1g \Wk—2, Wk—1o, W
witowt e
kooo ™ koo
1
koo
ot
N2 n2 n2 - Wk—1g; Wk » wkgoo)
Jioo Fooo [V koo koo, koo
n+1
wy, =
000
Wit =Wy Wi = Wi | Wi Wi n Otn @
k=1p = Wk-1, koo — Wk, 2000 koo1 3 3
! W00 Pkons 5Fk000 (Whoo s Whooo s Whoo1 )
n n+1 n+1|. n+1 n+1 _
; I Wi—1, Whkoo k000" Kooy Wioo1 —
w3 Otn OF? (w w w
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1
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TIME& SPACE HIGH ORDER APPROXIMATIONS

One can easily
@ increase the order of the time integration using Adams-Bashforth integration
technique. For instance, for the order two, one has

36t
2h1

Otn,
5Fk(tn) + % 6Fk(tn71) .

Wy (tnt1) = Wi (tn)

which means we just have to store the value of the numerical fluxes at time t,,_1
and t,,.

@ include a second order MUSCL (Monotone Upstream-centered Schemes)
reconstruction.
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ONE-DIMENSIONAL GAS DYNAMICS EQUATIONS FOR IDEAL GAS

Numerical solutions* are computed in the case of the one-dimensional gas dynamics
equations for ideal gas :

dp  Opu

a0 T 0 p(t, ) density

) t,x) velocity

9 (pu® u(t,
%ﬂ w =0 where p(t, x) pressure
8ptE 0 (pEx+ p)u v:=14 : ratio of the specific heats

ot T oz 0 E(e,u) total energy
p=(y—1)pe
2

where E := ¢ + % (where ¢ is the internal specific energy).

Using the conservative variables w = (p, pu,pE)t, we classically define the convex
continuous entropy

s(w) = —pln (%) of flux ¥(w) = us(w) .

4. We have used the Godunov solver and displayed — .S instead of S. All tests have been performed on Intel(R) Core(TM) i5-2500
CPU @ 3.30GHz
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Parameters :

CFL : 0.25,

Simulation time (s) : 04,
Initial number of cells : 200,
maximum level of refinement 8 o
mesh refinement parameter amaz 1,
mesh unrefinement parameter aumin @ 1,
W .5 -6
mesh criterion S : 1.010
The initial conditions are :
T= 0.000 T= 0.000
12 - T T 6 12 T T T 6
Density  m— VelOCity  mm—
Entropy production Entropy production e
Refinement level & Number of cells. 500 —— 1r 45
| 1s 08 [ 44
06 |- 43
04 L 12
08 | 14
02 | 41
0 0
-1 0.5 0 0.5 1
06 | 43
T= 0.000
12 . ‘ : 6
Pressure
. Entropy production 15
04 42
08 |- 14
06 43
02 | 41 0a | 1
02 | 11
. ‘ ‘ ‘ 0 " ‘ : ‘ o
1 0.5 0 0.5 1 -1 0.5 0 0.5 1
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ENTROPY PRODUCTION AS A DISCONTINUITY AND ERROR INDI

Mesh refinement level

 on adaptative mesh with L = 1

121p onfixed grid N = 306
P

5

&

0 v =

-1 -05
x(m)

0 ¢

-1 -05 0
x(m)

05

0.1

° ° °
R 8 8

o
8
Numerical density of entropy production

Density—level £,,4, = 1 at time T' = 0.4.

(c) Mesh level L, = 1 at time T' = 0.4.

on

P
s

p on adaptati mac
1.2 onfixed mesh N = 1133

&) 05

0
x(m)

02

Numerical density of entropy production

(b) Density—level £,,q5 = 4 at time T' = 0.4.

Mesh refinement level

-1 -05

0
x(m)

05

0.1

° ° °
R 8 8

o
8
Numerical density of entropy production

(d) Mesh level L0, = 4 at time T' = 0.4.

NTM
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ACCURACY AND CPU-TIME

o[ adeghive mesh: o

RPN

. H

E AN g

3 .

logg(mean number of used mesh-points) : log,o(mean number of used mesh-points)
. . 11 .
(e) Total entropy production. (f) Discrete norm 1,1, on the density error.
N R —| ptive et o™= 00031 —+—
o

logftotal entropy production)

Togg(cpu time)

(g) Accuracy and cpu-time.
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SENSITIVITY TO MESH REFINEMENT PARA_

One can improve previous performance. For instance

mesh refinement parameter amaa 1,
mesh unrefinement parameter aumin, 0.1,

adaptive mesh: order = 0.70036 —s—

adeptive mesh: order
uniform mesh: order = 0.17464 —+—

uniform mesh: order

4518 —s—
1298 —e—

i
ol

log, total entropy production)

“ -
AN " —

log o(total entropy production)

” N

log(mean number of used mesh-points) logq(cpu time)

(h) Increasing numerical order. (i) Reducing cpu-time.
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CONCLUSION

Efficient adaptive numerical scheme for conserv
production have been proposed.

al entropy
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CONCLUSION

Efficient adaptive numerical scheme for conservation laws based on numerical entropy
production have been proposed.

Entropy production is used as
@ a discontinuity detector, and

@ a local error indicator
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CONCLUSION

Efficient adaptive numerical scheme for conservation laws based on numerical entropy
production have been proposed.

Entropy production is used as
@ a discontinuity detector, and
@ a local error indicator
in a multi-time framework.
Thus, one can
@ keep the same order of accuracy and,

@ save the computational cost.
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CONCLUSION AND WORKS IN PROGRESS

Efficient adaptive numerical scheme for conservation laws based on numerical entropy
production have been proposed.
Entropy production is used as

@ a discontinuity detector, and

@ a local error indicator
in a multi-time framework.
Thus, one can

@ keep the same order of accuracy and,

@ save the computational cost.
Analysis of the scheme with others solvers such as Godunov, Rusanov, HLL, kinetic,
VFRoe, ...) for hyperbolic systems with/without source terms

@ convergence

o stability with respect to mesh refinement amaqz and unrefinement amaq,
in particular, properties such as

o steady states

@ entropy inequalites
and 2D/3D algorithm
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Parameters :

CFL 0219
Simulation time (s) ¢ 0.18,
Initial number of cells : 500,
maximum level of refinement B, = 4
mesh refinement parameter amaqs :0.001,

mesh unrefinement parameter auin, @ 0.05,

mesh criterion S . provided by formula S = l ZS,% :

The initial conditions are ) - a0
s - 10 s : ’ - - 10
Densl \ty — Velocity ———
S 46
4L 8 S
I3 dla
i F 42
g 46
o 0
T= 0.000
5 T T T T 10
4| 48
3 b 6
R oS 42
L {4
1 2
] 0 ) 0
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PERFORMANCE

Reference solution : RK2+MUSCL on a fixed grid with N = 20000

5 — 10
Reference solution ——
e

45 S -
B
4 18 3
(=]
5
35 i 2
16 o
> | =
= 3 5]
S 15
@) 25 1 P 2
A m
| 1" &
15 S
2 | | (0]
Z 2
=)
L /\/\/ =

055 02 04 06 (LIa8 30
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PERFORMANCE

multi-time step AB1 AB1,
constant-time step AB1 ABl1,,
multi-time step AB1 and MUSCL reconstruction ABIhiacts
constant-time step AB1 and MUSCL reconstruction A B en
multi-time step AB2 and MUSCL reconstruction AB2,
constant-time step AB2 and MUSCL reconstruction AB2.,
constant-time step RK2 and MUSCL reconstruction RK?2.
» | P ] llo—preslla | CPU | N meshpoints |

AB1 sl B 771028 L 107%5 2015

ABl1, 0.288 7541077 166.52 2032

AB e 02850 [ 4 29105 89.45 1765

ABl; musc | 0.287 AP F 157.07 1874

AB2 0.284 BIOTNT 96.15 1815

AB2. 0.287 3.3410° 158.40 1890

RK?2 0.286 2200 - 277.10 1874
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PERFORMANCE

multi-time step AB1
constant-time step AB1
multi-time step AB1 and MUSCL reconstruction
constant-time step AB1 and MUSCL reconstruction
multi-time step AB2 and MUSCL reconstruction
constant-time step AB2 and MUSCL reconstruction
constant-time step RK2 and MUSCL reconstruction

ABI,
ABI1.,
ABluscls
ABlc,muscl )
AB2,
AB2.,
RK?2.

[ P | llp—preslla | CPU | N meshpoints |
AB1 0287 | 7.77107° | 104.35 2015
AB1, 0.288 | 7.5410° | 166.52 2032
AB1 musel 0.285 | 4.1910° 89.45 1765
ABlemusa | 0287 | 2321077 | 157.07 1874
AB2 0.284 [ 3.9110°° 96.15 1815
AB2, 0.287 | 3.3410° | 158.40 1890
RK?2 0.286 | 2.3210°° | 277.10 1874
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LOCAL TIME STEP ALGORITHM

foreach i € {1,2"} do _
Let j be the biggest integer such that 27 divides 4
foreach interface x> such that L1/ > N —j do
@ compute the integral of Fj /(%) on the time interval N +1/25¢,,,
@ distribute F/5(tn) to the two adjacent cells,
@ update only the cells of level greater than N — j.

end
end
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TW vs

OS PROJECTION

Assume that for every k < ko, all cells C}, are of level L, and for every k& > ko, all cells

Cy, are of level Ly, + 1.
; n i - o g n - ) A
Tro—1/2 Wko Tro+1/2 w’}‘f”Jrl Tro+3/2 Tho—1/2 Who Tho+1/2 w£’,+1 Tro+3/2
n n
1/2 2 n+1/2 3 N AL +1/2
wZ;r o wi w:ﬂt:l/z Wio T - oD Z:H/
tni1)2 tnt1/2 =
n+1 ntl n+1 1
wi W) wi Wy
- ko kot1 M ko ko1

(j) Osher and Sanders projection.

(k) Tang and Warnecke projection.

TW : locally consistant but not globally conservative between two adjacent cells of

different levels (increase the CPU time)

OS : locally non consistant and not conservative (simple projection)
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Indeed, we have without smoothing effect :

cpu-time for TW projection
cpu-time for OS projection

and with smoothing effect :

0.429
0.428
0.427
20426
]
T 0425

0.424

0. 42?0.

cpu-time for TW projection
cpu-time for OS projection

330.27 (s),
85.02 (s),

288.21 (s),
80.04 (s).

{ BRI BRI —
| 0.428
rl 111
LAWY | 5o [ bstope—taony
\ T 0425 f
| 0.424
\ 0.423
05 0 0.05 01 015 02 0.25 03 0.35 2 42?0.05 ] 0.05 01 015 02 0.25 03 0.35

X(m)

() Without smoothing effect.
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CASE OF SECOND ORDER METHOD : REFINEMENT INITIALISATION
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