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Thématiques de Recherche

Modélisation de la dynamique de l’atmosphère et analyse mathématique (existence
et stabilité).

Analyse d’E.D.P. hyperbolique à gradient discontinu (Problème de Riemann, solveur
de Godunov).

Système hyperbolique avec termes sources (modélisation des écoulements en
conduite fermée, modèle PFS, schéma numérique VF, schéma “well-balanced”,
entropique, schéma cinétique, VFRoe,. . . ).

Lois de conservation scalaire stationnaire et contrôle (analyse de solution
stationnaire en temps fini, contrôle, ADM,. . . )

Cinétique (sédimentation, Vlasov, Exner)
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Mathematical framework

We focus on general non linear hyperbolic conservation laws{
∂w

∂t
+
∂f(w)

∂x
= 0, (t, x) ∈ R+ × R

w0(x) = w(0, x), x ∈ R.
(1)

where w ∈ Rd stands for the vector state and f the flux governing the physical
description of the flow (Gas dynamics, fluid dynamics, road traffic, . . . ).

Numerical solution of (1) is a challenging problem since it is well known that solutions
can and will breakdown at a finite time even if the initial data are smooth.

Several attempts to the construction of

high order numerical scheme and NOSC schemes → large complexity

adaptive grids → well-known for FE methods and should provide an efficient
framework for FV methods

have been proposed to try to capture efficiently discontinuous solutions.

Serre. Systems of conservation laws (99-00) ;

LeVeque. Numerical methods for conservation laws (92) ; Puppo. ICOSAHOM, (02) ; Karni,

Kurganov and Petrova. J. Comput. Phys. (02) ; Karni and Kurganov Adv. Comput. Math. (05), Puppo, preprint, (11).
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Aims&Motivations

Our aim is then to compute such solutions

accurately

fastly

i.e., we make use of :

automatic refinement tools based on entropy production

multi-time step technique

both we will save the computational time keeping the order of acuracy in Finite Volume
framework

Puppo. ICOSAHOM, (02) ; Golay. CRAS, (05) Harten. Comm. on Pure and Appl. Math., (95) ; Gottschlich-Müller and Müller. Hyperbolic

problems : Theory, numerics, applications, (99) ; Cohen, Kaber, Muller, and Postel. Mathematics of Computation, (03) ; Altmann, Belat, Gutnic,
Helluy, Mathis, Sonnendrücker, Angulo, and Hérard. ESAIM, (09) ; Puppo. preprint, (11)
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Mathematical entropy : adaptive strategy

The concept of entropy refers to the convex continuous entropy s(w) of flux ψ(w), for
which one has

∂s(w)

∂t
+
∂ψ(w)

∂x

{
≡ 0 classical solution
< 0 weak solution (discontinuous solution)

with
ψ′ = s′f ′

It provides an a posteriori error indicator and a useful tool to construct automatic
refinement.

Puppo. ICOSAHOM, (02) ; Puppo. preprint, (11)
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How ?

We automatically construct

low resolution (coarsest cells) whenever it fails to be zero for smooth flows

high resolution (fine cells) whenever solution develops shocks

But the CFL condition implies a time restriction since ∆t =
h

α
where h is the meshsize of

the finest cells

=⇒ CPU time increases rapidly !

Nonetheless, using multi time steps method one can save the CPU-time.
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Finite volume formulation

Integrating
∂w

∂t
+
∂f(w)

∂x
= 0

∂s(w)

∂t
+
∂ψ(w)

∂x
6 0

over each cells Ck × (tn, tn+1) we obtain :∫
Ck

w (tn+1, x) dx−
∫
Ck

w (tn, x) dx+

∫ tn+1

tn

f(w(t, xi+1/2))− f(w(t, xi−1/2)) dt = 0

S =

∫
Ck

s(w(tn+1, x)) dx−
∫
Ck

s(w(tn, x)) dx+

∫ tn+1

tn

ψ(w(t, xi+1/2))− ψ(w(t, xi−1/2)) dt

l

where
S 6 0.

It is called the density of entropy production.
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Facts on finite volume formulation&approximation

For any discretisation of the finite volume formulation of the system, S fails to be zero
even if the solution is smooth.

As a consequence, it can be used as a local error indicator for smooth flows and a priori
reaches large negative value when a shock crosses the cell.

More precisely, one has

Theorem (Puppo 02)

S =

{
O(hr) for smooth flow
O(1/h) for discontinuous flow

where r is the order of the Finite Volume approximation.

M. Ersoy (IMATH) Entropy production NTM 12 / 31



Finite volume approximation

Choosing

Fk+1/2(wn
k ,w

n
k+1) as a suitable approximation of

1

δtn

∫ tn+1

tn

f(w(xk±1/2, s) ds,

noting δtn = tn+1 − tn and

wn
k '

1

hk

∫
Ck

w (x, tn) dx

we obtain :

wn+1
k = wn

k −
δtn
hk

(
F n
k+1/2 − F n

k−1/2

)
,

Similarly, one has

Snk =
sn+1
k − snk
δtn

+
ψnk+1/2 − ψnk−1/2

hk
,

which is the numerical density of entropy production.

We note
P =

∑
n,k

Snk δtnhk

the total numerical entropy production.
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How to define the numerical entropy production ?

For the Godunov scheme, we have Fk+1/2(wn
k ,w

n
k+1) = f(w∗k+1/2) where w∗k+1/2 is the

exact solution of Riemann problem with data (wn
k ,w

n
k+1).

Thus, the numerical entropy flux is defined as

w∗k+1/2 = w∗k+1/2(wn
k ,w

n
k+1)

i.e., one has

Snk =
sn+1
k − snk
δtn

+
ψ(w∗k+1/2)− ψ(w∗k−1/2)

hk
6 0.

For other numerical scheme for which the interface state w∗ is not known, one can use

either w∗k+1/2 as
wn
k + wn

k+1

2
or

ψk+1/2(wn
k ,w

n
k+1) ≈ 1

δtn

∫ tn+1

tn

ψ(w(xk±1/2, s) ds,

(already used to define Fk+1/2(wn
k ,w

n
k+1)).

but Snk 6 0 is not automatically satisfied.
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Mesh refinement process : notations

Let kb the index which makes reference to the macro cell k and b a binary number which
contains the hierarchical information of a sub-cell. The level of a sub-cell Ckb is defined
as the length(b)− 1.
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Mesh refinement process : criterion

We first define a mesh refinement criterion S̄. For instance, it can be the mean value over
the domain Ω :

S̄ =
1

|Ω|
∑
kb

Snkb

or simply a fixed small parameter.

We then define two coefficients αmin and αmax, which determine the ratio of numerical
production of entropy leading to mesh refinement or mesh coarsening.

Thus, for each cell Ckb :

if Snkb > S̄αmax, the mesh is refined and split into two sub-cells Ckb0 and Ckb1 ,

if Snkb0 < S̄αmin and Snkb1 < S̄αmin, the mesh is coarsened into a cell Ckb .

M. Ersoy (IMATH) Entropy production NTM 17 / 31



Mesh refinement process : refinement& unrefinement

If a cell Ckb is split into two sub-cells Ckb0 and Ckb1 , new subcells are initialized as
follows :

if two sub-cells Ckb0 and Ckb1 is merged, the new cell Ckb is initialized as follows :

For practical purpose we impose a maximal level.
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But

the numerical scheme being stable under a CFL condition

δtn
mink hk

maxλ(Dwf) < 1

=⇒ the less hk the less δtn

=⇒ time restriction

One can overpass using local time step method and save the CPU time
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Principle& Notations

Compute first the numerical approximation on all finest cells (following an hierarchical
algorithm) and update the value of w at time tn+1. For the sake of clarity, let us note
δF n

k (wk−1,wk,wk+1) =
(
F n
k+1/2(wk,wk+1)− F n

k−1/2(wk−1,wk)
)

Example (local time step)

macro time step : ∆tn = 2Nδtn
micro time step : δtn
N : stands for the maximum level
here N = 2
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Time& space high order approximations

One can easily

increase the order of the time integration using Adams-Bashforth integration
technique. For instance, for the order two, one has

wk(tn+1) = wk(tn)− 3δtn
2hk

δFk(tn) +
δtn
2hk

δFk(tn−1) .

which means we just have to store the value of the numerical fluxes at time tn−1

and tn.

include a second order MUSCL (Monotone Upstream-centered Schemes)
reconstruction.
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one-dimensional gas dynamics equations for ideal gas

Numerical solutions 4 are computed in the case of the one-dimensional gas dynamics
equations for ideal gas :



∂ρ

∂t
+
∂ρu

∂x
= 0

∂ρu

∂t
+
∂
(
ρu2 + p

)
∂x

= 0

∂ρE

∂t
+
∂ (ρE + p)u

∂x
= 0

p = (γ − 1)ρε

where

ρ(t, x) : density
u(t, x) : velocity
p(t, x) : pressure
γ := 1.4 : ratio of the specific heats
E(ε, u) : total energy

where E := ε+
u2

2
(where ε is the internal specific energy).

Using the conservative variables w = (ρ, ρu, ρE)t, we classically define the convex
continuous entropy

s(w) = −ρ ln

(
p

ργ

)
of flux ψ(w) = u s(w) .

4. We have used the Godunov solver and displayed −S instead of S. All tests have been performed on Intel(R) Core(TM) i5-2500
CPU @ 3.30GHz
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Parameters :
CFL : 0.25,
Simulation time (s) : 0.4,
Initial number of cells : 200,
maximum level of refinement : Lmax,
mesh refinement parameter αmax : 1,
mesh unrefinement parameter αmin : 1,

mesh criterion S̄ : 1.0 10−6

The initial conditions are :
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Entropy production as a discontinuity and error indicator
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(a) Density–level Lmax = 1 at time T = 0.4.
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(b) Density–level Lmax = 4 at time T = 0.4.
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(c) Mesh level Lmax = 1 at time T = 0.4.

 0

 1

 2

 3

 4

 5

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
es

h 
re

fi
ne

m
en

t l
ev

el

N
um

er
ic

al
 d

en
si

ty
 o

f 
en

tr
op

y 
pr

od
uc

tio
n

x(m)

Sk
n

Lmax = 4 

(d) Mesh level Lmax = 4 at time T = 0.4.
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Accuracy and cpu-time
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(e) Total entropy production.
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(g) Accuracy and cpu-time.
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Sensitivity to mesh refinement parameters

One can improve previous performance. For instance

mesh refinement parameter αmax : 1,
mesh unrefinement parameter αmin : 0.1,
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(h) Increasing numerical order.
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(i) Reducing cpu-time.
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Conclusion

and works in progress

Efficient adaptive numerical scheme for conservation laws based on numerical entropy
production have been proposed.

Entropy production is used as

a discontinuity detector, and

a local error indicator

in a multi-time framework.
Thus, one can

keep the same order of accuracy and,

save the computational cost.

Analysis of the scheme with others solvers such as Godunov, Rusanov, HLL, kinetic,
VFRoe, . . . ) for hyperbolic systems with/without source terms

convergence

stability with respect to mesh refinement αmax and unrefinement αmax,

in particular, properties such as

steady states

entropy inequalites

and 2D/3D algorithm
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Parameters :

CFL : 0.219,
Simulation time (s) : 0.18,
Initial number of cells : 500,
maximum level of refinement : Lmax = 4,
mesh refinement parameter αmax : 0.001,
mesh unrefinement parameter αmin : 0.05,

mesh criterion S̄ : provided by formula S̄ =
1

|Ω|
∑
kb

Snkb .

The initial conditions are :
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Performance

Reference solution : RK2+MUSCL on a fixed grid with N = 20000
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Performance

multi-time step AB1 : AB1,
constant-time step AB1 : AB1c,
multi-time step AB1 and MUSCL reconstruction : AB1muscl,
constant-time step AB1 and MUSCL reconstruction : AB1c,muscl,
multi-time step AB2 and MUSCL reconstruction : AB2,
constant-time step AB2 and MUSCL reconstruction : AB2c,
constant-time step RK2 and MUSCL reconstruction : RK2.

P ‖ρ− ρref‖2 CPU N meshpoints

AB1 0.287 7.77 10−3 104.35 2015

AB1c 0.288 7.54 10−3 166.52 2032

AB1muscl 0.285 4.19 10−3 89.45 1765

AB1c,muscl 0.287 2.32 10−3 157.07 1874

AB2 0.284 3.91 10−3 96.15 1815

AB2c 0.287 3.34 10−3 158.40 1890

RK2 0.286 2.32 10−3 277.10 1874
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local time step algorithm

foreach i ∈ {1, 2N} do
Let j be the biggest integer such that 2j divides i
foreach interface xk+1/2 such that Lk+1/2 > N − j do

1 compute the integral of Fk+1/2(t) on the time interval 2N−Lk+1/2δtn,

2 distribute Fk+1/2(tn) to the two adjacent cells,

3 update only the cells of level greater than N − j.

end

end
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TW vs OS projection

Assume that for every k 6 k0, all cells Ck are of level Lk0 and for every k > k0, all cells
Ck are of level Lk0 + 1.

(j) Osher and Sanders projection. (k) Tang and Warnecke projection.

TW : locally consistant but not globally conservative between two adjacent cells of
different levels (increase the CPU time)
OS : locally non consistant and not conservative (simple projection)
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Indeed, we have without smoothing effect :

cpu-time for TW projection = 330.27 (s),
cpu-time for OS projection = 85.02 (s),

and with smoothing effect :

cpu-time for TW projection = 288.21 (s),
cpu-time for OS projection = 80.04 (s).

 0.422

 0.423

 0.424

 0.425

 0.426

 0.427

 0.428

 0.429

-0.05  0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

de
ns

ity

x(m)

TW projection
OS projection

(l) Without smoothing effect.

 0.422

 0.423

 0.424

 0.425

 0.426

 0.427

 0.428

 0.429

-0.05  0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

de
ns

ity

x(m)

TW projection
OS projection

(m) With smoothing effect.

M. Ersoy (IMATH) Entropy production NTM 31 / 31



Case of second order method : refinement initialisation

Computation of the flux for the second order MUSCL reconstruction :
Refinement : 

wn
kb0 = wn

kb −
hk
4

∂wn
kb

∂x
,

wn
kb1 = wn

kb +
hk
4

∂wn
kb

∂x
.
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