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Simulation of wave propagation and wave breaking

Shallow water equations : fast but unable to simulate wave breaking
I Zaleski, Popinet, Diaz, Dutykh, . . .

Multi-phase Navier-Stokes equations :
I FV, FE, VOF, level set, . . .→ accurate but expensive

F Nkonga, Lubin, Caltagirone . . .

I Lattice Boltzmann → accurate but expensive
F Janssen, Grilli, Krafczyk, . . .

I SPH → difficult to implement and very expensive
F Monaghan, Lattanzio, De Padova, . . .

Low-Mach models (Euler equations) : good compromise between physical
modeling accuracy and cost

(a) SW

(b) Nkonga (FluidBox) (2009) (c) Golay & Helluy (2005)
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Hyperbolic equations and entropy condition

We focus on general non linear hyperbolic conservation laws{
∂w

∂t
+
∂f(w)

∂x
= 0, (t, x) ∈ R+ × R

w(0, x) = w0(x), x ∈ R

w ∈ Rd : vector state,
f : flux governing the physical description of the flow.

Weak solutions satisfy

S =
∂s(w)

∂t
+
∂ψ(w)

∂x

 = 0 for smooth solution
= 0 across rarefaction
< 0 across shock

where (s, ψ) stands for a convex entropy-entropy flux pair :

(∇ψ(w))
T

= (∇s(w))
T
Dwf(w)

Entropy inequality '“smoothness indicator”
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Hyperbolic equations and entropy condition

We focus on general non linear hyperbolic conservation laws{ ∂w

∂t
+ div(f(w)) = 0, (t, x) ∈ R+ × Rd

w(0, x) = w0(x), x ∈ Rd

Weak solutions satisfy

S =
∂s(w)

∂t
+ div(ψ(w))

 = 0 for smooth solution
= 0 across rarefaction
< 0 across shock

where (s, ψ) stands for a convex entropy-entropy flux pair :

(∇ψi(w))
T

= (∇s(w))
T
Dwfi(w), i = 1, . . . , d

Entropy inequality '“smoothness indicator”
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Finite volume approximation

Figure : a cell Ck

Finite volume approximation :

wn+1
k = wn

k −
δtn
hk

(
F n
k+1/2 − F n

k−1/2

)
with

wn
k '

1

hk

∫
Ck

w (tn, x) dx

The numerical density of entropy production :

Snk =
sn+1
k − snk
δtn

+
ψnk+1/2 − ψ

n
k−1/2

hk
/ 0
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Mesh refinement indicator : principle & illustration

Compute wnk

Compute Snk : Snk 6= 0 =⇒ the cell is refined or coarsened

More precisely :

I Sn
k 6 αminS =⇒ the cell is refined with S =

1

|Ω|

∫
Ω

Sn
k

I Sn
k > αmaxS =⇒ the cell is coarsened
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More precisely :

I Sn
k 6 αminS =⇒ the cell is refined with S =

1

|Ω|

∫
Ω

Sn
k

I Sn
k > αmaxS =⇒ the cell is coarsened

I Dynamic mesh refinement :

F Non-structured grid : macro-cell

F Dyadic tree (1D)

, Quadtree (2D), Octree (3D)

F hierarchical numbering : basis 2

,4,8
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one-dimensional gas dynamics equations for ideal gas

∂ρ

∂t
+
∂ρu

∂x
= 0

∂ρu

∂t
+
∂
(
ρu2 + p

)
∂x

= 0

∂ρE

∂t
+
∂ (ρE + p)u

∂x
= 0

p = (γ − 1)ρε

where

ρ(t, x) : density
u(t, x) : velocity
p(t, x) : pressure
γ := 1.4 : ratio of the specific heats
E(ε, u) : total energy
ε : internal specific energy

E = ε+ u2

2

Conservative variables
w = (ρ, ρu, ρE)

t

convex continuous entropy

s(w) = −ρ ln

(
p

ργ

)
of flux ψ(w) = u s(w) .

Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
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Sod’s shock tube problem

Mesh refinement parameter αmax : 0.01 ,
Mesh coarsening parameter αmin : 0.001 ,

Mesh refinement parameter S̄ :
1

|Ω|
∑
kb

Snkb

CFL : 0.25,
Simulation time (s) : 0.4,
Initial number of cells : 200,
Maximum level of mesh refinement : Lmax .
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Accuracy
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Figure : Sod’s shock tube problem : solution at time t = 0.4 s using the AB1M scheme
on a dynamic grid with Lmax = 5 and the AB1 scheme on a uniform fixed grid of 681
cells.

M. Ersoy (IMATH) Application to wave-breaking University of Sussex, July 24, 2014 10 / 38



Shu and Osher test case

CFL : 0.219,
Simulation time (s) : 0.18,
Initial number of cells : 500,
Maximum level of mesh refinement : Lmax = 4.
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Reference solution&Numerical results

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.2  0.4  0.6  0.8  1
 0

 2

 4

 6

 8

 10

 12

D
en

si
ty

N
um

er
ic

al
 d

en
si

ty
 o

f 
en

tr
op

y 
pr

od
uc

tio
n

x

  AB1
  Sk

n for AB1
  AB2

  Sk
n for AB2

  RK2
  Sk

n for RK2
  reference solution

  Sk
n for reference solution

(a) Density and numerical density of en-
tropy production.

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0.56  0.58  0.6  0.62  0.64  0.66  0.68  0.7

D
en

si
ty

x

AB1
AB2
RK2

                       Reference solution

(b) Zoom on oscillating region.

Figure : Shu and Osher test case.

M. Ersoy (IMATH) Application to wave-breaking University of Sussex, July 24, 2014 12 / 38



Time restriction

, local time stepping approach & Aims

Explicit adaptive schemes : time consuming due to the restriction

‖w‖ δ
h
6 1, h = min

k
hk

Local time stepping algorithm : save the cpu-time
I Sort cells in groups w.r.t. to their level
I Update the cells following the local time stepping algorithm.

Müller S., Stiriba Y., SIAM J. Sci. Comput., (07) ; Ersoy M., Golay F., Yushchenko L., CEJM, (13) ;
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Illustration

Figure : t = tn

with
δFnk−1,k,k+1 :=

(
F n
k+1/2(wk,wk+1)− F n

k−1/2(wk−1,wk)
)
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Illustration

Figure : tn1 = tn + δtn
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Illustration

Figure : tn2 = tn + 2δtn
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Illustration

Figure : tn3 = tn + 3δtn
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Illustration

Figure : tn+1 = tn + 4δtn
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local time stepping algorithm

foreach i ∈ {1, 2N} do
Let j be the biggest integer such that 2j divides i
foreach interface xk+1/2 such that Lk+1/2 > N − j do

1 compute the integral of Fk+1/2(t) on the time interval 2N−Lk+1/2δtn,

2 distribute Fk+1/2(tn) to the two adjacent cells,

3 update only the cells of level greater than N − j.

end

end
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Efficiency of the local time stepping method

P ‖ρ− ρref‖l1x cpu-time NLmax maximum number of cells

AB1 0.288 4.74 10−2 181 1574 2308

AB1M 0.288 4.80 10−2 120 1572 2314

AB2 0.287 2.75 10−2 170 1391 2023
AB2M 0.286 2.74 10−2 108 1357 1994
RK2 0.285 2.08 10−2 299 1375 2005

Table : Shu and Osher test case : comparison of numerical schemes of order 1

and 2
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Properties

In particular, one has :

Theorem

Consider a pth convergent scheme. Let Snk be the corresponding numerical
density of entropy production and ∆t = λh be a fixed time step where h
stands for the meshsize.
Then

lim
n→∞

Snk =

 O(∆tp) if the solution is smooth,

O

(
1

∆t

)
if the solution is discontinuous.

and the following property is satisfied :

Properties

Consider a monotone scheme. Then, for almost every k, every n,

Snk 6 0.

Thus, even if locally Snk can take positive value, one has Snk 6 C∆tq, q > p .
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Example

Let us consider the transport equation :{
wt + wx = 0
w(0, x) = w0(x)

and the Godunov scheme :
wn+1
k = wnk −

δt

δx

(
wnk − wnk−1

)

Sn+1
k =

s(wn+1
k )− s(wnk )

δt
+
ψ(s(wnk ))− ψ(s(wnk−1))

δx

with s(w) = w2 and ψ(w) = w2.

Substituting wn+1
k into Sn+1

k , we get

Sn+1
k = −ε

(
wnk − wnk−1

δx

)2

6 0

with ε = δx

(
1− δt

δx

)
> 0.
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123 problem

CFL : 0.25,
Simulation time (s) : 0.15,
Initial number of cells : 200,
Maximum level of mesh refinement : 4.
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123 problem
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123 problem
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Figure : Test 2 : ‖ε− εex‖l1x with respect to the average number of cells at time
t = 0.15.
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The blast wave problem

CFL : 0.25,
Simulation time (s) : 0.038,
Initial number of cells : 200,
Maximum level of mesh refinement : Lmax.
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The blast wave problem
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The blast wave problem
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Figure : ‖ε− εex‖l1x with respect to the average number of cells at time t = 0.038.
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Outline
Outline

1 Physical modeling and numerical motivation

2 2D and 3D applications

3 Concluding remarks& perspectives
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Application to wave breaking

Main task : wave propagation and wave breaking.

Reproduce with accuracy saving the cpu-time, previous works by Golay &
Helluy and co . . .
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Application to wave breaking

Main task : wave propagation and wave breaking.

Reproduce with accuracy saving the cpu-time, previous works by Golay &
Helluy and co . . .

Kleefsmann (ComFlow) Golay
1.2M cells 0.8M cells
NS+VOF+Surface tension Bifluid Euler
MAC FV

2days CPU M=0.1
1 day CPU M=0.2
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Application to wave breaking

Model (2D and 3D) : low mach bi-fluid euler

(isothermal non-cv)

∂ρ

∂t
+ div(ρu) = 0

∂ρu

∂t
+ div

(
ρu2 + pI

)
= ρg

∂ρE

∂t
+ div ((ρE + p)u) = 0

∂ϕ

∂t
+ u · ∇ϕ = 0

where

ρ(t, x) : density
u(t, x) : velocity
p(t, x) : pressure
E(ε, u) : total energy
ε : internal specific energy
ϕ : fluid’s fraction

E = ε+ u2

2

with
p = p0 + c0 (ρ− (ϕρw + (1− ϕ)ρa))

Moreover,

hyperbolic system
entropy available
automatic mesh refinement
local time stepping
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Explicit scheme → easy parallel implementation (MPI)
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Parallelization : mesh strategy ?

hard and main task to handle

strategy : domain, block, cpu ?
1 domain=block=1 cpu : “failure”→ synchronization depends on the finest

domain
2 domain= n × blocks = 1cpu : “good compromise”→ each domain has almost

the same number number of cells →“better” synchronization
3 It certainly exists better strategy . . .

Management of domain’s interfaces, projection step, . . .
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domain= n × blocks = 1cpu

How it works ?

each domain has almost the same number of cells

domain are defined using Cuthill-McKee numbering

more sophisticated numbering exists . . .

main loop and parallelization (mpi)
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2D-3D dambreak with an obstacle

Mesh refinement parameter αmax : 0.2 ,
Mesh coarsening parameter αmin : 0.1 ,
Number of domain : 321,
Number of processors : 120,
Maximum level of mesh refinement : Lmax = 5 .

(top left : mesh, top middle : ρ, top right : Snk , bottom left : level, bottom right :
1

|D|

∫
D

Snk )
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Versus exprimental (Koshizuka, Tamako, Oka, 95)

T = 0.2s

T = 0.3s

T = 0.4s
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Kleefsmann test case

10h cpu (instead of 1 day)

48 cpus, 48 domains, 3628 blocks

transfer and post-processing take more time !
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Just for fun : visualisation tool

povray = Persistence Of Vision RAYtracer : high quality and realistic picture

Povray postprocess is expensive but the results are beautiful ! ! !

first movie (Shallow water equations with a moving bed) :

I each picture ≈ 6Mo
I time to generate 1 picture ≈ 10 min
I here 500 picture . . .
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Just for fun : visualisation tool

but not only

A second movie (bifluid Euler equations) :

I 4 level
I 20 domains
I 100 time step
I αmin = 0.02, αmax = 0.2
I 172 215 – 587763 cells
I 7h computation
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Just for fun : visualisation tool but not only

speed-up vs proc number
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Just for fun : visualisation tool but not only

cpu time vs proc number
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2D Euler Riemann problem : a computational challenge (Liska,

Wendroff, 01)

Riemann data :

(p, ρ, u, v)(0, x, y) =


(p1, ρ1, u1, v1), if x > 0.5 and y > 0.5
(p2, ρ2, u2, v2), if x < 0.5 and y > 0.5
(p3, ρ3, u3, v3), if x < 0.5 and y < 0.5
(p4, ρ4, u4, v4), if x > 0.5 and y < 0.5

19 possible configuration : forward or backward 1 D waves (rarefaction, shock
and contact discontinuity)
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2D Euler Riemann problem : a computational challenge (Liska,

Wendroff, 01)

Riemann data :

(p, ρ, u, v)(0, x, y) =


(0.4, 0.5313, 0, 0), if x > 0.5 and y > 0.5
(1, 1, 0.7276, 0), if x < 0.5 and y > 0.5
(1, 0.8, 0, 0), if x < 0.5 and y < 0.5
(1, 1, 0, 0), if x > 0.5 and y < 0.5

Resolution of stationary contacts bordering the lower left quadrant
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2D Euler Riemann problem : a computational challenge (Liska,

Wendroff, 01)

Riemann data :

(p, ρ, u, v)(0, x, y) =


(1, 1, 0,−0.4), if x > 0.5 and y > 0.5
(1, 2, 0.,−0.3), if x < 0.5 and y > 0.5
(0.4, 1.0625, 0, 0.2145), if x < 0.5 and y < 0.5
(0.4, 0.5197, 0,−1.1259), if x > 0.5 and y < 0.5

Two standing contacts on the line x=0.5
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Outline
Outline

1 Physical modeling and numerical motivation

2 2D and 3D applications

3 Concluding remarks& perspectives
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Achievements and perspectives in CM2

low mach bi-fluid model 1D, 2D and 3D

Bi-fluid Euler equations with other pressure law

For each model ”Efficiency” = accuracy and save the cpu time

New 3D AMR meshing tool implemented

Others models have been validated : interfacial erosion model with DDFV

To do
I optimization of the parallel processing
I GCPU
I Application to Shallow water equations :

I . . .
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