On the numerical entropy production as a useful mesh refinement parameter: application to wave-breaking.

Mehmet Ersoy1, Frédéric Golay2 and Lyudmyla Yushchenko3

University of Sussex, July 24, 2014

1 Mehmet.Ersoy@univ-tln.fr
2 Frederic.Golay@univ-tln.fr
3 Lyudmyla.Yushchenko@univ-tln.fr
1. **Physical modeling and numerical motivation**

2. **2D and 3D applications**

3. **Concluding remarks & perspectives**
1 Physical modeling and numerical motivation

2 2D and 3D applications

3 Concluding remarks & perspectives
Simulation of wave propagation and wave breaking

- **Shallow water equations**: fast but unable to simulate wave breaking
 - Zaleski, Popinet, Diaz, Dutykh, ...

- Multi-phase Navier-Stokes equations:
 - FV, FE, VOF, level set, ...
 - → accurate but expensive
 - Nkonga, Lubin, Caltagirone, ...

- Lattice Boltzmann
 - → accurate but expensive
 - Janssen, Grilli, Krafczyk, ...

- Low-Mach models (Euler equations):
 - Good compromise between physical modeling accuracy and cost

(a) SW
Simulation of wave propagation and wave breaking

- Shallow water equations: fast but unable to simulate wave breaking
 - Zaleski, Popinet, Diaz, Dutykh, ...

- Multi-phase Navier-Stokes equations:
 - FV, FE, VOF, level set, ... → accurate but expensive
 - Nkonga, Lubin, Caltagirone ...

(d) SW (e) Nkonga (FluidBox) (2009)
Simulation of wave propagation and wave breaking

- Shallow water equations: fast but unable to simulate wave breaking
 - Zaleski, Popinet, Diaz, Dutykh, ...

- Multi-phase Navier-Stokes equations:
 - FV, FE, VOF, level set, ... → accurate but expensive
 - Nkonga, Lubin, Caltagirone ...
 - Lattice Boltzmann → accurate but expensive
 - Janssen, Grilli, Krafczyk, ...

(g) SW (h) Nkonga (FluidBox) (2009)
Simulation of wave propagation and wave breaking

- Shallow water equations: fast but unable to simulate wave breaking
 - Zaleski, Popinet, Diaz, Dutykh, ...

- Multi-phase Navier-Stokes equations:
 - FV, FE, VOF, level set, … → accurate but expensive
 - Nkonga, Lubin, Caltagirone …
 - Lattice Boltzmann → accurate but expensive
 - Janssen, Grilli, Krafczyk, …
 - SPH → difficult to implement and very expensive
 - Monaghan, Lattanzio, De Padova, …

(j) SW (k) Nkonga (FluidBox) (2009)
Simulation of wave propagation and wave breaking

- Shallow water equations: fast but unable to simulate wave breaking
 - Zaleski, Popinet, Diaz, Dutykh, ...

- Multi-phase Navier-Stokes equations:
 - FV, FE, VOF, level set, ... → accurate but expensive
 - Nkonga, Lubin, Caltagirone ...
 - Lattice Boltzmann → accurate but expensive
 - Janssen, Grilli, Krafczyk, ...
 - SPH → difficult to implement and very expensive
 - Monaghan, Lattanzio, De Padova, ...

- Low-Mach models (Euler equations): good compromise between physical modeling accuracy and cost

(m) SW (n) Nkonga (FluidBox) (2009) (o) Golay & Helluy (2005)
We focus on general non linear hyperbolic conservation laws

\[
\begin{cases}
\frac{\partial w}{\partial t} + \frac{\partial f(w)}{\partial x} = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R} \\
w(0, x) = w_0(x), \quad x \in \mathbb{R}
\end{cases}
\]

\(w \in \mathbb{R}^d\) : vector state,
\(f\) : flux governing the physical description of the flow.
We focus on general non linear hyperbolic conservation laws

\[
\begin{align*}
\frac{\partial w}{\partial t} + \frac{\partial f(w)}{\partial x} &= 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R} \\
w(0, x) &= w_0(x), \quad x \in \mathbb{R}
\end{align*}
\]

Weak solutions satisfy

\[
S = \frac{\partial s(w)}{\partial t} + \frac{\partial \psi(w)}{\partial x} \left\{ \begin{array}{ll}
= 0 & \text{for smooth solution} \\
= 0 & \text{across rarefaction} \\
< 0 & \text{across shock}
\end{array} \right.
\]

where \((s, \psi)\) stands for a convex entropy-entropy flux pair:

\[
(\nabla \psi(w))^T = (\nabla s(w))^T \quad D_w f(w)
\]
Hyperbolic equations and entropy condition

We focus on general non linear hyperbolic conservation laws

\[
\begin{cases}
\frac{\partial w}{\partial t} + \frac{\partial f(w)}{\partial x} = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R} \\
w(0, x) = w_0(x), \quad x \in \mathbb{R}
\end{cases}
\]

Weak solutions satisfy

\[
S = \frac{\partial s(w)}{\partial t} + \frac{\partial \psi(w)}{\partial x}
= \begin{cases}
0 & \text{for smooth solution} \\
0 & \text{across rarefaction} \\
< 0 & \text{across shock}
\end{cases}
\]

where \((s, \psi)\) stands for a convex entropy-entropy flux pair:

\[
(\nabla \psi(w))^T = (\nabla s(w))^T D_w f(w)
\]

Entropy inequality \(\simeq\) “smoothness indicator”
We focus on general non linear hyperbolic conservation laws

\[
\begin{align*}
\frac{\partial w}{\partial t} + \text{div}(f(w)) &= 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^d \\
w(0, x) &= w_0(x), \quad x \in \mathbb{R}^d
\end{align*}
\]

Weak solutions satisfy

\[
S = \frac{\partial s(w)}{\partial t} + \text{div}(\psi(w)) \begin{cases} = 0 & \text{for smooth solution} \\ = 0 & \text{across rarefaction} \\ < 0 & \text{across shock} \end{cases}
\]

where \((s, \psi)\) stands for a convex entropy-entropy flux pair:

\[
(\nabla \psi_i(w))^T = (\nabla s(w))^T D_w f_i(w), \quad i = 1, \ldots, d
\]

Entropy inequality \(\simeq\) “smoothness indicator”
Finite volume approximation:

\[w_{k}^{n+1} = w_{k}^{n} - \frac{\delta t_{n}}{h_{k}} \left(F_{k+1/2}^{n} - F_{k-1/2}^{n} \right) \]

with

\[w_{k}^{n} \approx \frac{1}{h_{k}} \int_{C_{k}} w(t_{n}, x) \, dx \]
Finite volume approximation:

$$w_{k}^{n+1} = w_{k}^{n} - \frac{\delta t_{n}}{h_{k}} \left(F_{k+1/2}^{n} - F_{k-1/2}^{n} \right)$$

with

$$w_{k}^{n} \approx \frac{1}{h_{k}} \int_{C_{k}} w(t_{n}, x) \, dx$$

The numerical density of entropy production:

$$S_{k}^{n} = \frac{s_{k}^{n+1} - s_{k}^{n}}{\delta t_{n}} + \frac{\psi_{k+1/2}^{n} - \psi_{k-1/2}^{n}}{h_{k}} \approx 0$$
Mesh refinement indicator: principle & illustration

- Compute w_k^n

More precisely:

- $S_n^k \leq \alpha_{\text{min}} S = 1 |_{\Omega}$ ⇒ the cell is refined with $S = 1 |_{\Omega}$

- $S_n^k \geq \alpha_{\text{max}} S = |_{\Omega}$ ⇒ the cell is coarsened
Mesh refinement indicator : principle & illustration

- Compute w^n_k
- Compute $S^n_k : S^n_k \neq 0 \implies$ the cell is refined or coarsened
Mesh refinement indicator: principle & illustration

- Compute w_k^n
- Compute $S_k^n : S_k^n \neq 0 \implies$ the cell is refined or coarsened
- More precisely:
 - $S_k^n \leq \alpha_{\text{min}} \overline{S} \implies$ the cell is refined with $\overline{S} = \frac{1}{|\Omega|} \int_{\Omega} S_k^n$
Mesh refinement indicator: principle & illustration

- Compute w^n_k
- Compute $S^n_k : S^n_k \neq 0 \implies$ the cell is refined or coarsened
- More precisely:
 - $S^n_k \leq \alpha_{\min} \bar{S} \implies$ the cell is refined with $\bar{S} = \frac{1}{|\Omega|} \int_\Omega S^n_k$
 - $S^n_k \geq \alpha_{\max} \bar{S} \implies$ the cell is coarsened
Mesh refinement indicator : principle & illustration

- Compute w^n_k
- Compute $S^n_k : S^n_k \neq 0 \implies$ the cell is refined or coarsened
- More precisely :
 - $S^n_k \leq \alpha_{\min} \bar{S} \implies$ the cell is refined with $\bar{S} = \frac{1}{|\Omega|} \int_{\Omega} S^n_k$
 - $S^n_k \geq \alpha_{\max} \bar{S} \implies$ the cell is coarsened
 - Dynamic mesh refinement :

- Dyadic tree (1D)
- hierarchical numbering : basis 2
Mesh refinement indicator: principle & illustration

1. Compute w_k^n
2. Compute S_k^n: $S_k^n \neq 0 \implies$ the cell is refined or coarsened
3. More precisely:
 - $S_k^n \leq \alpha_{\min} \bar{S} \implies$ the cell is refined with $\bar{S} = \frac{1}{|\Omega|} \int_{\Omega} S_k^n$
 - $S_k^n \geq \alpha_{\max} \bar{S} \implies$ the cell is coarsened
4. Dynamic mesh refinement:
 - Non-structured grid: macro-cell
 - Dyadic tree (1D), Quadtree (2D)
 - Hierarchical numbering: basis 2,4

![Mesh refinement diagram]
Mesh refinement indicator: principle & illustration

- Compute w^n_k
- Compute $S^n_k : S^n_k \neq 0 \implies$ the cell is refined or coarsened
- More precisely:
 - $S^n_k \leq \alpha_{\min} \bar{S} \implies$ the cell is refined with $\bar{S} = \frac{1}{|\Omega|} \int_{\Omega} S^n_k$
 - $S^n_k \geq \alpha_{\max} \bar{S} \implies$ the cell is coarsened
- Dynamic mesh refinement:
 - Non-structured grid: macro-cell
 - Dyadic tree (1D), Quadtree (2D), Octree (3D)
 - Hierarchical numbering: basis 2, 4, 8

\[0 \quad 10 \quad 11 \]
\[120 \quad 121 \]
\[122 \quad 123 \]
\[13 \]
\[2 \quad 3 \]
Mesh refinement indicator: principle & illustration

- Compute w^n_k
- Compute $S^n_k : S^n_k \neq 0 \implies$ the cell is refined or coarsened
- More precisely:
 - $S^n_k \leq \alpha_{\min} \overline{S} \implies$ the cell is refined with $\overline{S} = \frac{1}{|\Omega|} \int_{\Omega} S^n_k$
 - $S^n_k \geq \alpha_{\max} \overline{S} \implies$ the cell is coarsened

\[C_{k_0} \quad \overrightarrow{F_{k_0 - 1/2}} = \overrightarrow{F_{k_0 - 1/2}} \quad \overrightarrow{w_{k_0}^n} = \overrightarrow{w_{k_0}^n} \quad \overrightarrow{w_{k_1}^n} = \overrightarrow{w_{k_1}^n} \quad \overrightarrow{F_{k_1 + 1/2}} = \overrightarrow{F_{k_1 + 1/2}} \quad C_{k_1} \]
Mesh refinement indicator: principle & illustration

- Compute w_k^n
- Compute $S_k^n : S_k^n \neq 0 \implies$ the cell is refined or coarsened
- More precisely:
 - $S_k^n \leq \alpha_{\text{min}} \overline{S} \implies$ the cell is refined with $\overline{S} = \frac{1}{|\Omega|} \int_\Omega S_k^n$
 - $S_k^n \geq \alpha_{\text{max}} \overline{S} \implies$ the cell is coarsened
ONE-DIMENSIONAL GAS DYNAMICS EQUATIONS FOR IDEAL GAS

\[\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0 \]

\[\frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0 \quad \text{where} \]

\[p = (\gamma - 1) \rho \varepsilon \]

\[\frac{\partial \rho E}{\partial t} + \frac{\partial (\rho E + p) u}{\partial x} = 0 \]

where

\(\rho(t, x) \) : density

\(u(t, x) \) : velocity

\(p(t, x) \) : pressure

\(\gamma := 1.4 \) : ratio of the specific heats

\(E(\varepsilon, u) \) : total energy

\(\varepsilon \) : internal specific energy

\[E = \varepsilon + \frac{u^2}{2} \]
ONE-DIMENSIONAL GAS DYNAMICS EQUATIONS FOR IDEAL GAS

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} &= 0 \\
\frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} &= 0 \\
\frac{\partial \rho E}{\partial t} + \frac{\partial (\rho E + p) u}{\partial x} &= 0
\end{align*}
\]

where

\[
p = (\gamma - 1) \rho \varepsilon
\]

\[
\begin{align*}
\rho(t, x) & \quad : \text{density} \\
u(t, x) & \quad : \text{velocity} \\
p(t, x) & \quad : \text{pressure} \\
\gamma & \quad : \text{ratio of the specific heats} \\
E(\varepsilon, u) & \quad : \text{total energy} \\
\varepsilon & \quad : \text{internal specific energy} \\
E & \quad = \varepsilon + \frac{u^2}{2}
\end{align*}
\]

- **Conservative variables**
 \[w = (\rho, \rho u, \rho E)^t\]

- **convex continuous entropy**
 \[s(w) = -\rho \ln \left(\frac{p}{\rho \gamma} \right) \text{ of flux } \psi(w) = u \ s(w) .\]
Sod’s shock tube problem

Mesh refinement parameter α_{max} : 0.01 ,
Mesh coarsening parameter α_{min} : 0.001 ,
Mesh refinement parameter \bar{S} : $\frac{1}{|\Omega|} \sum_{k_b} S_{k_b}^n$,
CFL : 0.25,
Simulation time (s) : 0.4,
Initial number of cells : 200,
Maximum level of mesh refinement : L_{max}.
Accuracy

(a) Density and numerical density of entropy production.

(b) Mesh refinement level, numerical density of entropy production and local error.

Figure: Sod’s shock tube problem: solution at time $t = 0.4$ s using the AB1M scheme on a dynamic grid with $L_{\text{max}} = 5$ and the AB1 scheme on a uniform fixed grid of 681 cells.
Shu and Osher test case

CFL : 0.219,
Simulation time (s) : 0.18,
Initial number of cells : 500,
Maximum level of mesh refinement : $L_{\text{max}} = 4$.
Reference solution & Numerical results

(a) Density and numerical density of entropy production.

(b) Zoom on oscillating region.

Figure: Shu and Osher test case.
Time restriction

- Explicit adaptive schemes: **time consuming** due to the restriction

\[\|w\| \frac{\delta}{h} \leq 1, \quad h = \min_k h_k \]

Time restriction, local time stepping approach

- Explicit adaptive schemes: time consuming due to the restriction

\[\|w\| \frac{\delta}{h} \leq 1, \quad h = \min_k h_k \]

- Local time stepping algorithm: save the cpu-time
 - Sort cells in groups w.r.t. to their level

Explicit adaptive schemes: time consuming due to the restriction

\[\|w\| \frac{\delta}{h} \leq 1, \quad h = \min_k h_k \]

Local time stepping algorithm: save the cpu-time

- Sort cells in groups w.r.t. to their level
- Update the cells following the local time stepping algorithm.

Figure: $t = t_n$

with

$$
\delta F_{k-1,k,k+1}^n := \left(F_{k+1/2}^n(w_k, w_{k+1}) - F_{k-1/2}^n(w_{k-1}, w_k) \right)
$$
Illustration

\[w_{k00}^{n+1} = w_{k00}^n - \frac{\delta t_n}{h_{k00}} \delta F_{k00,k00,k001}^n \]

\[w_{k01}^{n+1} = w_{k01}^n - \frac{\delta t_n}{h_{k01}} \delta F_{k00,k001,k01}^n \]

Figure: \(t_{n+1} = t_n + \delta t_n \)

with

\[\delta F_{k-1,k,k+1}^n := \left(F_{k+1/2}^n(w_k, w_{k+1}) - F_{k-1/2}^n(w_{k-1}, w_k) \right) \]
Illustration

\[C_{k-1,0} \]
\[w^{n+1}_{k-1,0} = w^n_{k-1,0} \]
\[C_{k00} \]
\[w^{n+1}_{k00} = w^n_{k00} \]
\[C_{k001} \]
\[w^{n+1}_{k001} = w^n_{k001} \]

\[t = t_n \]

\[w^{n+2}_{k00} = w^{n+1}_{k00} - \frac{\delta t_n}{h_{k00}} \delta F^{n+1}_{k-1,0,k00,k00} \]

\[w^{n+2}_{k000} = w^{n+1}_{k000} - \frac{\delta t_n}{h_{k000}} \delta F^{n+1}_{k00,k000,k001} \]

\[w^{n+2}_{k001} = w^{n+1}_{k001} - \frac{\delta t_n}{h_{k001}} \delta F^{n+1}_{k000,k001,k+1b} \]

Figure: \(t_{n2} = t_n + 2\delta t_n \)

with

\[\delta F^n_{k-1,k,k+1} := \left(F^n_{k+1/2}(w_k, w_{k+1}) - F^n_{k-1/2}(w_{k-1}, w_k) \right) \]
<table>
<thead>
<tr>
<th>$t = t_n$</th>
<th>$C_{k-1,0}$</th>
<th>$w_{k-1,0}^n$</th>
<th>C_{k00}</th>
<th>w_{k00}^n</th>
<th>C_{k00}</th>
<th>C_{k01}</th>
<th>w_{k00}^n</th>
<th>w_{k01}^n</th>
<th>w_{k00}^n</th>
<th>w_{k01}^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{k00}^n</td>
<td>w_{k00}^n</td>
<td>w_{k00}^n</td>
<td>w_{k01}^n</td>
<td>w_{k01}^n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[w_{k00}^n = w_{k00}^{n+1} - \frac{\delta t_n}{h_{k00}} \delta F_{k00,k00,k01}^n \]

\[w_{k01}^n = w_{k01}^{n+1} - \frac{\delta t_n}{h_{k01}} \delta F_{k00,k01,k+1b}^n \]

Figure: $t_{n3} = t_n + 3\delta t_n$

with

\[\delta F_{k-1,k,k+1}^n := \left(F_{k+1/2}^n(w_k, w_{k+1}) - F_{k-1/2}^n(w_{k-1}, w_k) \right) \]
\[w_{k-10}^{n+1} = w_{k-10}^n - \frac{\delta t_n}{h_{k-10}} \delta F_{k-2b,k-10,k00}^{n3} \]
\[w_{k00}^{n+1} = w_{k00}^n - \frac{\delta t_n}{h_{k00}} \delta F_{k-10,k00,k000}^{n3} \]
\[w_{k000}^{n+1} = w_{k000}^n - \frac{\delta t_n}{h_{k000}} \delta F_{k000,k000,k001}^{n3} \]
\[w_{k001}^{n+1} = w_{k001}^n - \frac{\delta t_n}{h_{k001}} \delta F_{k000,k001,k+1b}^{n3} \]

with

\[\delta F_{k-1,k,k+1}^n := \left(F_{k+1/2}^n(w_k, w_{k+1}) - F_{k-1/2}^n(w_{k-1}, w_k) \right) \]
LOCAL TIME STEPPING ALGORITHM

\[
\textbf{foreach } i \in \{1, 2^N\} \ \textbf{do} \\
\quad \text{Let } j \text{ be the biggest integer such that } 2^j \text{ divides } i \\
\textbf{foreach } \text{interface } x_{k+1/2} \text{ such that } L_{k+1/2} \geq N - j \ \textbf{do} \\
\quad \text{1 compute the integral of } F_{k+1/2}(t) \text{ on the time interval } 2^{N-L_{k+1/2}} \delta t_n, \\
\quad \text{2 distribute } F_{k+1/2}(t_n) \text{ to the two adjacent cells,} \\
\quad \text{3 update only the cells of level greater than } N - j. \\
\textbf{end} \\
\textbf{end}
\]
Efficiency of the local time stepping method

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{P}</th>
<th>$|\rho - \rho_{ref}|_{L_1^x}$</th>
<th>cpu-time</th>
<th>$N_{L_{\text{max}}}$</th>
<th>maximum number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>0.288</td>
<td>4.74×10^{-2}</td>
<td>181</td>
<td>1574</td>
<td>2308</td>
</tr>
</tbody>
</table>

Table: Shu and Osher test case: comparison of numerical schemes of order 1
Efficiency of the local time stepping method

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{P}</th>
<th>$|\rho - \rho_{ref}|_{L_1}$</th>
<th>cpu-time</th>
<th>$N_{L_{\text{max}}}$</th>
<th>maximum number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>0.288</td>
<td>4.74×10^{-2}</td>
<td>181</td>
<td>1574</td>
<td>2308</td>
</tr>
<tr>
<td>AB1M</td>
<td>0.288</td>
<td>4.80×10^{-2}</td>
<td>120</td>
<td>1572</td>
<td>2314</td>
</tr>
<tr>
<td>AB2</td>
<td>0.287</td>
<td>2.75×10^{-2}</td>
<td>170</td>
<td>1391</td>
<td>2023</td>
</tr>
<tr>
<td>AB2M</td>
<td>0.286</td>
<td>2.74×10^{-2}</td>
<td>108</td>
<td>1357</td>
<td>1994</td>
</tr>
</tbody>
</table>

Table: Shu and Osher test case: comparison of numerical schemes of order 1
Efficiency of the local time stepping method

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{P}</th>
<th>$|\rho - \rho_{ref}|_{L^1_x}$</th>
<th>cpu-time</th>
<th>$N_{L_{max}}$</th>
<th>maximum number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>0.288</td>
<td>4.74×10^{-2}</td>
<td>181</td>
<td>1574</td>
<td>2308</td>
</tr>
<tr>
<td>AB1M</td>
<td>0.288</td>
<td>4.80×10^{-2}</td>
<td>120</td>
<td>1572</td>
<td>2314</td>
</tr>
<tr>
<td>AB2</td>
<td>0.287</td>
<td>2.75×10^{-2}</td>
<td>170</td>
<td>1391</td>
<td>2023</td>
</tr>
</tbody>
</table>

Table: Shu and Osher test case: comparison of numerical schemes of order 1 and 2
Efficiency of the local time stepping method

<table>
<thead>
<tr>
<th>Scheme</th>
<th>P</th>
<th>$|\rho - \rho_{ref}|{L^1{\tau}}$</th>
<th>cpu-time</th>
<th>$N_{L_{max}}$</th>
<th>maximum number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>0.288</td>
<td>4.74×10^{-2}</td>
<td>181</td>
<td>1574</td>
<td>2308</td>
</tr>
<tr>
<td>AB1M</td>
<td>0.288</td>
<td>4.80×10^{-2}</td>
<td>120</td>
<td>1572</td>
<td>2314</td>
</tr>
<tr>
<td>AB2</td>
<td>0.287</td>
<td>2.75×10^{-2}</td>
<td>170</td>
<td>1391</td>
<td>2023</td>
</tr>
<tr>
<td>AB2M</td>
<td>0.286</td>
<td>2.74×10^{-2}</td>
<td>108</td>
<td>1357</td>
<td>1994</td>
</tr>
</tbody>
</table>

Table: Shu and Osher test case: comparison of numerical schemes of order 1 and 2
Efficiency of the local time stepping method

<table>
<thead>
<tr>
<th>Scheme</th>
<th>P</th>
<th>$|\rho - \rho_{ref}|_{L_1}^{1}$</th>
<th>CPU-time</th>
<th>$N_{L_{\text{max}}}$</th>
<th>Maximum number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>0.288</td>
<td>4.74×10^{-2}</td>
<td>181</td>
<td>1574</td>
<td>2308</td>
</tr>
<tr>
<td>AB1M</td>
<td>0.288</td>
<td>4.80×10^{-2}</td>
<td>120</td>
<td>1572</td>
<td>2314</td>
</tr>
<tr>
<td>AB2</td>
<td>0.287</td>
<td>2.75×10^{-2}</td>
<td>170</td>
<td>1391</td>
<td>2023</td>
</tr>
<tr>
<td>AB2M</td>
<td>0.286</td>
<td>2.74×10^{-2}</td>
<td>108</td>
<td>1357</td>
<td>1994</td>
</tr>
<tr>
<td>RK2</td>
<td>0.285</td>
<td>2.08×10^{-2}</td>
<td>299</td>
<td>1375</td>
<td>2005</td>
</tr>
</tbody>
</table>

Table: Shu and Osher test case: comparison of numerical schemes of order 1 and 2
Properties

In particular, one has:

Theorem

Consider a \(p^{th} \) convergent scheme. Let \(S^m_k \) be the corresponding numerical density of entropy production and \(\Delta t = \lambda h \) be a fixed time step where \(h \) stands for the meshsize. Then

\[
\lim_{n \to \infty} S^m_k = \begin{cases}
O(\Delta t^p) & \text{if the solution is smooth,} \\
O\left(\frac{1}{\Delta t}\right) & \text{if the solution is discontinuous.}
\end{cases}
\]
Properties

In particular, one has:

Theorem

Consider a \(p \)th convergent scheme. Let \(S^m_k \) be the corresponding numerical density of entropy production and \(\Delta t = \lambda h \) be a fixed time step where \(h \) stands for the meshsize.

Then

\[
\lim_{n \to \infty} S^m_k = \begin{cases}
O(\Delta t^p) & \text{if the solution is smooth,} \\
O\left(\frac{1}{\Delta t}\right) & \text{if the solution is discontinuous.}
\end{cases}
\]

and the following property is satisfied:

Properties

Consider a monotone scheme. Then, for almost every \(k \), every \(n \),

\[S^m_k \leq 0. \]
Properties

In particular, one has:

Theorem

Consider a p^{th} convergent scheme. Let S^n_k be the corresponding numerical density of entropy production and $\Delta t = \lambda h$ be a fixed time step where h stands for the meshsize. Then

$$
\lim_{n \to \infty} S^n_k = \begin{cases}
O(\Delta t^p) & \text{if the solution is smooth,} \\
O\left(\frac{1}{\Delta t}\right) & \text{if the solution is discontinuous.}
\end{cases}
$$

and the following property is satisfied:

Properties

Consider a monotone scheme. Then, for almost every k, every n,

$$
S^n_k \leq 0.
$$

Thus, even if locally S^n_k can take positive value, one has $S^n_k \leq C \Delta t^q$, $q \geq p$.
Example

Let us consider the transport equation:

\[
\begin{aligned}
 w_t + w_x &= 0 \\
 w(0, x) &= w_0(x)
\end{aligned}
\]
Example

Let us consider the transport equation:

\[
\begin{align*}
 w_t + w_x &= 0 \\
 w(0, x) &= w_0(x)
\end{align*}
\]

and the Godunov scheme:

\[
\begin{align*}
 w_{k}^{n+1} &= w_{k}^{n} - \frac{\delta t}{\delta x} (w_{k}^{n} - w_{k-1}^{n})
\end{align*}
\]
Example

Let us consider the transport equation:

\[
\begin{align*}
 w_t + w_x &= 0 \\
 w(0, x) &= w_0(x)
\end{align*}
\]

and the Godunov scheme:

\[
\begin{align*}
 w_{k}^{n+1} &= w_{k}^{n} - \frac{\delta t}{\delta x} \left(w_{k}^{n} - w_{k-1}^{n} \right) \\
 S_{k}^{n+1} &= \frac{s(w_{k}^{n+1}) - s(w_{k}^{n})}{\delta t} + \frac{\psi(s(w_{k}^{n})) - \psi(s(w_{k-1}^{n}))}{\delta x}
\end{align*}
\]

with \(s(w) = w^2 \) and \(\psi(w) = w^2 \).
Example

Let us consider the transport equation:

\[
\begin{align*}
\frac{w_t + w_x}{0} &= 0 \\
\ w(0, x) &= w_0(x)
\end{align*}
\]

and the Godunov scheme:

\[
\begin{align*}
\left\{ \begin{array}{c}
w_{k}^{n+1} = w_{k}^{n} - \frac{\delta t}{\delta x} (w_{k}^{n} - w_{k-1}^{n}) \\
S_{k}^{n+1} = \frac{s(w_{k}^{n+1}) - s(w_{k}^{n})}{\delta t} + \frac{\psi(s(w_{k}^{n})) - \psi(s(w_{k-1}^{n}))}{\delta x}
\end{array} \right.
\]

with \(s(w) = w^2 \) and \(\psi(w) = w^2 \).

Substituting \(w_{k}^{n+1} \) into \(S_{k}^{n+1} \), we get

\[
S_{k}^{n+1} = -\varepsilon \left(\frac{w_{k}^{n} - w_{k-1}^{n}}{\delta x} \right)^2 \leq 0 \text{ with } \varepsilon = \delta x \left(1 - \frac{\delta t}{\delta x} \right) > 0.
\]
CFL
Simulation time (s) : 0.25,
Initial number of cells : 200,
Maximum level of mesh refinement : 4.
(a) Density and numerical density of entropy production.

(b) Pressure.

(c) Momentum.

(d) Internal energy.
Figure: Test 2: $\| \varepsilon - \varepsilon_{ex} \|_{l_1^x}$ with respect to the average number of cells at time $t = 0.15$.

(e) First order scheme.

(f) Second order scheme.
The blast wave problem

CFL
Simulation time (s)
Initial number of cells
Maximum level of mesh refinement

: 0.25,
: 0.038,
: 200,
: L_{max}.
The blast wave problem

(a) Density and numerical density of entropy production.

(b) Pressure.

(c) Momentum.

(d) Internal energy.
The blast wave problem

(e) First order scheme.

(f) Second order scheme.

Figure: \(\| \varepsilon - \varepsilon_{ex} \|_{L^1_x} \) with respect to the average number of cells at time \(t = 0.038 \).
1 Physical modeling and numerical motivation

2 2D and 3D applications

3 Concluding remarks & perspectives
Main task: wave propagation and wave breaking.
Main task: wave propagation and wave breaking.

Reproduce with accuracy saving the cpu-time, previous works by Golay & Helluy and co...
Main task: wave propagation and wave breaking.
Reproduce with accuracy saving the cpu-time, previous works by Golay & Helluy and co...
Main task: wave propagation and wave breaking.

Reproduce with accuracy saving the cpu-time, previous works by Golay & Helluy and co . . .
Main task: wave propagation and wave breaking.

Reproduce with accuracy saving the cpu-time, previous works by Golay & Helluy and co...
Main task: wave propagation and wave breaking.

Reproduce with accuracy saving the cpu-time, previous works by Golay & Helluy and co...

Kleefsmann (ComFlow)
- 1.2M cells
- NS+VOF+Surface tension
- MAC

Golay
- 0.8M cells
- Bifluid Euler
- FV
- 2 days CPU M=0.1
- 1 day CPU M=0.2
APPLICATION TO WAVE BREAKING
Application to wave breaking
APPLICATION TO WAVE BREAKING
Application to wave breaking

- **Model (2D and 3D):** low mach bi-fluid euler

\[
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) = 0
\]

\[
\frac{\partial \rho u}{\partial t} + \text{div}(\rho u^2 + pI) = \rho g
\]

\[
\frac{\partial \rho E}{\partial t} + \text{div}((\rho E + p)u) = 0
\]

\[
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi = 0
\]

Where

- \(\rho(t, x) \): density
- \(u(t, x) \): velocity
- \(p(t, x) \): pressure
- \(E(\varepsilon, u) \): total energy
- \(\varepsilon \): internal specific energy
- \(\varphi \): fluid’s fraction
- \(E = \varepsilon + \frac{u^2}{2} \)
Model (2D and 3D) : low mach bi-fluid euler

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div}(\rho u^2 + pI) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div}((\rho E + p) u) &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

where
\[
\begin{align*}
\rho(t, x) & : \text{density} \\
u(t, x) & : \text{velocity} \\
p(t, x) & : \text{pressure} \\
E(\varepsilon, u) & : \text{total energy} \\
\varepsilon & : \text{internal specific energy} \\
\varphi & : \text{fluid’s fraction} \\
E & = \varepsilon + \frac{u^2}{2}
\end{align*}
\]

Mach number < 0.3 → fluid is slightly compressible
Application to wave breaking

- Model (2D and 3D) : low mach bi-fluid euler

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div}(\rho u^2 + pI) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div}((\rho E + p)u) &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

where

- \(\rho(t, x) \) : density
- \(u(t, x) \) : velocity
- \(p(t, x) \) : pressure
- \(E(\varepsilon, u) \) : total energy
- \(\varepsilon \) : internal specific energy
- \(\varphi \) : fluid’s fraction
- \(E = \varepsilon + \frac{u^2}{2} \)

- Mach number < 0.3 \(\rightarrow \) fluid is slightly compressible
- easy to solve
Application to wave breaking

- Model (2D and 3D) : low mach bi-fluid euler

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div}(\rho u^2 + pI) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div}((\rho E + p) u) &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

where

- \(\rho(t, x) \) : density
- \(u(t, x) \) : velocity
- \(p(t, x) \) : pressure
- \(E(\varepsilon, u) \) : total energy
- \(\varepsilon \) : internal specific energy
- \(\varphi \) : fluid’s fraction
- \(E = \varepsilon + \frac{u^2}{2} \)

- Mach number < 0.3 → fluid is slightly compressible
- easy to solve
- Explicit scheme → easy parallel implementation (MPI)
Application to wave breaking

- **Model (2D and 3D)**: low mach bi-fluid euler (isothermal non-cv)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div} (\rho u^2 + pI) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div} (\rho E + p) u &= 0 \\
\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi &= 0
\end{align*}
\]

where

- \(\rho(t, x) \): density
- \(u(t, x) \): velocity
- \(p(t, x) \): pressure
- \(E(\varepsilon, u) \): total energy
- \(\varepsilon \): internal specific energy
- \(\phi \): fluid’s fraction
- \(E = \varepsilon + \frac{u^2}{2} \)

with

\[
p = p_0 + c_0 (\rho - (\varphi \rho_w + (1 - \varphi) \rho_a))
\]

- **Mach number < 0.3** \(\rightarrow\) fluid is slightly compressible
- easy to solve
- Explicit scheme \(\rightarrow\) easy parallel implementation (MPI)
- Equation of state with artificial sound speed \(\rightarrow\) CFL less restrictive
Application to wave breaking

- Model (2D and 3D): low mach bi-fluid euler (isothermal non-cv)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div}(\rho u^2 + pI) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div}((\rho E + p)u) &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

where

\[
\rho(t, x) : \text{density} \\
u(t, x) : \text{velocity} \\
p(t, x) : \text{pressure} \\
E(\varepsilon, u) : \text{total energy} \\
\varepsilon : \text{internal specific energy} \\
\varphi : \text{fluid’s fraction} \\
E = \varepsilon + \frac{u^2}{2}
\]

with

\[
p = p_0 + c_0 \left(\rho - (\varphi \rho_w + (1 - \varphi) \rho_a) \right)
\]

- Moreover,
Model (2D and 3D) : low mach bi-fluid euler (isothermal non-cv)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div} \left(\rho u^2 + pI \right) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div} \left((\rho E + p) u \right) &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

where

\[\begin{align*}
\rho(t, x) &: \text{ density} \\
u(t, x) &: \text{ velocity} \\
p(t, x) &: \text{ pressure} \\
E(\varepsilon, u) &: \text{ total energy} \\
\varepsilon &: \text{ internal specific energy} \\
\varphi &: \text{ fluid’s fraction} \\
E &= \varepsilon + \frac{u^2}{2}
\end{align*}\]

with

\[p = p_0 + c_0 (\rho - (\varphi \rho_w + (1 - \varphi) \rho_a))\]

✓ hyperbolic system

Moreover,
Application to wave breaking

- Model (2D and 3D): low mach bi-fluid euler (isothermal non-cv)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div} (\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div} \left(\rho u^2 + pI \right) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div} \left((\rho E + p) u \right) &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

\[
\begin{align*}
p(t, x) &\quad : \text{density} \\
u(t, x) &\quad : \text{velocity} \\
p(t, x) &\quad : \text{pressure} \\
E(\varepsilon, u) &\quad : \text{total energy} \\
\varepsilon &\quad : \text{internal specific energy} \\
\varphi &\quad : \text{fluid’s fraction} \\
E &\quad = \varepsilon + \frac{u^2}{2}
\end{align*}
\]

\[
p = p_0 + c_0 \left(\rho - (\varphi \rho_w + (1 - \varphi)\rho_a) \right)
\]

- hyperbolic system
- entropy available

Moreover,
Application to wave breaking

- Model (2D and 3D): low mach bi-fluid euler (isothermal non-cv)

\[
\begin{aligned}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div}(\rho u^2 + pI) &= \rho g \quad \text{where}
\end{aligned}
\]

\[
\frac{\partial \rho E}{\partial t} + \text{div}((\rho E + p) u) = 0
\]

\[
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi = 0
\]

with

\[
p = p_0 + c_0 \left(\rho - (\varphi \rho_w + (1 - \varphi) \rho_a) \right)
\]

- hyperbolic system
- entropy available
- automatic mesh refinement
- Moreover,
Application to wave breaking

- Model (2D and 3D): low mach bi-fluid euler (isothermal non-cv)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho u) &= 0 \\
\frac{\partial \rho u}{\partial t} + \text{div} \left(\rho u^2 + pI \right) &= \rho g \\
\frac{\partial \rho E}{\partial t} + \text{div} \left(\rho E + p \right) u &= 0 \\
\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi &= 0
\end{align*}
\]

where

\[
\begin{align*}
\rho(t, x) &\quad : \text{density} \\
u(t, x) &\quad : \text{velocity} \\
p(t, x) &\quad : \text{pressure} \\
E(\varepsilon, u) &\quad : \text{total energy} \\
\varepsilon &\quad : \text{internal specific energy} \\
\varphi &\quad : \text{fluid’s fraction} \\
E &\quad = \varepsilon + \frac{u^2}{2}
\end{align*}
\]

with

\[
p = p_0 + c_0 \left(\rho - (\varphi \rho_w + (1 - \varphi) \rho_a) \right)
\]

- hyperbolic system
- entropy available
- automatic mesh refinement
- local time stepping

Moreover,
Parallelization: mesh strategy?

- hard and main task to handle
Parallelization: mesh strategy?

- hard and main task to handle
- strategy: domain, block, cpu?

1. domain = block = 1, cpu: "failure"
 - synchronization depends on the finest domain

2. domain = n × blocks = 1, cpu: "good compromise"
 - each domain has almost the same number of cells
 - "better" synchronization

It certainly exists better strategy...

Management of domain's interfaces, projection step, ...

M. Ersoy (IMATH)
Parallelization : mesh strategy?

- hard and main task to handle
- strategy: domain, block, cpu?
 - domain=block=1 cpu: “failure” → synchronization depends on the finest domain
 - domain=blocks=1 cpu: “good compromise” → each domain has almost the same number of cells → “better” synchronization

It certainly exists better strategy... Management of domain’s interfaces, projection step, ...
Parallelization: mesh strategy?

- hard and main task to handle
- strategy: domain, block, cpu?
 1. domain=block=1 cpu: “failure” → synchronization depends on the finest domain
 2. domain= n × blocks = 1cpu: “good compromise” → each domain has almost the same number of cells → “better” synchronization
Parallelization: mesh strategy?

- hard and main task to handle
- strategy: domain, block, cpu?
 1. domain=block=1 cpu: “failure” → synchronization depends on the finest domain
 2. domain= n × blocks = 1cpu: “good compromise” → each domain has almost the same number of cells → “better” synchronization
 3. It certainly exists better strategy . . .
Parallelization: mesh strategy?

- hard and main task to handle
- strategy: domain, block, cpu?
 1. domain=block=1 cpu: “failure” \(\rightarrow\) synchronization depends on the finest domain
 2. domain\(= n \times \) blocks \(= 1\)cpu: “good compromise” \(\rightarrow\) each domain has almost the same number number of cells \(\rightarrow\) “better” synchronization
 3. It certainly exists better strategy . . .

- Management of domain’s interfaces, projection step, . . .
DOMAIN = n x BLOCKS = 1CPU

How it works?

- each domain has almost the same number of cells
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering

\[
\begin{array}{cccc}
6 & 9 & & \\
3 & 5 & 8 & \\
1 & 2 & 4 & 7
\end{array}
\]
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D_1
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering

```plaintext
3  6  9
D1 2  5  8
  1  4  7
```
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering

\[\text{DOMAIN} = n \times \text{BLOCKS} = 1 \text{CPU} \]
DOMAIN = N × BLOCKS = 1CPU

How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering
- more sophisticated numbering exists . . .
How it works?

- each domain has almost the same number of cells
- domain are defined using Cuthill-McKee numbering
- more sophisticated numbering exists . . .
- main loop and parallelization (mpi)

\[
\begin{align*}
&\quad T_0 \\
&\quad \text{AMR} \\
&\quad \delta t \\
&\quad \text{AMR} \\
&\quad T_1
\end{align*}
\]
Mesh refinement parameter α_{max} : 0.2 ,
Mesh coarsening parameter α_{min} : 0.1 ,
Number of domain : 321,
Number of processors : 120,
Maximum level of mesh refinement : $L_{\text{max}} = 5$.

(top left : mesh, top middle : ρ, top right : S_k^n, bottom left : level, bottom right : $\frac{1}{|D|} \int_D S_k^n$)
Versus experimental (Koshizuka, Tamako, Oka, 95)

\[T = 0.2s \]

\[T = 0.3s \]

\[T = 0.4s \]
Kleebsmann test case

- 10h cpu (instead of 1 day)
- 48 cpus, 48 domains, 3628 blocks
- transfer and post-processing take more time!
Just for fun: visualization tool

- povray = Persistence Of Vision RAYtracer: high quality and realistic picture
- Povray postprocess is expensive but the results are beautiful!!!
- first movie (Shallow water equations with a moving bed):

 - each picture ≈ 6Mo
 - time to generate 1 picture ≈ 10 min
 - here 500 picture . . .
A second movie (bifluid Euler equations):

- 4 level
- 20 domains
- 100 time step
- $\alpha_{\text{min}} = 0.02$, $\alpha_{\text{max}} = 0.2$
- 172,215 – 587,763 cells
- 7h computation
speed-up vs proc number
Just for fun: visualisation tool but not only

- cpu time vs proc number
Riemann data:

\[(p, \rho, u, v)(0, x, y) = \begin{cases}
(p_1, \rho_1, u_1, v_1), & \text{if } x > 0.5 \text{ and } y > 0.5 \\
(p_2, \rho_2, u_2, v_2), & \text{if } x < 0.5 \text{ and } y > 0.5 \\
(p_3, \rho_3, u_3, v_3), & \text{if } x < 0.5 \text{ and } y < 0.5 \\
(p_4, \rho_4, u_4, v_4), & \text{if } x > 0.5 \text{ and } y < 0.5
\end{cases}\]
Riemann data:

\[(p, \rho, u, v)(0, x, y) = \begin{cases} (p_1, \rho_1, u_1, v_1), & \text{if } x > 0.5 \text{ and } y > 0.5 \\ (p_2, \rho_2, u_2, v_2), & \text{if } x < 0.5 \text{ and } y > 0.5 \\ (p_3, \rho_3, u_3, v_3), & \text{if } x < 0.5 \text{ and } y < 0.5 \\ (p_4, \rho_4, u_4, v_4), & \text{if } x > 0.5 \text{ and } y < 0.5 \end{cases}\]

19 possible configuration: forward or backward 1 D waves (rarefaction, shock and contact discontinuity)
2D Euler Riemann problem: a computational challenge (Liska, Wendroff, 01)

- Riemann data:

\[
(p, \rho, u, v)(0, x, y) = \begin{cases}
(0.4, 0.5313, 0, 0), & \text{if } x > 0.5 \text{ and } y > 0.5 \\
(1, 1, 0.7276, 0), & \text{if } x < 0.5 \text{ and } y > 0.5 \\
(1, 0.8, 0, 0), & \text{if } x < 0.5 \text{ and } y < 0.5 \\
(1, 1, 0, 0), & \text{if } x > 0.5 \text{ and } y < 0.5
\end{cases}
\]

- Resolution of stationary contacts bordering the lower left quadrant
2D Euler Riemann problem: a computational challenge (Liska, Wendroff, 01)

• Riemann data:

\[
(p, \rho, u, v)(0, x, y) = \begin{cases}
(1, 1, 0, -0.4), & \text{if } x > 0.5 \text{ and } y > 0.5 \\
(1, 2, 0, -0.3), & \text{if } x < 0.5 \text{ and } y > 0.5 \\
(0.4, 1.0625, 0, 0.2145), & \text{if } x < 0.5 \text{ and } y < 0.5 \\
(0.4, 0.5197, 0, -1.1259), & \text{if } x > 0.5 \text{ and } y < 0.5
\end{cases}
\]

• Two standing contacts on the line \(x=0.5\)
1. Physical modeling and numerical motivation

2. 2D and 3D applications

3. Concluding remarks & perspectives
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law

Others models have been validated: interfacial erosion model with DDFV

To do:
- optimization of the parallel processing
- GCPU
- Application to Shallow water equations:
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time

New 3D AMR meshing tool implemented

Others models have been validated: interfacial erosion model with DDFV

To do
- optimization of the parallel processing
- GCPU
- Application to Shallow water equations:

M. Ersoy (IMATH)
Application to wave-breaking
University of Sussex, July 24, 2014
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time
- New 3D AMR meshing tool implemented

Others models have been validated: interfacial erosion model with DDFV

To do:
- optimization of the parallel processing
- GCPU
- Application to Shallow water equations:
 - ...

M. Ersoy (IMATH)
Application to wave-breaking
University of Sussex, July 24, 2014
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time
- New 3D AMR meshing tool implemented
- Others models have been validated: interfacial erosion model with DDFV

To do:
- Optimization of the parallel processing
- GPU
- Application to Shallow water equations:
- Application to wave-breaking

M. Ersoy (IMATH)
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time
- New 3D AMR meshing tool implemented
- Others models have been validated: interfacial erosion model with DDFV
- To do
 - optimization of the parallel processing
Achievements and perspectives in CM2

- Low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time
- New 3D AMR meshing tool implemented
- Others models have been validated: interfacial erosion model with DDFV

To do

- Optimization of the parallel processing
- GCPU
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time
- New 3D AMR meshing tool implemented
- Others models have been validated: interfacial erosion model with DDFV
- To do
 - optimization of the parallel processing
 - GCPU
 - Application to Shallow water equations:
Achievements and perspectives in CM2

- low mach bi-fluid model 1D, 2D and 3D
- Bi-fluid Euler equations with other pressure law
- For each model "Efficiency" = accuracy and save the cpu time
- New 3D AMR meshing tool implemented
- Others models have been validated : interfacial erosion model with DDFV

To do
 ▶ optimization of the parallel processing
 ▶ GCPU
 ▶ Application to Shallow water equations:

▶ ...
Thank you for your attention.