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Motivations

Study of unsteady mixed flows in closed pipes : it may happen
that some parts are free surface (FS) and other parts are

pressurized (PF)→ transition phenomenon

induced by sudden changes in the boundary conditions

failure of a pumping
rapid change of the discharge
. . .

All these phenomenon may be violent
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Modelisation and Previous works

Definition of the mixed flow

Free surface area : only a part of the section is filled.
Incompressible fluid . . .
Pressurized area : the section is full-filled. Compressible
fluid . . .

In what follows, we will focus on the pressurized flow



Introduction Modelisation The kinetic scheme with pseudo-reflection Numerical validation Conclusion and Future works

Modelisation and Previous works

Definition of the mixed flow

Free surface area : only a part of the section is filled.
Incompressible fluid . . .
Pressurized area : the section is full-filled. Compressible
fluid . . .

In what follows, we will focus on the pressurized flow



Introduction Modelisation The kinetic scheme with pseudo-reflection Numerical validation Conclusion and Future works

Modelisation and Previous works

Towards the simulation of the pressurized flows
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transition
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Formal derivation

Formal derivation of 3D Euler compressible

How take into account the variable section in the model?
Euler 3D compressible equations
Curvilinear transformation
Asymptotic analysis

are necessary. . .
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Formal derivation

Toward the PF model

The Euler model in cartesian coordinates

∂tρ+ div(ρ
−→
U ) = 0

∂t
−→
U + div(ρ

−→
U ⊗

−→
U ) +∇p = ∇(

−→g .
−−→
OM)



Introduction Modelisation The kinetic scheme with pseudo-reflection Numerical validation Conclusion and Future works

Formal derivation

After the curvilinear transformation



∂t (Jρ) +∇X ,Y ,Z

 ρU
ρJV
ρJW

 = 0

∂t (JρU) +∇X ,Y ,Z

ρU

 U
JV
JW

+ ∂X p = −ρJg sin θ

+ ρUW∂Xθ

where (U,V ,W )t = R−→u denotes the reoriented vector, R is the

rotation matrix R =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

,

J(X ,Y ,Z ) = 1− Z∂Xθ(X ) using the result
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Formal derivation

Lemma (Divergence chain rule)

Let
−→
ξ 7→

−→
Y (
−→
ξ ) and A−1 = ∇−→

ξ

−→
Y be the jacobian matrix of the

transformation and J its determinant. Then, for any vector field−→
Φ one has,

J∇−→
Y
.
−→
Φ = ∇−→

ξ
.(JAΦ)
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Formal derivation

Classical assumptions : small parameter ε = H/L,
characteristics dimensions T ,P,U,V ,W , dimensionless
quantities Ũ = U/U . . .

Asymptotic analysis
The formal limit when ε goes to 0 in physical variables reads,

∂t (ρ) +∇X ,Y ,Z

 ρU
ρV
ρW

 = 0

∂t (Uρ) +∇X ,Y ,Z

ρU

 U
V
W

+ ∂X p = −ρg sin θ

− Z∂X (g cos θ)
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Saint-Venant like equations

Saint-Venant like equations in rigid pipes

We complete the previous system with

p = pa +
ρ− ρ0

βρ0
: linearized pressure law

(U,V ,W )t .
−→
N = 0 : non penetration condition

Integrating over a cross-section Ω(X ), we get

Conservative variables (M = ρA,D = MU)
∂t (M) + ∂X (D) = 0

∂t (D) + ∂X

(
D2

M
+ c2M

)
+ gM∂X Z̃ = 0

Pseudo-altitude term Z̃ = Z + Φθ − c2/g ln(A) where

Φθ =

∫ X

X0

R(ξ)∂X cos θ(ξ) dξ
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Saint-Venant like equations

Saint-Venant like equations in rigid pipes

We complete the previous system with

p = pa +
ρ− ρ0

βρ0
: linearized pressure law

(U,V ,W )t .
−→
N = 0 : non penetration condition

Integrating over a cross-section Ω(X ), we get

Conservative variables (M = ρA,D = MU) with the friction term


∂t (M) + ∂X (D) = 0

∂t (D) + ∂X

(
D2

M
+ c2M

)
+ gM∂X Z̃ = −gMK U|U|

Pseudo-altitude term Z̃ = Z + Φθ − c2/g ln(A) where

Φθ =

∫ X

X0

R(ξ)∂X cos θ(ξ) dξ
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Saint-Venant like equations

Classical properties

Theorem (frictionless )

1 The system is stricly hyperbolic for M > 0.
2 For smooth solutions,

∂tU + ∂X

(
U

2

2
+ c2 ln(M) + gZ̃

)
= 0

where the steady states for U = 0, reads
c2 ln(M) + gZ̃ = cte

3 It admits a mathematical entropy

E(M,D) =
D2

2M
+ Mc2 ln M + gMZ̃ which satisfies the

entropy equality

∂tE + ∂X
(
(E + c2M)U

)
= 0
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Saint-Venant like equations

Classical properties

Theorem ( with the friction term)

1 The system is stricly hyperbolic for M > 0.
2 For smooth solutions,

∂tU + ∂X

(
U

2

2
+ c2 ln(M) + gZ̃

)
= −gK U|U|

where the steady states for U = 0, reads
c2 ln(M) + gZ̃ = cte

3 It admits a mathematical entropy

E(M,D) =
D2

2M
+ Mc2 ln M + gMZ̃ which satisfies the

entropy equality

∂tE + ∂X
(
(E + c2M)U

)
6 −gK U

2|U|
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The kinetic formulation

According to E. Audusse, M-O. Bristeau, B.Perthame
. . .

Maxwellian function
Let χ : R→ R be the function such that

χ(w) = χ(−w) ≥ 0,
∫

R
χ(w) dw = 1,

∫
R

w2χ(w) dw = 1

Then we define a Gibbs equilibrium

M(t , x , ξ) =
M
c
M

(
ξ − U

c

)
which satisfies . . .

M =

∫
R
M(ξ) dξ, D =

∫
R
ξM(ξ)dξ,

D2

M
+ c2M =

∫
R
ξ2M(ξ) dξ
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The kinetic formulation

Macro-microscopic relation

Theorem
(M,D) is an entropic solution of the Saint Venant like system if
and only ifM satisfies the kinetic equation,

∂tM+ ξ.∂XM− g∂X Z̃ .∂ξM = K (t , x , ξ)

where K (t , x , ξ) admits vanishing moments up to order 1 and∫
R
ξ2K dξ ≤ 0, a.e.(t , x)
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The kinetic formulation

How to choose χ ?

Following the idea of Perthame-Simeoni 2001

The only possible choice for χ such thatM satisfies the steady

state is χ(w) =
1√
2π

exp
(
−w2

2

)

Morever,

min
{
ε(f ); f > 0,

∫
R

f (ξ) dξ = M,

∫
R
ξf (ξ) dξ = D

}
where ε is the kinetic convexe functionnal

ε(f ) =

∫
R

ξ2

2
f (ξ)+c2f (ξ)log(f (ξ))+c2f (ξ)log(c

√
2π)+gZ̃ f (ξ) dξ
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How to choose χ ?

Following the idea of Perthame-Simeoni 2001

The only possible choice for χ such thatM satisfies the steady

state is χ(w) =
1√
2π

exp
(
−w2

2

)

Morever,

E = ε(M) = min
{
ε(f ); f > 0,

∫
R

f (ξ) dξ = M,

∫
R
ξf (ξ) dξ = D

}
where ε is the kinetic convexe functionnal

ε(f ) =

∫
R

ξ2

2
f (ξ)+c2f (ξ)log(f (ξ))+c2f (ξ)log(c

√
2π)+gZ̃ f (ξ) dξ
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The kinetic formulation

Unfortunately, this function is not compact supported
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The kinetic formulation

Nevertheless, we will use the indicator χ function

χ(w) =
1

2
√

3
1[−
√

3,
√

3](w)

which satisfies
the conservation of the steady state,
the conservation of the in cell-entropy,

and allows an easy computation of macro-microscopic relation
ABOVE ALL we have a numerical CFL condition!
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Numerical scheme and properties

Discretization

Uniform mesh : h = ∆x
Discrete macroscopic unknows : Mn

i ,D
n
i

Discrete microscopic unknows : Mn
i

Discrete macro-microscopic relation :(
Mn

i
Dn

i

)
=

∫
R

(
1
ξ

)
Mn

i (ξ) dξ

Discrete pseudo-altitude term : Z̃ = Z̃i1mi (X )
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Numerical scheme and properties

The kinetic scheme

At time tn, assuming we knowMn
i

Solving the relaxed problem{
∂t f + ξ.∂XM− g∂X Z̃∂ξM = 0 (t ,X , ξ) ∈ [tn, tn+1]×mi × [0,T ]

f (tn,X , ξ) =M(tn,X , ξ) (X , ξ) ∈ mi × [0,T ]

which is discretized as follows

∀i = 0, . . . ,N + 1, ∀n = 0, . . . ,T ,

f n+1
i (ξ) =Mn

i (ξ)− ξ ∆t

∆X

{
M−i+1/2(ξ)−M+

i−1/2(ξ)
}

=⇒ we get f n+1
i
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Numerical scheme and properties

Finally, we define

Un+1
i =

∫
R

(
1
ξ

)
f n+1
i (ξ) dξ
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Numerical scheme and properties

Finally, we define

Un+1
i =

∫
R

(
1
ξ

)
f n+1
i (ξ) dξ

and

Mn+1
i =

Mn+1
i
c

χ

(
ξ − U

n+1
i

c

)
. . .
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Numerical scheme and properties

Finally, we define

Un+1
i =

∫
R

(
1
ξ

)
f n+1
i (ξ) dξ

and

Mn+1
i =

Mn+1
i
c

χ

(
ξ − U

n+1
i

c

)
. . .

Remark
The kernel K is not computed : it is a way to perform all
collisions at once
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Numerical scheme and properties

It remains to define the interface equilibrium densities

Overpass Reflection

M−i+1/2(ξ) = 1ξ>0Mn
i (ξ) + 1

ξ<0,ξ2−2g∆eZi+1/2<0M
n
i (−ξ)

+ 1
ξ<0,ξ2−2g∆eZi+1/2>0M

n
i+1

(
−
√
ξ2 − 2g∆Z̃i+1/2

)
M+

i+1/2(ξ) = 1ξ<0Mn
i+1(ξ) + 1

ξ>0,ξ2+2g∆eZi+1/2<0M
n
i+1(−ξ)

+ 1
ξ>0,ξ2+2g∆eZi+1/2>0M

n
i

(√
ξ2 + 2g∆Z̃i+1/2

)
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Numerical scheme and properties

Numerical properties of the scheme with the indicator
function

Theorem

1 Assuming the CFL condition maxi∈Z

(
|Un

i |+
√

3c
)
≤ ∆X

∆t
,

the numerical scheme keeps the pressurized wet area
positive Mn

i > 0.
2 The steady state is preserved U

n
i = 0, c2

g ln(ρn
i ) + Z̃i = cst

Remark
The entropy inequality seems to be numerically validate.
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in the uniform case

We consider a pipe of length 2000 m, R = 1 m, CFL = 0.8,
N = 100, tan θ = 0,087488664, Z0 = 250 m where we
consider two type of boundary conditions

1 upstream the total head is constant equal to 300 m,
downstream the discharge is constant to 10 m3s−1 for

t ≤ 10 and decrease linearly to 0 on
10 ≤ t ≤ 20, for t ≥ 20, the discharge is equal
to 0.

2 upstream the total head is constant equal to 300 m,
downstream the discharge is constant to 10 m3s−1 for

t ≤ 10 and decrease linearly to 0 on
10 ≤ t ≤ 15, for t ≥ 15, the discharge is equal
to 0.
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in the uniform case

The discharge at middle of the pipe
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in the case of contracting-expanding pipe

Comparison with the equivalent pipe method

Data and Input for the computation of pressure rise for water
hammer at the middle of the pipe

1 L = 1000 m, upstream radius R0 = 1 m, downstream
radius varying R1 = 0.25 m, 0.5 m, 2 m.

2 N = 100, CFL= 0.8
3 The downstream discharge before the shut-down (3 s) is

constant equal to 1 m3.s−1.
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in the case of contracting-expanding pipe
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Just for fun

M. hammer
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Conclusions
We have a good agreement with the equivalent pipe theory

Future works
Mixed flows in closed pipes with variable sections
Air entrapment and cavitation problem
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