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@ failure of a pumping
@ rapid change of the discharge
° ...
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Study of unsteady mixed flows in closed pipes : it may happen
that some parts are free surface (FS) and other parts are
pressurized (PF) — transition phenomenon

induced by sudden changes in the boundary conditions

All these phenomenon may be violent
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@ Free surface area : only a part of the section is filled.
Incompressible fluid . ..

@ Pressurized area : the section is full-filled. Compressible
fluid ...

Piezometric head
Closed pipe

\ "transition point"

free surface
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Definition of the mixed flow

@ Free surface area : only a part of the section is filled.
Incompressible fluid . ..

@ Pressurized area : the section is full-filled. Compressible
fluid ...

Piezometric head
Closed pipe

\ "transition point" /

free surface

In what follows, we will focus on the pressurized flow
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Modelisation and Previous works

Towards the simulation of the pressurized flows

@ Allievi equations, traditionnally . ..
But not well adapted . ..
@ The artifice of Preissman slot (Cunge et Wegner 1965)

But depressurisation phenomenon : seen like free surface
transition

free surface pressurized

@ Unidirectionnal Saint-Venant like equations (C. Bourdarias
and S. Gerbi)

@ Many works . ..
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Formal derivation

Formal derivation of 3D Euler compressible

How take into account the variable section in the model?
@ Euler 3D compressible equations
@ Curvilinear transformation
@ Asymptotic analysis

are necessary. ..
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Formal derivation

Toward the PF model

The Euler model in cartesian coordinates

Orp + div(pU) = 0
U +divpU® U)+Vp = V(g.OM)
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Formal derivation

After the curvilinear transformation

pU
01(JP)+VX,Y,Z( pJV ) =0
pJW
U
ot(JpU) +Vxyz (pU( JV )) +0xp = —pJgsinf
JW
\ + ,OUW@)(G

where (U, V, W)! = RU denotes the reoriented vector, R is the
cosf 0 sind

rotation matrix R = 0 1 0 ,
—sing 0 cosé

J(X,Y,Z) =1— Z0x0(X) using the result
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Formal derivation

Lemma (Divergence chain rule)

Let? — 7(?) and A~ = V?V be the jacobian matrix of the
transformation and J its determinant. Then, for any vector field

—_
$ one has,

JVT;.(D = V?.(J.A(D)
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Formal derivation

Classical assumptions : small parameter e = H/L,
characteristics dimensions T, P, U, V, W, dimensionless
quantities U = U/U ...

Asymptotic analysis
The formal limit when e goes to 0 in physical variables reads,

pU
o(p) +Vxyz| pV =0
oW

)
ot(Up) +Vx vz (PU( 4 )) +0xp = —pgsind
w

— Zox(gcosH)
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Saint-Venant like equations in rigid pipes

We complete the previous system with
P — Po
Po
e (U,V, W)f.ﬁ = 0 : non penetration condition
Integrating over a cross-section Q(X), we get

@ p=pa+ : linearized pressure law

Conservative variables (M = pA, D = MU)

(M) + 0x(D) = 0

D? =
{ o1(D) + 0x (M + 02M> +gMoxZ = 0

Pseudo-altitude term Z = Z + &, — where

X
g = /X R(€)ox cos 0(¢) dé
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Saint-Venant like equations in rigid pipes

We complete the previous system with
P —po
Po
e (U,V, W)fW> = 0 : non penetration condition
Integrating over a cross-section Q(X), we get

@ p=pa+ : linearized pressure law

Conservative variables (M = pA, D = MU) with the friction term

(M) +0x(D) = 0
D2 - _
0t(D) + 0x (M + 02M> +gMoxZ = —gMKU|U|
Pseudo-altitude term Z = Z + &, — where

X
by = /X R(€)0x cos 0(¢) de
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Saint-Venant like equations

Classical properties

Theorem (frictionless )

@ The system is stricly hyperbolic for M > 0.
@ For smooth solutions,

8:U + dx <Lé + P In(M) + g?) =0

where the steady states for U = 0, reads
cIn(M) + gZ = cte
© It admits a mathematical entropy

2

E(M,D) = 2DT/I + Mc? In M + gMZ which satisfies the
entropy equality

HE + 9x((E + c*PM)U) =0
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Saint-Venant like equations

Classical properties

Theorem ( with the friction term)

@ The system is stricly hyperbolic for M > 0.

@ For smooth solutions,
—2

orU + 0x (lé + 2 In(M) + gZ) = —gKU|U|

where the steady states for U = 0, reads
cIn(M) + gZ = cte

© It admits a mathematical entropy
2

E(M,D) = 5/\/1 + Mc? In M + gMZ which satisfies the
entropy equality

OE + 0x ((E + EM)U) < —gk T’ ||
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The kinetic formulation

According to E. Audusse, M-O. Bristeau, B.Perthame

Maxwellian function
Let x : R — R be the function such that

x(w) =x >O/ w)dw =1, /Wx(WdW—1
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The kinetic formulation

According to E. Audusse, M-O. Bristeau, B.Perthame

Maxwellian function
Let x : R — R be the function such that

x(w) =x >O/ w)dw =1, /Wx(WdW—1

Then we define a Gibbs equilibrium

M T
M(t,X,f) = ?M <€ CU>
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The kinetic formulation

According to E. Audusse, M-O. Bristeau, B.Perthame

Maxwellian function
Let x : R — R be the function such that

x(w) =x >O/ w)dw =1, /Wx(WdW—1

Then we define a Gibbs equilibrium

E-U
ten Y (0)
which satisfies ...

_ _ 22 2 _ 2
M—/RM(é)d&, D—/RﬁM(f)dé, > o M—/Rf M(€) de
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The kinetic formulation

Macro-microscopic relation

Theorem

(M, D) is an entropic solution of the Saint Venant like system if
and only if M satisfies the kinetic equation,

HM + £.0x M — gdxZ.0:M = K(t, X, €)

where K(t, x, &) admits vanishing moments up to order 1 and

/52K de <0, a.et, x)
R
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The kinetic formulation

How to choose y ?

Following the idea of Perthame-Simeoni 2001
The only possible choice for x such that M satisfies the steady

X 2
V 27(

Morever,

min {e(f); f>0, /Rf(g) de = M, /Rgf(g) de = D}

where € is the kinetic convexe functionnal

2 -
() = [ GHEO+HE)og(H(9)+¢)log(ev2r)+921(¢) de
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The kinetic formulation

How to choose y ?

Following the idea of Perthame-Simeoni 2001

The only possible choice for x such that M satisfies the steady
. 1 —w?
state is x(w) = ex
W= e ()

Morever,

E — (M) = min {e(f); f>0, /Rf(g) de = M, /Rgf(g) de = D}

where ¢ is the kinetic convexe functionnal

2 -
e(f) = /R %f(s)+c2f(£)log(f(£)>+c2f(£)/og(c¢2?)+92f(5) d¢

v
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The kinetic formulation

Unfortunately, this function is not compact supported
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The kinetic formulation

Nevertheless, we will use the indicator y function

1
x(w) = ﬁﬂ[f\/@ﬁ](w)

which satisfies
@ the conservation of the steady state,
@ the conservation of the in cell-entropy,

and allows an easy computation of macro-microscopic relation
ABOVE ALL we have a numerical CFL condition!
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Numerical scheme and properties

Discretization

Uniform mesh : h = Ax

Discrete macroscopic unknows : M/, D7
Discrete microscopic unknows : M7
Discrete macro-microscopic relation :

(57 )= [ (& )wroas

Discrete pseudo-altitude term : Z = Zi1 1, (X)
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Numerical scheme and properties

The kinetic scheme

At time t,, assuming we know M7
Solving the relaxed problem

Of + EOXM — gOXZO:M =0 (t,X,€) € [t, ths1] x m; x [0, T]
f(tn, X, &) = M(tn, X, ) (X,€) € m x [0, T]
which is discretized as follows
Vi=0,....N+1,vn=0,..., T,

At

fr1(e) = MP(€) - ffx {M,-_+1/2(§) - ML/z(é)}

= we get f!
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Numerical scheme and properties

Finally, we define

o (1) o
R
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Numerical scheme and properties

Finally, we define

- (1)
R

N1
[ )

n+1 __ i i

M = c X -

and




The kinetic scheme with pseudo-reflection
000000

Numerical scheme and properties

Finally, we define

o (1) o
R

n-+1 T+
M7+1:Mi N §—-U,;

and

c C

The kernel K is not computed : it is a way to perform all
collisions at once
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Numerical scheme and properties

It remains to define the interface equilibrium densities

Overpass Reflection

M;H/z(g) = 1£>0M7(€) + ﬂ§<07§2_29AZ+1/2<0M7(_§)

+ ]]-§<07§2—2gA2-+1/2>0M;7+1 <_\/§2 — 2gAZ’+1/2>

+ _ n ~
M,‘_H/z(é) - ]l§<0Mi+1 (5) + ]l§>0 §2+2gAZ,+1/2<0 I+1 5

+ e, 52+29AZ,+1/2>0M,7 <\/§2 + 2gAZI+1/2)




The kinetic scheme with pseudo-reflection
00000e

Numerical scheme and properties

Numerical properties of the scheme with the indicator
function

@ Assuming the CFL condition max;cy, (]U,'-’] + \/§c> < %f,
the numerical scheme keeps the pressurized wet area
positive M > 0.

@ The steady state is preserved U,'-7 =0, %2 In(pf) + Z; = cst

4

The entropy inequality seems to be numerically validate.
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in the uniform case

We consider a pipe of length 2000 m, R =1 m, CFL = 0.8,
N =100, tan# = 0,087488664, Z0 = 250 m where we
consider two type of boundary conditions

@ upstream the total head is constant equal to 300 m,
downstream the discharge is constant to 10 m®s~1 for
t < 10 and decrease linearly to 0 on
10 <t <20, for t > 20, the discharge is equal
to 0.

© upstream the total head is constant equal to 300 m,
downstream the discharge is constant to 10 m®s~" for
t < 10 and decrease linearly to 0 on
10 <t <15, for t > 15, the discharge is equal
to 0.
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in the uniform case

The discharge at middle of the pipe

12 - 12

— -
xxxxxxx — cinenix ———
. o
p :
z . £
. ;
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in the case of contracting-expanding pipe

Comparison with the equivalent pipe method

Data and Input for the computation of pressure rise for water
hammer at the middle of the pipe

@ L = 1000 m, upstream radius Ry = 1 m, downstream
radius varying Ry = 0.25m, 0.5m, 2m.

Q@ N=100,CFL=0.8

© The downstream discharge before the shut-down (3 s) is
constant equal to 1 m3.s~ 1.
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in the case of contracting-expanding pipe

Conpariszon with the equivalent pipe nethod

' i ' i j PF nodel =———
Equivalent pipe ==
14l 1
1.2 4
=
n
=
=
)
-]
= 1
E ——
=
n
=
]
o
a
8.8 4
8.6 4
I L I L L L
a.5 1 1.5 2 2.5 3 3.9 4
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Conclusion and Future works

We have a good agreement with the equivalent pipe theory

@ Mixed flows in closed pipes with variable sections
@ Air entrapment and cavitation problem
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