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Aims & Some recent developments

• This project is aimed at performing a systematic analysis of the combined effect of wave propagation and numerical discretization, in order to help in the development of efficient numerical methods mimicking the qualitative properties of continuous waves.
This is an important issue for its many applications: irrigation channels, flexible multi-structures, aeronautic optimal design, acoustic noise reduction, electromagnetism, water waves, nonlinear optics, nanomechanics, etc.

• The superposition of the present state of the art in Partial Differential Equations (PDE) and Numerical Analysis is insufficient to understand the spurious high frequency numerical solutions that the interaction of wave propagation and numerical discretization generates.
There are some fundamental questions, as, for instance, dispersive properties, unique continuation, control and inverse problems, which are by now well understood in the context of PDE through the celebrated Strichartz and Carleman inequalities, but which are
unsolved and badly understood for numerical approximation schemes.

• The aim of this project is to systematically address some of these issues, developing new analytical and numerical tools, which require new significant developments, much beyond the frontiers of classical numerical analysis, to incorporate ideas
and tools from Micro-local and Harmonic Analysis.

This project aims to contribute to develop new analytical tools and numerical schemes and will contribute to significant progress in some applied fields in which the issues under consideration play a key role.

Wave propagation in discrete heterogeneous media

We analyze discrete versions of the so-called observability
properties of waves which are relevant in Inverse Problem and
Control Theory (cf. [ErZu11]). Observability refers to the
possibility to estimate the total energy of the system by
continuous measurements on the boundary during a time
interval. Fourier analysis can be employed for numerical
schemes on uniform grids but not on non-uniform meshes.
Combining pseudo-differential calculus and a posteriori error
analysis we aim to define notions like the principal symbol of
the numerical scheme or its rays of Geometric Optics and to
transform the discrete systems into continuous equations with
heterogeneous and possible singular coefficients.

Our analysis and numerical simulations exhibit a number of
pathological phenomena such as the torsion of the rays of
Geometric Optics, fictitious reflection before getting to the
boundary. They are illustrated below for the 1 � d scalar wave
equation.

(a) y � tanpπx{4q, y0 � 1{4 (b) symmetric grid w.r.t. y � 1{2,
y � sinpπx{3q for x P p0, 1{2q,
y0 � 1{2

(c) uniform grid on y P p0, 1{4q Y
p3{4, 1q and y � 1{4 � tanpπx{4q
for y P p1{4, 3{4q; y0 � 7{8

Figure: Propagation of a Gaussian wave packet with initial data
expp�γpy � y0q

2{2q exppiξ0yq with h � 1{200; x, y=uniform/non-uniform
grid of p0, 1q and ξ0 � π{2hmin

Steady conservation laws in presence of shocks: Applications to control

In [EZ11], we analyze the structure of steady state entropic
solutions:

Btu � Bxf puq � u � gpxq, t ¡ 0, u0p0, xq � u0pxq, x P R
for g P L1pRq with compact support. More precisely we look
for time-independent solutions v � vpxq. We show, using
nonlinear semi-group techniques, that the solutions of the
time-evolution problem converge, as t Ñ 8, towards these
steady states. We then characterize the location of its possible
shock discontinuities and its sensitivity with respect to small
perturbations. These perturbations can be of different nature:
the nonlinear flux f , the right hand side force g, the initial
data, various parameters entering in the system,. . .
One of the main motivations of this analysis is to develop new
tools to solve control and inverse problems.

A careful analysis of the sensitivity of the shock locations
allows to adapt the so-called alternating descent method –
introduced in the context of time-dependent scalar conservation
laws ([CPZ08]) – to develop more efficient numerical methods
than those the standard purely discrete or continuous
approaches yield. The methods we develop are faster and
potentially they can be extended to multi-d problems involving
Navier-Stokes and Euler equations of relevance in aeronautic
optimal design ([J82]).

(a) transonic shocks [J82] (b) px, tq�plan for finite time convergence
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(c) A steady solution

Figure: Transonic shocks & finite time emerging discontinuous steady solution

Qualitative properties of the cKdV equations: dispersive estimates

Our aim is to develop efficient numerical approximation
schemes for the solutions of the generalized critical
Korteweg-de Vries (cKdV) equation

Btu � u
4Bxu � B3

xu � 0, u|t�0 � u0 P L
2 (cKdV)

For very rough initial data, the well posedness of the Cauchy
problem for small initial data relies on the following dispersive
estimates: ���u���
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which are not satisfied for standard discretization by finite
differences. In general, even the existence of solutions of the
semi-discretized schemes on a time interval independent of the
discretization is a delicate matter. Thus one has to design
dispersive numerical schemes that mimick the properties of
the continuous solutions.

Our approach, following [IZ09], is to construct an operator Π
that filters spurious high frequency numerical components. Our
main result (C. Audiard, 2011) is the following:
For u P l2phZq, set pBhuqn � puhpn�1q � uhnq{h,
pB3
huqn � puhpn�2q � 2uhpn�1q � 2uhpn�1q � uhpn�2qq{2h3.

There exists N ¡ 0 and a linear interpolation operator
Π : l2pNhZq Ñ l2phZq,

such that the problem#
Btuh � BhΠu5

h{5 � B3
huh � 0,

uh|t�0 � Πu0h P L
2,

has an unique solution for
���u0
���
2
small enough, satisfying the

discrete analogs of the dispersive estimates.
Moreover, if Πu0h Ñ u0 L

2, then uh converges in L2
loc to the

solution of the continuous problem with initial data u0.

A linear quasigeostrophic large scale ocean model

Our aim is to analyze a data assimilation problem encountered
in oceanology to simulate the evolution of the ocean
circulation. The model under consideration is$'''&
'''%
Ro

B

Bt
p∆ψq � εm∆2ψ � εs∆ψ �

Bψ

Bx1
� �curl T in Ω � p0, T q,

ψ �
Bψ

Bn
� 0 on Γ � p0, T q, ∆ψp0q � ∆ψ0 in Ω,

where ψpt, xq is the stream function, Ro, εs, εm the Rossby,
Stommel, Munk numbers resp. and T the wind stress.
Everything is known, EXCEPT the initial value at time t � 0.
A history of measurements of the solution (observations ψobs) in
some sub-domain O during the time period p0, T0q is provided.
A control problem for the adjoint system z is introduced to
recover (and reconstruct) the final state value (state value at
time t � T0) without knowledge of ψ0. Let ϕ0 P H

1
0pΩq and h in

L2pL2pOqq (control).

Then, there exists a control hpϕ0q such that zp0q � 0.
Furthermore, this null controllability problem can be
approximated by a standard optimal control problem
penalizing, by means of a large parameter α, the constraint
zp0q � 0.
Using this control we can recover the value of the final state
∆ψpT0q, by taking successively for ϕ0 elements of a Hilbert
basis of L2pΩq.
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(a) Location of the observatories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Recovered stream function at
T0 using 6 observatories
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(c) Relative percentage of error
at T0 with α � 0.025.

Figure: Results with six observatories
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