

V - UNIVERSITÉ

MODÉLISATION D'ÉCOULEMENTS DES FLUIDES ET ENVIRONNEMENT

FREE SURFACE AND GROUNDWATER FLOWS MODELING

Mehmet Ersoy

ersoy@univ-tln.fr

2024, 21 October– 01 November, N'Djamena, Chad

<https://l2mias.com/french/ecole-cimpa-2023-chad/>

- General context : coastal engineering, sustainable development and climate \bullet change
- Application : sandy beaches \bullet
	- \rightarrow 1/3 of beaches are sandy and 1/4 are eroding at rates of 0.5m/year due to rising sea levels [\[6,](#page-49-0) [10\]](#page-50-0)
	- \rightarrow socio-economic impact

 $FIGURE - Almanarre beach$, Hyeres, France^a

a. (source : http ://laurejo.canalblog.com/)

AIMS & CONTENTS

Aims of these lectures :

- Free surface and groundwater modeling
- Dimension reduction techniques \bullet
- Numerical method based on Discontinuous Galerkin method \bullet
- Applications \bullet

AIMS & CONTENTS

Aims of these lectures :

- Free surface and groundwater modeling
- Dimension reduction techniques \bullet
- Numerical method based on Discontinuous Galerkin method
- **•** Applications

Lectures are organized as follows :

- L1 : Dimension reduction for free surface flows model including recharge
- L2 : Groundwater flows modeling
- L3 : Introduction to the Discontinuous Galerkin (DG) method for transport equation (hyperbolic, c.f. M. Parisot's lectures for the Finite Volume approach)
- L4 : Introduction to the DG method for parabolic-elliptic equations
- L5 : Application of the DG method for a convection-diffusion equation

LECTURE 1 : Dimension reduction for free surface flows model including recharge

- ¹ [Mathematical motivations](#page-6-0)
- ² [Governing equations and geometrical settings](#page-11-0)
- 3 BOUNDARY CONDITIONS
- ⁴ [Dimensionless equations](#page-26-0)
- ⁵ [First order approximation](#page-32-0)
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)
- 8 REFERENCES

¹ [Mathematical motivations](#page-6-0)

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- **4 DIMENSIONLESS EQUATIONS**
-
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

ASYMPTOTIC REDUCED MODELS FOR WHAT?

Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition about complex systems without solving them exactly !

- Simplification of complex mathematical models :
	- \rightarrow Many physical systems are governed by complex equations that are difficult to solve or simulate directly.
	- \rightarrow ARM helps identify dominant balances and approximate the behavior of the system reducing model complexity.

ASYMPTOTIC REDUCED MODELS FOR WHAT?

Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition about complex systems without solving them exactly !

- Simplification of complex mathematical models :
	- \rightarrow Many physical systems are governed by complex equations that are difficult to solve or simulate directly.
	- \rightarrow ARM helps identify dominant balances and approximate the behavior of the system reducing model complexity.
- Computational Efficiency :
	- \rightarrow Full-scale models are often computationally expensive due to high dimensionality.
	- \rightarrow ARM yields simplified models that require fewer resources for numerical simulations.

Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition about complex systems without solving them exactly !

- Simplification of complex mathematical models :
	- \rightarrow Many physical systems are governed by complex equations that are difficult to solve or simulate directly.
	- \rightarrow ARM helps identify dominant balances and approximate the behavior of the system reducing model complexity.
- Computational Efficiency :
	- \rightarrow Full-scale models are often computationally expensive due to high dimensionality.
	- \rightarrow ARM yields simplified models that require fewer resources for numerical simulations.
- Improved Insight and Analytical Solutions :
	- \rightarrow ARM often provides closed-form solutions or simple approximations, making it easier to understand the system's qualitative behavior.
	- \rightarrow Asymptotic analysis can reveal hidden structures, and stability properties that are hard to identify in the original model.
- Identify Small or Large Parameters :
	- \rightarrow Determine the key parameters ε that are very small or large.
	- \rightarrow Expand the solution in terms of these parameters using asymptotic expansions or perturbation methods.
- Determine the Leading Order Terms :
	- \rightarrow Analyze the egs to identify which terms dominate as $\varepsilon \rightarrow 0$ or ∞ .
	- \rightarrow Neglect higher-order terms that become negligible in the asymptotic reg.
- Simplify the Governing Equations :
	- \rightarrow Derive reduced equations that retain the leading-order behavior and dynamics.
	- \rightarrow This results in simpler ODEs, PDEs, or algebraic equations.
- Validate the Reduced Model :
	- \rightarrow Compare the reduced model's predictions to the full-scale model or experimental data in the asymptotic regime.
	- \rightarrow Ensure that critical behaviors (e.g., stability) are preserved.

C MATHEMATICAL MOTIVATIONS

- ² [Governing equations and geometrical settings](#page-11-0)
- ³ [Boundary conditions](#page-16-0)
- **4 DIMENSIONLESS EQUATIONS**
- **6 FIRST ORDER APPROXIMATION**
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

• Free surface flow eqs $[4, 5, 7]$ $[4, 5, 7]$ $[4, 5, 7]$

$$
\begin{cases} \mathsf{div}(\rho_0 \mathbf{u}_f) = 0 \\ \partial_t(\rho_0 \mathbf{u}_f) + \mathsf{div}(\rho_0 \mathbf{u}_f \otimes \mathbf{u}_f) - \mathsf{div}(\sigma(\mathbf{u}_f)) - \rho_0 \mathbf{F} = 0 \end{cases}
$$
 on Ω_f

where

 \bullet

$$
\Omega_f(t) := \left\{ (x, y, z) \in \mathbb{R}^3 \mid z_b(x, y) < z < \zeta(t, x, y) \right\}
$$
\nNotations : $(a, b) \in \mathbb{R}^3 \times \mathbb{R}^3$, $\mathbf{a} \otimes \mathbf{b} = \mathbf{a} \mathbf{b}^T$, and\n
$$
(\text{div}(\mathbf{A}))_i = \sum_{j=1}^3 \partial_j A_{ij} \text{ for } i = 1, 2, 3
$$

• Free surface flow eqs $[4, 5, 7]$ $[4, 5, 7]$ $[4, 5, 7]$

$$
\begin{cases} \text{div}(\rho_0 \mathbf{u}_f) = 0 \\ \partial_t(\rho_0 \mathbf{u}_f) + \text{div}(\rho_0 \mathbf{u}_f \otimes \mathbf{u}_f) - \text{div}(\sigma(\mathbf{u}_f)) - \rho_0 \mathbf{F} = 0 \end{cases}
$$
 on Ω_f

where

$$
\Omega_f(t) := \left\{ (x, y, z) \in \mathbb{R}^3 \; \big| \; z_b(x, y) < z < \zeta(t, x, y) \right\}
$$

$$
\begin{array}{llll}\n\mathbf{z}_{b} & \text{isomorphism} & (\lfloor L \rfloor) \\
\mathbf{z}_{b} & \text{isomorphism} & (\lfloor L \rfloor) \\
\mathbf{u}_{f} = (u_{f}, v_{f}, w_{f})^{T} & \text{isomorphism} & (\lfloor L \rfloor) \\
\mathbf{w}_{f} = (0, 0, -g)^{T} & \text{isomorphism} & (\lfloor L \rfloor \\
\text{with} & \sigma(\mathbf{u}_{f}) = -p_{f} \mathbf{I} + 2\mu D(\mathbf{u}_{f}) & \text{isrotations} & (\lfloor L \rfloor) \\
D(u) = \frac{1}{2} \left(\nabla \mathbf{u}_{f} + (\nabla \mathbf{u}_{f})^{T} \right) & \text{istrain stress tensor} & (\lfloor M \rfloor) \\
p_{0} & \text{isomorphism} & \text{if } (\lfloor M \cdot L^{-3} \rfloor) \\
\mu > 0 & \text{isomorphism} & \text{if } (\lfloor M \cdot L^{-3} \rfloor) \\
\end{array}
$$

 ζ : absolute height of the surface $([L])$ topography $([L])$ water height $([L])$: velocity field $([L \cdot T^{-1}])$: gravity acceleration $([L \cdot T^{-2}])$ $\sigma (\mathbf{u}_f) = - p_f \mathbf{I} + 2 \mu D (\mathbf{u}_f) \hspace{1cm}$: total stress tensor $([M \cdot L^{-1} \cdot T^{-2}])$ strain stress tensor p_f : pressure of fluid $([M \cdot L^{-1} \cdot T^{-2}])$ $\mu>0$: dynamic viscosity $([M\cdot L^{-1}\cdot T^{-1}])$

Free surface flow eqs [\[4,](#page-49-1) [5,](#page-49-2) [7\]](#page-49-3) \bullet

$$
\begin{cases} \text{div}(\rho_0 \mathbf{u}_f) = 0 \\ \partial_t(\rho_0 \mathbf{u}_f) + \text{div}(\rho_0 \mathbf{u}_f \otimes \mathbf{u}_f) - \text{div}(\sigma(\mathbf{u}_f)) - \rho_0 \mathbf{F} = 0 \end{cases}
$$
 on Ω_f

where

$$
\Omega_f(t) := \left\{ (x, y, z) \in \mathbb{R}^3 \; \middle| \; z_b(x, y) < z < \zeta(t, x, y) \right\}
$$

(a) Sketch of variables with h the water height, ζ the freesurface height and z_b the bathymetry

(b) Sketck of basis with $(n_b, \tau_{b_1}, \tau_{b_2})$ on the bathymetry and $(n_f, \tau_{f_1}, \tau_{f_2})$ on the free-surface

• Free surface flow eqs $[4, 5, 7]$ $[4, 5, 7]$ $[4, 5, 7]$

$$
\begin{cases} \text{div}(\rho_0 \mathbf{u}_f) = 0 \\ \partial_t(\rho_0 \mathbf{u}_f) + \text{div}(\rho_0 \mathbf{u}_f \otimes \mathbf{u}_f) - \text{div}(\sigma(\mathbf{u}_f)) - \rho_0 \mathbf{F} = 0 \end{cases}
$$
 on Ω_f

where

$$
\Omega_f(t) := \left\{ (x, y, z) \in \mathbb{R}^3 \; \big| \; z_b(x, y) < z < \zeta(t, x, y) \right\}
$$

• Fluid region indicator function :

$$
\Phi(t,x,y,z):=\mathbb{1}_{\Omega_f(t)}(x,y,z)=\mathbb{1}_{z_b(x,y)
$$

 Φ satisfies the following indicator transport equation :

$$
\partial_t\Phi+\partial_x(\Phi u_f)+\partial_y(\Phi v_f)+\partial_z(\Phi w_f)=0\ \text{on}\ \Omega_f.
$$

C MATHEMATICAL MOTIVATIONS

2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS

3 BOUNDARY CONDITIONS

4 DIMENSIONLESS EQUATIONS

⁶ [Vertically averaged equations](#page-36-0)

⁷ [Conclusions and perspectives](#page-45-0)

FREE SURFACE AND BOTTOM BOUNDARY CONDITIONS

(a) Sketch of variables with h the water height, ζ the freesurface height and z_b the bathymetry

(b) Sketck of basis with $(n_b, \tau_{b_1}, \tau_{b_2})$ on the bathymetry and $(n_f, \tau_{f_1}, \tau_{f_2})$ on the free-surface

FREE SURFACE BOUNDARY CONDITIONS

(Navier) Stress boundary condition [\[4,](#page-49-1) [7\]](#page-49-3) :

$$
(\sigma(\mathbf{u}_f)n_f)\cdot \tau_{f_i}=\mathfrak{M} \text{ on } \mathfrak{F}.
$$

where $\mathfrak M$ is any meteorological phenomena (such as evaporation, rainfall, wind, etc.), set to 0 in what follows,

$$
\mathfrak{F} := \{ (t, x, y, \zeta) \mid t > 0, (x, y) \in \mathbb{R}^2 \},
$$

the upward normal of β is defined with :

$$
n_f = \frac{1}{\sqrt{1+|\nabla\zeta|^2}} \begin{pmatrix} -\partial_x \zeta \\ -\partial_y \zeta \\ 1 \end{pmatrix}
$$

and $\left(\tau_{f_i}\right)_{i=1,2}$ is a basis of the tangential surface :

$$
\tau_{f_1} = \frac{1}{|\nabla \zeta|} \begin{pmatrix} -\partial_y \zeta \\ \partial_x \zeta \\ 0 \end{pmatrix} \text{ and } \tau_{f_2} = \frac{1}{\sqrt{|\nabla \zeta|^2 + |\nabla \zeta|^4}} \begin{pmatrix} -\partial_x \zeta \\ -\partial_y \zeta \\ -|\nabla \zeta|^2 \end{pmatrix}
$$

FREE SURFACE BOUNDARY CONDITIONS

(Navier) Stress boundary condition [\[4,](#page-49-1) [7\]](#page-49-3) :

$$
(\sigma(\mathbf{u}_f)n_f)\cdot \tau_{f_i}=\mathfrak{M} \text{ on } \mathfrak{F}.
$$

Kinematic boundary condition : \bullet

$$
\mathbf{u}_f \cdot n_f = \frac{\partial_t \zeta}{\sqrt{1 + |\nabla \zeta|^2}} \text{ on } \mathfrak{F}
$$

or using definition of n_f and τ_{f_i} kinematic boundary condition can be rewritten as :

$$
\partial_t \zeta + u \partial_x \zeta + v \partial_y \zeta - w = 0.
$$

(a) Sketch of variables with h the water height, ζ the freesurface height and z_b the bathymetry

(b) Sketck of basis with $(n_b, \tau_{b_1}, \tau_{b_2})$ on the bathymetry and $(n_f, \tau_{f_1}, \tau_{f_2})$ on the free-surface

(Navier) Stress boundary condition [\[3,](#page-49-4) [4\]](#page-49-1) :

$$
(\sigma(\mathbf{u}_f)n_b)\cdot \tau_{b_i} = \left(-\rho_0 k(\mathbf{u}_f)\mathbf{u}_f + \frac{\mu \alpha_{\text{BJ}}}{\sqrt{\mathbf{k}(\psi_g)}}(\mathbf{u}_f - \mathbf{u}_g)\right)\cdot \tau_{b_i} \text{ on } \mathcal{B}
$$

where

$$
\mathcal{B} := \left\{ (x, y, z_b) \mid (x, y) \in \mathbb{R}^2 \right\},\
$$

the upward normal of β is defined with :

$$
n_b = \frac{1}{\sqrt{1 + |\nabla z_b|^2}} \begin{pmatrix} -\partial_x z_b \\ -\partial_y z_b \\ 1 \end{pmatrix}
$$

and $\left(\tau_{b_{i}}\right)_{i=1,2}$ is a basis of the tangential surface :

$$
\tau_{b_1} = \frac{1}{|\nabla z_b|} \begin{pmatrix} -\partial_y z_b \\ \partial_x z_b \\ 0 \end{pmatrix} \text{ and } \tau_{b_2} = \frac{1}{\sqrt{|\nabla z_b|^2+|\nabla z_b|^4}} \begin{pmatrix} -\partial_x z_b \\ -\partial_y z_b \\ -|\nabla z_b|^2 \end{pmatrix}
$$

(Navier) Stress boundary condition [\[3,](#page-49-4) [4\]](#page-49-1) :

$$
(\sigma(\mathbf{u}_f)n_b)\cdot \tau_{b_i}=\left(-\rho_0 k(\mathbf{u}_f)\mathbf{u}_f+\frac{\mu\alpha_\mathrm{BJ}}{\sqrt{\mathrm{k}(\psi_g)}}(\mathbf{u}_f-\mathbf{u}_g)\right)\cdot \tau_{b_i} \text{ on } \mathcal{B}
$$

and
\n
$$
C_{lam} \ge 0
$$
\n
$$
C_{tur} \ge 0
$$
\n
$$
k(\mathbf{u}_f) = (C_{lam} + C_{tur}|\xi|), \forall \xi \in \mathbb{R}^3
$$
\n
$$
k(\psi_g) := \text{trace}(\mathbb{k}(\psi_g))
$$
\n
$$
\alpha_{\text{BJ}}
$$

- : laminar friction coefficient
- turbulent friction coefficient
- a kinematic friction law
- : structure of the porous medium
- \cdot a dimensionless constant
- \mathbf{u}_q : Darcy velocity field

(Navier) Stress boundary condition [\[3,](#page-49-4) [4\]](#page-49-1) :

$$
(\sigma(\mathbf{u}_f)n_b)\cdot \tau_{b_i} = \left(-\rho_0 k(\mathbf{u}_f)\mathbf{u}_f + \frac{\mu \alpha_{\text{BJ}}}{\sqrt{k(\psi_g)}}(\mathbf{u}_f - \mathbf{u}_g)\right)\cdot \tau_{b_i} \text{ on } \mathcal{B}
$$

 $\mathbf{u}_{g} \, \left(\left[L \cdot T^{-1} \right] \right)$ is a function of the hydraulic head $h_{g} \, \left(\left[L \right] \right)$ which is a solution of the Richards' equation (RE) (porous media, c.f. Lecture 2, and $[1, 2, 8]$ $[1, 2, 8]$ $[1, 2, 8]$:

$$
\begin{cases} \mathbf{u}_g = -\mathbb{K}(\psi_g)\nabla h_g \\ \partial_t \theta(\psi_g) + \text{div}(\mathbf{u}_g) = 0 \end{cases} \text{ in } \Omega_g
$$

where the ground region (fixed in time) :

$$
\Omega_g := \left\{ (x, y, z) \in \mathbb{R}^3 \mid z < z_b(x, y) \right\}
$$

$$
\theta : \text{water content } ([-])
$$
\n
$$
\text{where } \mathbb{K} : \text{hydraulic conductivity } ([L \cdot T^{-1}])
$$
\n
$$
\psi_g : \text{pressure head } ([L \cdot T^{-1}])
$$

(Navier) Stress boundary condition [\[3,](#page-49-4) [4\]](#page-49-1) :

$$
(\sigma(\mathbf{u}_f)n_b)\cdot \tau_{b_i}=\left(-\rho_0 k(\mathbf{u}_f)\mathbf{u}_f+\frac{\mu\alpha_\mathrm{BJ}}{\sqrt{\mathrm{k}(\psi_g)}}(\mathbf{u}_f-\mathbf{u}_g)\right)\cdot \tau_{b_i} \text{ on } \mathcal{B}
$$

(Coupling) Absorption/Injection condition : \bullet

$$
\mathbf{u}_f(t,x,y,z)\cdot n_b=\mathbf{u}_g(t,x,y,z)\cdot n_b \text{ on } \mathcal{B}
$$

If $u_q(t, x, y, z) \cdot n_b > 0$, water enters the fluid domain, and if $u_q(t, x, y, z) \cdot n_b < 0$ water leaves the fluid domain.

(Navier) Stress boundary condition [\[3,](#page-49-4) [4\]](#page-49-1) :

$$
(\sigma(\mathbf{u}_f)n_b)\cdot \tau_{b_i} = \left(-\rho_0 k(\mathbf{u}_f)\mathbf{u}_f + \frac{\mu \alpha_{\text{BJ}}}{\sqrt{\text{k}(\psi_g)}} (\mathbf{u}_f - \mathbf{u}_g) \right)\cdot \tau_{b_i} \text{ on } \mathcal{B}
$$

(Coupling) Absorption/Injection condition :

$$
\mathbf{u}_f(t,x,y,z)\cdot n_b = \mathbf{u}_g(t,x,y,z)\cdot n_b \text{ on } \mathcal{B}
$$

Pressure condition : \bullet

$$
-(\sigma(\mathbf{u}_f)n_b)\cdot n_b = \rho_0 g\psi_g \text{ on }\mathcal{B}.
$$

C MATHEMATICAL MOTIVATIONS

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- ⁴ [Dimensionless equations](#page-26-0)
-
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

(Characteristic) Water height H is assumed small with respect to the \bullet horizontal length L of the domain and vertical variations W_f are small compared to the horizontal U_f ones :

$$
\varepsilon:=\frac{H}{L}=\frac{W_f}{U_f}\ll 1
$$

 \rightarrow Fluid and ground characteristic time : $T_f = \frac{L}{H}$ $\frac{L}{U_f} = \frac{H}{W_g}$ $\frac{\mu}{W_f} = \varepsilon^\delta T_g$ with $T_g = \frac{L}{\tau_L}$ $\frac{L}{U_g} = \frac{H}{W_g}$ $\frac{H}{W_g}$ where $\delta \in \mathbb{R}^*_+$, a parameter that allows us to control

the difference between speeds in the fluid and ground domains. As a consequence, one has

$$
U_g=\varepsilon^\delta U_f\text{ and }W_g=\varepsilon\,\varepsilon^\delta U_f.
$$

The pressure scale is defined as : \bullet

$$
P_f := \rho_0 U_f^2.
$$

SMALL PARAMETER IDENTIFICATION

Introduce the dimensionless quantities of time \tilde{t}_f , space $(\tilde{x}, \tilde{y}, \tilde{z})$, pressure \tilde{p}_f , and velocity field $(\tilde{u}_f, \tilde{v}_f, \tilde{w}_f)$ via the following scaling relations :

$$
\begin{cases} \tilde{t}_f := \frac{t}{T_f}, & \tilde{p}_f := \frac{p_f}{P_f} & \tilde{\mathbb{K}} := \mathcal{K}^{-1} \mathbb{K} & \tilde{u}_g := \frac{u_g}{U_g} \\ \\ \tilde{x} := \frac{x}{L}, & \tilde{y} := \frac{y}{L}, & \tilde{u}_f := \frac{u_f}{U_f}, & \tilde{v}_f := \frac{v_f}{U_f} & \tilde{h}_g := \frac{h_g}{H} & \tilde{v}_g := \frac{v_g}{V_g} \\ \\ \tilde{z} := \frac{z}{H} = \frac{z}{\varepsilon L}, & \tilde{w}_f := \frac{w_f}{V_f} = \frac{w_f}{\varepsilon U_f} & \tilde{\psi}_g := \frac{\psi_g}{H} & \tilde{w}_g := \frac{w_g}{W_g} \end{cases}
$$

with

$$
\mathcal{K}=\varepsilon^\delta U_f \begin{pmatrix} \frac{1}{\varepsilon} & 0 & 0 \\ 0 & \frac{1}{\varepsilon} & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}.
$$

SMALL PARAMETER IDENTIFICATION

• The laminar and turbulent friction factors are scaled, respectively,

$$
C_{\text{lam},0} := \frac{C_{\text{lam}}}{V_f} = \frac{C_{\text{lam}}}{\varepsilon U_f}, \quad C_{\text{tur},0} := \frac{C_{\text{tur}}}{\varepsilon}.
$$

• The dimensionless number $\alpha_{\rm BI}$ is rescaled as :

$$
\alpha_{\mathsf{BJ},0} := \frac{\alpha_{\mathsf{BJ}}}{\gamma} \text{ with } \gamma = \varepsilon^{\frac{\delta+1}{2}}.
$$

Finally, the following non-dimensional numbers are defined as : \bullet

> Froude's number. \sqrt{gH} , Reynolds number with respect to μ , Re $:= \rho_0 U_f L / \mu$.

Dimensionless incompressible Navier-Stokes equations : \bullet

$$
\left\{\begin{array}{l} \displaystyle{ \rm div}_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f) + \partial_{\tilde{z}}\tilde{w}_f = 0 \\ \displaystyle{ \partial_{\tilde{t}}\tilde{\mathbf{u}}_f + {\rm div}_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f \otimes \tilde{\mathbf{u}}_f) + \partial_{\tilde{z}}(\tilde{w}_f\tilde{\mathbf{u}}_f) + \nabla_{\tilde{x}\tilde{y}}\tilde{p}_f = \\ \displaystyle{ \rm Re}^{-1}\left(2{\rm div}_{\tilde{x}\tilde{y}}(D_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f)) + \nabla_{\tilde{x}\tilde{y}}(\partial_{\tilde{z}}\tilde{w}_f) + \frac{1}{\varepsilon}\partial_{\tilde{z}\tilde{z}}\tilde{\mathbf{u}}_f \right) \\ \displaystyle{ \partial_{\tilde{z}}\tilde{p}_f = \rm Re^{-1}\left(\varepsilon^2 \delta x t y t \tilde{w}_f + {\rm div}_{\tilde{x}\tilde{y}}(\partial_{\tilde{z}}\tilde{\mathbf{u}}_f) + 2\partial_{\tilde{z}\tilde{z}}\tilde{w}_f \right) \\ - \varepsilon^2 \Big(\partial_{\tilde{t}}\tilde{w}_f + {\rm div}_{\tilde{x}\tilde{y}}(\tilde{w}_f\tilde{\mathbf{u}}_f) + \partial_{\tilde{z}}(\tilde{w}_f^2) \Big) - \rm Fr^{-2} } \end{array} \right.
$$

Dimensionless Richards' equation : \bullet

$$
\partial_{\tilde{t}}\theta(H\tilde{\psi}_g) + \partial_{\tilde{x}}\tilde{u}_g + \partial_{\tilde{y}}\tilde{v}_g + \partial_{\tilde{z}}\tilde{w}_g = 0
$$

DETERMINING THE LEADING ORDER TERMS : DIMENSIONLESS BOUNDARY COND

Navier boundary condition on B with $X = \tilde{u}_f$ and \tilde{v}_f : \bullet

$$
\frac{\partial_{\tilde{z}} X_f}{\varepsilon^2 \text{Re}} = -\left(C_{\text{lam},0} + C_{\text{tur},0}\sqrt{\tilde{u}_f^2 + \tilde{v}_f^2}\right) X_f
$$

$$
+ \frac{1}{\sqrt{\varepsilon}\sqrt{\text{ReFr}}} \frac{\alpha_{\text{BJ},0}}{\sqrt{\tilde{K}_x + \tilde{K}_y}} (X_f - \varepsilon^{\delta} X_g) + O(\text{Re}^{-1}) + O(\varepsilon^2).
$$

Permeable boundary condition B : \bullet

$$
-\tilde{u}_f\partial_{\tilde{x}}\tilde{z}_b - \tilde{v}_f\partial_{\tilde{y}}\tilde{z}_b + \tilde{w}_f = -\varepsilon^{\delta}\tilde{u}_g\partial_{\tilde{x}}\tilde{z}_b - \varepsilon^{\delta}\tilde{v}_g\partial_{\tilde{y}}\tilde{z}_b + \varepsilon^{\delta}\tilde{w}_g
$$

Balance of pressure on B : \bullet

$$
\tilde{p}_f = \frac{1}{\mathsf{Fr}^2}\tilde{\psi}_g - \mathsf{Re}^{-1}(2\partial_{\tilde{x}}\tilde{z}_b\partial_{\tilde{z}}\tilde{u}_f + 2\partial_{\tilde{y}}\tilde{z}_b\partial_{\tilde{z}}\tilde{v}_f - 2\partial_{\tilde{z}}\tilde{w}_f) + O(\varepsilon^2)
$$

- Kinematic boundary condition on $\mathfrak{F}:\partial_{\tilde{t}}\tilde{\zeta}+\tilde{u}_f\partial_{\tilde{x}}\tilde{\zeta}+\tilde{v}_f\partial_{\tilde{y}}\tilde{\zeta}-\tilde{w}_f=0$ \bullet
- Stress boundary condition on $\mathfrak{F} : \frac{\partial_{\tilde{z}}\tilde{u}_f}{\partial \mathbf{D}}$ $\frac{\partial_{\tilde{z}}\tilde{u}_f}{\varepsilon^2\mathsf{Re}}=O(\mathsf{Re}^{-1})$ and $\frac{\partial_{\tilde{z}}\tilde{v}_f}{\varepsilon^2\mathsf{Re}}=O(\mathsf{Re}^{-1})$ \bullet

C MATHEMATICAL MOTIVATIONS

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- **4 DIMENSIONLESS EQUATIONS**
- ⁵ [First order approximation](#page-32-0)
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

Drop all the term of $O(\varepsilon)$: hydrostatic approximation of the dimensionless \bullet NS eqs :

$$
\begin{aligned}\n\text{div}_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f) + \partial_{\tilde{z}}\tilde{w}_f &= 0 \\
\partial_{\tilde{t}}\tilde{\mathbf{u}}_f + \text{div}_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f \otimes \tilde{\mathbf{u}}_f) + \partial_{\tilde{z}}\left[\tilde{w}_f\tilde{\mathbf{u}}_f\right] + \nabla_{\tilde{x}\tilde{y}}\tilde{p}_f &= \text{Re}^{-1}\Big(2\text{div}_{\tilde{x}\tilde{y}}\big(D_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f)\big) \\
&\quad + \frac{1}{\varepsilon^2}\partial_{\tilde{z}\tilde{z}}\tilde{\mathbf{u}}_f + \partial_{\tilde{z}}\left[\nabla_{\tilde{x}\tilde{y}}(\tilde{w}_f)\right]\Big) \\
\partial_{\tilde{z}}\tilde{p}_f &= \text{Re}^{-1}\Big(\partial_{\tilde{z}}\left[\text{div}_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f)\right] \\
&\quad + 2\partial_{\tilde{z}\tilde{z}}\tilde{w}_f\Big) - \text{Fr}^{-2}\n\end{aligned}
$$

Turbulent (asymptotic) regime consideration : $Re^{-1} = \varepsilon$ and drop all the \bullet term of $O(\varepsilon)$:

$$
\mathsf{div}_{\tilde{x}\tilde{y}}(\tilde{\mathbf{u}}_f) + \partial_{\tilde{z}} \tilde{w}_f = 0
$$

$$
\partial_{\tilde{t}} \tilde{\mathbf{u}}_f + \mathsf{div}_{\tilde{x}\tilde{y}} (\tilde{\mathbf{u}}_f \otimes \tilde{\mathbf{u}}_f) + \partial_{\tilde{z}} \left[\tilde{w}_f \tilde{\mathbf{u}}_f \right] + \nabla_{\tilde{x}\tilde{y}} \tilde{p}_f = \partial_{\tilde{z}} \left[\frac{1}{\varepsilon} \partial_{\tilde{z}} \tilde{\mathbf{u}}_f \right]
$$

$$
\partial_{\tilde{z}} \tilde{p}_f = -\mathsf{Fr}^{-2}
$$

By dropping $\tilde{\cdot}$ we obtain

• Free surface first order approximation :

$$
\partial_x u_{f,\varepsilon} + \partial_y u_{f,\varepsilon} + \partial_z w_{f,\varepsilon} = 0,
$$

$$
\partial_t u_{f,\varepsilon} + \partial_x \left[u_{f,\varepsilon}^2 \right] + \partial_y \left[u_{f,\varepsilon} v_{f,\varepsilon} \right] + \partial_z \left[u_{f,\varepsilon} w_{f,\varepsilon} \right] + \partial_x p_{f,\varepsilon} = \partial_z \left[\frac{1}{\varepsilon} \partial_z u_{f,\varepsilon} \right],
$$

$$
\partial_t v_{f,\varepsilon} + \partial_x \left[u_{f,\varepsilon} v_{f,\varepsilon} \right] + \partial_y \left[v_{f,\varepsilon}^2 \right] + \partial_z \left[v_{f,\varepsilon} w_{f,\varepsilon} \right] + \partial_y p_{f,\varepsilon} = \partial_z \left[\frac{1}{\varepsilon} \partial_z v_{f,\varepsilon} \right],
$$

$$
\partial_z p_{f,\varepsilon} = -\mathsf{Fr}^{-2}
$$

with $(u_{f,\varepsilon}, v_{f,\varepsilon}, w_{f,\varepsilon}, p_{f,\varepsilon})$ the solution of the first-order dimensionless Navier-Stokes system.

Ground first order approximation :

$$
\partial_t \theta(H\psi_g) + \partial_{\tilde{x}} u_g + \partial_y v_g + \partial_z w_g = 0
$$

with $(u_{a,\varepsilon}, v_{a,\varepsilon}, w_{a,\varepsilon}, \psi_{a,\varepsilon}, h_{a,\varepsilon})$ the solution of the first-order dimensionless Richards'equation.

Simplifying equations : first-order boundary conditions

 \bullet On \mathcal{B} :

 \bullet

$$
\frac{1}{\varepsilon}\partial_z \mathbf{u}_{f,\varepsilon} = -k_0(\mathbf{u}_{f,\varepsilon})\mathbf{u}_{f,\varepsilon} + \frac{\mathsf{Fr}^{-1}\alpha_{\mathsf{B},\mathsf{J},0}}{\sqrt{K_x + K_y}}(\mathbf{u}_{f,\varepsilon} - \varepsilon^{\delta}\mathbf{u}_{g,\varepsilon})
$$

$$
u_{f,\varepsilon}\partial_x z_b v_{f,\varepsilon}\partial_y z_b - w_{f,\varepsilon} = \varepsilon^{\delta} u_{g,\varepsilon}\partial_x z_b + \varepsilon^{\delta} v_{g,\varepsilon}\partial_y z_b - \varepsilon^{\delta} w_{g,\varepsilon}
$$

$$
p_{f,\varepsilon} = \frac{1}{\mathsf{Fr}^2}\psi_{g,\varepsilon}
$$

with $k_0(\mathbf{u}_{f,\varepsilon}) := C_{\text{lam},0} + C_{\text{tur},0}|\mathbf{u}_{f,\varepsilon}|$ On \mathfrak{F} :

$$
\frac{1}{\varepsilon}\partial_z \mathbf{u}_{f,\varepsilon}=0
$$

$$
\partial_t \zeta + u_{f,\varepsilon} \partial_x \zeta + v_{f,\varepsilon} \partial_y \zeta - w_{f,\varepsilon}=0
$$

C MATHEMATICAL MOTIVATIONS

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- **4 DIMENSIONLESS EQUATIONS**
- **6 FIRST ORDER APPROXIMATION**
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

HYDROSTATIC PRESSURE

Vertically integrating $\partial_z p_{f,\varepsilon} = -\mathsf{Fr}^{-2}$ between z and $\zeta(t,x,y)$, the hydrostatic pressure is obtained

$$
\int_{z}^{\zeta} \partial_{z} p_{f,\varepsilon} dz = -\int_{z}^{\zeta} \mathsf{Fr}^{-2} dz
$$

\n
$$
p_{f,\varepsilon}(t, x, y, \zeta) - p_{f,\varepsilon}(t, x, y, z) = -\mathsf{Fr}^{-2}(\zeta(t, x, y) - z)
$$

Assuming that the pressure exerted on the free-surface $p_{f,\varepsilon}(t,x,y,\zeta) = p_{\text{atm}}$ for some constant $p_{\text{atm}} \in \mathbb{R}$ (all other meteorological phenomena are neglected), this becomes

$$
p_{f,\varepsilon}(t,x,y,z) = \mathsf{Fr}^{-2}(\zeta(t,x,y)-z) + p_{\mathsf{atm}}
$$

Mass conservation equation

• Integrating Indicator transport equation between $z = z_b(x, y)$ and $z = \zeta(t, x, y)$:

$$
\int_{z_b}^{\zeta} \partial_t \Phi dz + \int_{z_b}^{\zeta} \partial_x (\Phi u_{f,\varepsilon}) dz + \int_{z_b}^{\zeta} \partial_y (\Phi v_{f,\varepsilon}) dz + \int_{z_b}^{\zeta} \partial_z (\Phi w) dz = 0
$$

\n
$$
\iff
$$
\n
$$
\partial_t h(t, x, y) + \partial_x \left(\int_{z_b}^{\zeta} u_{f,\varepsilon} dz \right) + \partial_y \left(\int_{z_b}^{\zeta} v_{f,\varepsilon} dz \right)
$$
\n
$$
+ (u_{f,\varepsilon} \partial_x z_b + v_{f,\varepsilon} \partial_y z_b - w) |_{z=z_b}
$$
\n
$$
- (\partial_t \zeta + u_{f,\varepsilon} \partial_x \zeta + v_{f,\varepsilon} \partial_y \zeta - w) |_{z=\zeta} = 0
$$

Using the permeable boundary condition and the kinematic one : \bullet

$$
\partial_t h(t, x, y) + \partial_x \left(\int_{z_b}^{\zeta} u dz \right) + \partial_y \left(\int_{z_b}^{\zeta} v dz \right) = -\varepsilon^{\delta} u_{g, \varepsilon} \partial_x z_b - \varepsilon^{\delta} v_{g, \varepsilon} \partial_y z_b
$$

$$
+ \varepsilon^{\delta} w_{g, \varepsilon}.
$$

• Noting \bar{f} as the mean of a generic function f over the section $[z_b(x, y), \zeta(t, x, y)],$

$$
\bar{f}(t,x,y) = \frac{1}{h(t,x,y)} \int_{z_b(x,y)}^{\zeta(t,x,y)} f(t,x,y,\eta) d\eta,
$$

Using the following approximations : \bullet

$$
u_{f,\varepsilon}(t,x,y,z)=\bar u_\varepsilon+O(\varepsilon)\,\,\text{and}\,\,\overline{u_{f,\varepsilon}^2}=\bar u_\varepsilon^2+O(\varepsilon),
$$

and dropping the first higher order terms in ε gives a mass-balance equation :

$$
\partial_t [h] + \partial_x [h \bar{u}_\varepsilon] + \partial_y [h \bar{v}_\varepsilon] = -\varepsilon^\delta u_{g,\varepsilon} \partial_x z_b - \varepsilon^\delta v_{g,\varepsilon} \partial_y z_b + \varepsilon^\delta w_{g,\varepsilon}.
$$

Momentum conservation equation

Similarly, we get

$$
\partial_t \left[h \bar{u}_{\varepsilon} \right] + \partial_x \left[h \bar{u}_{\varepsilon}^2 + \frac{h^2}{2 \mathsf{F} \mathsf{r}^2} \right] + \partial_y \left[h \bar{u}_{\varepsilon} \bar{v}_{\varepsilon} \right] = -\frac{1}{\mathsf{F} \mathsf{r}^2} h \partial_x \left[z_b \right]
$$

$$
- k_0 (\mathbf{u}_{f,\varepsilon}) u_{f,\varepsilon} + \frac{\mathsf{F} \mathsf{r}^{-1} \alpha_{\mathsf{B},0}}{\sqrt{K_x + K_y}} (u_{f,\varepsilon} - \varepsilon^{\delta} u_{g,\varepsilon})
$$

$$
+ (-\varepsilon^{\delta} u_{g,\varepsilon} \partial_x z_b - \varepsilon^{\delta} v_{g,\varepsilon} \partial_y z_b + \varepsilon^{\delta} w_{g,\varepsilon}) u_{f,\varepsilon}
$$

and

$$
\partial_t [h\bar{v}_{\varepsilon}] + \partial_x [h\bar{u}_{\varepsilon}\bar{v}_{\varepsilon}] + \partial_y [h\bar{v}_{\varepsilon}^2 + \frac{h^2}{2Fr^2}] = -\frac{1}{Fr^2}h\partial_y [z_b]
$$

$$
-k_0(\mathbf{u}_{f,\varepsilon})v_{f,\varepsilon} + \frac{Fr^{-1}\alpha_{\text{BJ},0}}{\sqrt{K_x + K_y}}(v_{f,\varepsilon} - \varepsilon^{\delta}v_{g,\varepsilon})
$$

$$
+ (-\varepsilon^{\delta}u_{g,\varepsilon}\partial_x z_b - \varepsilon^{\delta}v_{g,\varepsilon}\partial_y z_b + \varepsilon^{\delta}w_{g,\varepsilon})v_{f,\varepsilon}
$$

SAINT-VENANT SYSTEM WITH RECHARGE

Dropping $\overline{\cdot}$, we get

$$
\begin{cases}\n\partial_t [h] + \partial_x [hu_f] + \partial_y [hv_f] \\
= \varepsilon^{\delta} (-u_g \partial_x z_b - v_g \partial_y z_b + w_g) \\
\partial_t [hu_f] + \partial_x \left[hu_f^2 + \frac{h^2}{2Fr^2} \right] + \partial_y [hu_f v_f] = -\frac{1}{Fr^2} h \partial_x [z_b] \\
- k_0 (u_f, v_f) u_f + \frac{Fr^{-1} \alpha_{B,J,0}}{\sqrt{K_x + K_y}} (u_f - \varepsilon^{\delta} u_g) \\
+ \varepsilon^{\delta} (-u_g \partial_x z_b - v_g \partial_y z_b + w_g) u_f \\
\partial_t [hv_f] + \partial_x [hu_f v_f] + \partial_y \left[hv_f^2 + \frac{h^2}{2Fr^2} \right] = -\frac{1}{Fr^2} h \partial_y [z_b] \\
- k_0 (u_f, v_f) v_f + \frac{Fr^{-1} \alpha_{B,J,0}}{\sqrt{K_x + K_y}} (v_f - \varepsilon^{\delta} v_g) \\
+ \varepsilon^{\delta} (-u_g \partial_x z_b - v_g \partial_y z_b + w_g) v_f\n\end{cases}
$$

VALIDATION AND DISCUSSION ON THE PARAMETER δ and two-coupling **JUSTIFICATION**

- ε^δ : influence of ground flow on free-surface flow valid only for specific values of δ .
- For establishing the classic Shallow-Water system, terms of order greater than ε are dropped : range of validity for δ is $0 \le \delta < 1$.
- $\delta \in]0,1[$: two-way coupling is valid if $U_q \approx U_f \Longleftrightarrow T_q \approx T_f$, i.e. $\delta \lesssim 1$ specific to the permeability of the ground (coarse grained beaches).
- Hydraulic conductivity in horizontal directions is greater than in vertical \bullet directions. This characteristic is observed and documented in the literature [\[9,](#page-50-2) pp. 100-103]. He states that K_x/K_z , with K_x and K_z respectively horizontal and vertical hydraulic conductivity, usually fall in the range 2 to 10 for alluvium, but values up to 100 or mode occur where clay layers are present.

Saint-Venant system with ground influence

Consider that $0 \le \delta < 1$ and multiply eqs by $\frac{H U^2}{L}$ gives the Saint-Venant system with ground influence in its dimensional form :

$$
\begin{cases}\n\partial_t [h] + \partial_x [hu_f] + \partial_y [hv_f] = I \\
\partial_t [hu_f] + \partial_x \left[hu_f^2 + g \frac{h^2}{2} \right] + \partial_y [hu_f v_f] \\
= -k(u_f, v_f)u_f + \frac{\alpha_{\text{BJ}}}{\sqrt{k_x + k_y}} (u_f - u_g) + Iu_f - gh\partial_x [z_b] \\
\partial_t [hv_f] + \partial_x [hu_f v_f] + \partial_y \left[hv_f^2 + g \frac{h^2}{2} \right] \\
= -k(u_f, v_f) v_f + \frac{\alpha_{\text{BJ}}}{\sqrt{k_x + k_y}} (v_f - v_g) + Iv_f - gh\partial_y [z_b]\n\end{cases}
$$

with $I = -u_g \partial_x z_b - v_g \partial_y z_b + w_g$ the quantity of water that enters (I>0) or leaves $(1<0)$ the fluid domain.

Conservative Saint-Venant system with ground influence

Finally, the two-way coupled model of SWE and RE is :

$$
\begin{cases}\n\partial_t h + \operatorname{div}(\mathbf{q}) = I, & \text{in } \Omega_{\text{Swe}}, \\
\partial_t \mathbf{q} + \operatorname{div} \left(\frac{\mathbf{q} \otimes \mathbf{q}}{h} + g \frac{h^2}{2} \mathbb{I} \right) = -k(\mathbf{u}_f) \mathbf{u}_f + \frac{\alpha_{\text{BJ}}}{\sqrt{k_x + k_y}} (\mathbf{u}_f - \mathbf{u}_g) + I \mathbf{u}_f \\
& - gh \nabla z_b, & \text{in } \Omega_{\text{Swe}}, \\
I = \mathbf{u}_g \cdot \left(-\partial_x z_b, -\partial_y z_b, 1 \right)^T, & \text{in } \Omega_{\text{Swe}},\n\end{cases}
$$

$$
I = \mathbf{u}_g \cdot \left(-\partial_x z_b, -\partial_y z_b, 1\right)^T, \qquad \text{in } \Omega_{\text{swe}},
$$

$$
\mathbf{u}_g = -\mathbb{K}(\psi_g)\nabla h_g, \qquad \qquad \text{in } \Omega_g,
$$

$$
\partial_t \theta(\psi_g) + \operatorname{div}({\mathbf u}_g) = 0, \qquad \qquad \text{in }\Omega_g,
$$

$$
h_g = h + z_b, \qquad \qquad \text{on } \Gamma_C,
$$

$$
h_g = h_D, \t\t on \Gamma_D,
$$

$$
-\mathbf{u}_g \cdot \mathbf{n} = q_N,
$$
 on Γ_N .

with $\mathbf{q} = \mathbf{u}_f h$, $\Omega_g \subset \mathbb{R}^d \Rightarrow \Omega_{\mathsf{swe}} \subset \mathbb{R}^{d-1}$ with $d=2,3.$

C MATHEMATICAL MOTIVATIONS

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- **4 DIMENSIONLESS EQUATIONS**
-
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

By Asymptotic Reduction Methods, we have

- identified small parameter ε and specific asymptotic regime
- expanded the solution in terms of ε \bullet
- analyzed the eqs and identified dominant terms as $\varepsilon \to 0$ \bullet
- retained leading-order terms to derive the hydrostatic approximation \bullet
- vertically averaged these eqs to get the Saint-Venant system with recharge \bullet
- this results in a simpler form (loss of one dimension) \bullet
- formally justified the two-way coupling \bullet

To do,

- \bullet Derivation of the Richards' equation for saturated/unsaturated porous media (c.f. Lecture 2)
- Introduction to the Discontinuous Galerkin (DG) method for transport \bullet equation (hyperbolic, c.f. M. Parisot's lectures for the Finite Volume approach)
- Introduction to the DG method for parabolic-elliptic equations \bullet
- Application of the DG method for a convection diffusion equation \bullet

C MATHEMATICAL MOTIVATIONS

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- **4 DIMENSIONLESS EQUATIONS**
-
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

8 REFERENCES

C MATHEMATICAL MOTIVATIONS

- **2 GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS**
- **3 BOUNDARY CONDITIONS**
- **4 DIMENSIONLESS EQUATIONS**
-
- ⁶ [Vertically averaged equations](#page-36-0)
- ⁷ [Conclusions and perspectives](#page-45-0)

- [1] J.-B. Clément. Numerical Simulation of Flows in Unsaturated Porous Media by an Adaptive Discontinuous Galerkin Method : Application to Sandy Beaches. PhD thesis. Université de Toulon, Jan. 2021.
- [2] J.-B. Clément, F. Golay, M. Ersoy, and D. Sous. An adaptive strategy for discontinuous Galerkin simulations of Richards' equation : Application to multi-materials dam wetting. Advances in Water Resources, 151 :103897, 2021.
- [3] M. Discacciati and A. Quarteroni. Navier-Stokes/Darcy Coupling : Modeling, Analysis, and Numerical Approximation. Revista Matemática Complutense, 22, July 2009.
- [4] M. Ersoy, O. Lakkis, and P. Townsend. A Saint-Venant Model for Overland Flows with Precipitation and Recharge. Mathematical and Computational Applications, 26(1) :1, Mar. 2021.
- [5] J.-F. Gerbeau and a. B. Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete and Continuous Dynamical Systems - B, 1(1) :89–102, 2001.
- [6] A. Luijendijk, G. Hagenaars, R. Ranasinghe, F. Baart, G. Donchyts, and S. Aarninkhof. The State of the World's Beaches. Scientific Reports, 8(1) :6641, Apr. 2018.
- [7] F. Marche. Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanics - B/Fluids, 26(1) :49–63, Jan. 2007.
- [8] C. Poussel, M. Ersoy, and F. Golay. WETTING AND DRYING TREATMENTS WITH MESH ADAPTATION FOR SHALLOW WATER EQUATIONS USING A RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD. Aug. 2024. working paper or preprint.
- [9] D. K. Todd. Groundwater Hydrology. Geological Magazine, 118(4) :442, 1980.
- [10] M. I. Vousdoukas, R. Ranasinghe, L. Mentaschi, T. A. Plomaritis, P. Athanasiou, A. Luijendijk, and L. Feyen. Sandy coastlines under threat of erosion. Nature Climate Change, 10(3) :260–263, Mar. 2020.