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Groundwater flow dynamics in coastal areas and coastline retreat

General context : coastal engineering, sustainable development and climate
change

Application : sandy beaches

→ 1/3 of beaches are sandy and 1/4 are eroding at rates of 0.5m/year due
to rising sea levels [6, 10]

→ socio-economic impact

Figure – Almanarre beach, Hyeres, France a

a. (source : http ://laurejo.canalblog.com/)
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Aims & Contents

Aims of these lectures :

Free surface and groundwater modeling

Dimension reduction techniques

Numerical method based on Discontinuous Galerkin method

Applications

Lectures are organized as follows :

L1 : Dimension reduction for free surface flows model including recharge

L2 : Groundwater flows modeling

L3 : Introduction to the Discontinuous Galerkin (DG) method for transport
equation (hyperbolic, c.f. M. Parisot’s lectures for the Finite Volume
approach)

L4 : Introduction to the DG method for parabolic-elliptic equations

L5 : Application of the DG method for a convection-diffusion equation
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LECTURE 1 :
Dimension reduction for free surface flows model including recharge
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Asymptotic Reduced Models for what ?

Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition
about complex systems without solving them exactly !

Simplification of complex mathematical models :

→ Many physical systems are governed by complex equations that are
difficult to solve or simulate directly.

→ ARM helps identify dominant balances and approximate the behavior of
the system reducing model complexity.

Computational Efficiency :

→ Full-scale models are often computationally expensive due to high
dimensionality.

→ ARM yields simplified models that require fewer resources for numerical
simulations.

Improved Insight and Analytical Solutions :

→ ARM often provides closed-form solutions or simple approximations,
making it easier to understand the system’s qualitative behavior.

→ Asymptotic analysis can reveal hidden structures, and stability
properties that are hard to identify in the original model.
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Asymptotic Reduced Models how ?

Identify Small or Large Parameters :

→ Determine the key parameters ε that are very small or large.
→ Expand the solution in terms of these parameters using asymptotic

expansions or perturbation methods.

Determine the Leading Order Terms :

→ Analyze the eqs to identify which terms dominate as ε→ 0 or ∞.
→ Neglect higher-order terms that become negligible in the asymptotic reg.

Simplify the Governing Equations :

→ Derive reduced equations that retain the leading-order behavior and
dynamics.

→ This results in simpler ODEs, PDEs, or algebraic equations.

Validate the Reduced Model :

→ Compare the reduced model’s predictions to the full-scale model or
experimental data in the asymptotic regime.

→ Ensure that critical behaviors (e.g., stability) are preserved.
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Governing equations : incompressible Navier-Stokes

Free surface flow eqs [4, 5, 7]{
div(ρ0uf ) = 0

∂t(ρ0uf ) + div(ρ0uf ⊗ uf )− div(σ(uf ))− ρ0F = 0
on Ωf

where
Ωf (t) :=

{
(x, y, z) ∈ R3

∣∣ zb(x, y) < z < ζ(t, x, y)
}

Notations : (a, b) ∈ R3 × R3, a⊗ b = abT , and

(div(A))i =

3∑
j=1

∂jAij for i = 1, 2, 3
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Governing equations : incompressible Navier-Stokes

Free surface flow eqs [4, 5, 7]{
div(ρ0uf ) = 0

∂t(ρ0uf ) + div(ρ0uf ⊗ uf )− div(σ(uf ))− ρ0F = 0
on Ωf

where
Ωf (t) :=

{
(x, y, z) ∈ R3

∣∣ zb(x, y) < z < ζ(t, x, y)
}

with

ζ : absolute height of the surface ([L])
zb : topography ([L])
h := ζ − zb : water height ([L])

uf = (uf , vf , wf )
T : velocity field ([L · T−1])

F = (0, 0,−g)T : gravity acceleration ([L · T−2])

σ(uf ) = −pfI+ 2µD(uf ) : total stress tensor ([M · L−1 · T−2])

D(u) =
1

2

(
∇uf + (∇uf )

T
)

: strain stress tensor

pf : pressure of fluid ([M · L−1 · T−2])

ρ0 : density ([M · L−3])

µ > 0 : dynamic viscosity ([M · L−1 · T−1])
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div(ρ0uf ) = 0

∂t(ρ0uf ) + div(ρ0uf ⊗ uf )− div(σ(uf ))− ρ0F = 0
on Ωf

where
Ωf (t) :=

{
(x, y, z) ∈ R3

∣∣ zb(x, y) < z < ζ(t, x, y)
}

Fluid region indicator function :

Φ(t, x, y, z) := 1Ωf (t)(x, y, z) = 1zb(x,y)<z<ζ(t,x,y), for all (t, x, y, z) ∈ R4

Φ satisfies the following indicator transport equation :

∂tΦ + ∂x(Φuf ) + ∂y(Φvf ) + ∂z(Φwf ) = 0 on Ωf .
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Free surface and bottom boundary conditions
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Free surface boundary conditions

(Navier) Stress boundary condition [4, 7] :

(σ(uf )nf ) · τfi = M on F.

where M is any meteorological phenomena (such as evaporation, rainfall,
wind, etc.), set to 0 in what follows,

F :=
{

(t, x, y, ζ)
∣∣ t > 0, (x, y) ∈ R2

}
,

the upward normal of B is defined with :

nf =
1√

1 + |∇ζ|2

−∂xζ−∂yζ
1


and (τfi)i=1,2 is a basis of the tangential surface :

τf1 =
1

|∇ζ|

−∂yζ∂xζ
0

 and τf2 =
1√

|∇ζ|2 + |∇ζ|4

 −∂xζ−∂yζ
−|∇ζ|2



Kinematic boundary condition :

uf · nf =
∂tζ√

1 + |∇ζ|2
on F

or using definition of nf and τfi kinematic boundary condition can be
rewritten as :

∂tζ + u∂xζ + v∂yζ − w = 0.
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Bottom boundary conditions and Richards’ equation
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Bottom boundary conditions and Richards’ equation

(Navier) Stress boundary condition [3, 4] :

(σ(uf )nb) · τbi =

(
−ρ0k(uf )uf +

µαBJ√
k(ψg)

(uf − ug)

)
· τbi on B

where
B :=

{
(x, y, zb)

∣∣ (x, y) ∈ R2
}
,

the upward normal of B is defined with :

nb =
1√

1 + |∇zb|2

−∂xzb−∂yzb
1


and (τbi)i=1,2 is a basis of the tangential surface :

τb1 =
1

|∇zb|

−∂yzb∂xzb
0

 and τb2 =
1√

|∇zb|2 + |∇zb|4

 −∂xzb−∂yzb
−|∇zb|2
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Bottom boundary conditions and Richards’ equation

(Navier) Stress boundary condition [3, 4] :

(σ(uf )nb) · τbi =

(
−ρ0k(uf )uf +

µαBJ√
k(ψg)

(uf − ug)

)
· τbi on B

and
Clam ≥ 0 : laminar friction coefficient
Ctur ≥ 0 : turbulent friction coefficient
k(uf ) = (Clam + Ctur|ξ|),∀ξ ∈ R3 : a kinematic friction law
k(ψg) := trace(k(ψg)) : structure of the porous medium
αBJ : a dimensionless constant
ug : Darcy velocity field
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Bottom boundary conditions and Richards’ equation

(Navier) Stress boundary condition [3, 4] :

(σ(uf )nb) · τbi =

(
−ρ0k(uf )uf +

µαBJ√
k(ψg)

(uf − ug)

)
· τbi on B

ug ([L · T−1]) is a function of the hydraulic head hg ([L]) which is a
solution of the Richards’ equation (RE) (porous media, c.f. Lecture 2, and
[1, 2, 8]) : {

ug = −K(ψg)∇hg
∂tθ(ψg) + div(ug) = 0

in Ωg

where the ground region (fixed in time) :

Ωg :=
{

(x, y, z) ∈ R3
∣∣ z < zb(x, y)

}
where

θ : water content ([-])
K : hydraulic conductivity ([L · T−1])
ψg : pressure head ([L · T−1])
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Bottom boundary conditions and Richards’ equation

(Navier) Stress boundary condition [3, 4] :

(σ(uf )nb) · τbi =

(
−ρ0k(uf )uf +

µαBJ√
k(ψg)

(uf − ug)

)
· τbi on B

(Coupling) Absorption/Injection condition :

uf (t, x, y, z) · nb = ug(t, x, y, z) · nb on B

If ug(t, x, y, z) · nb > 0, water enters the fluid domain, and if
ug(t, x, y, z) · nb < 0 water leaves the fluid domain.
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Bottom boundary conditions and Richards’ equation

(Navier) Stress boundary condition [3, 4] :

(σ(uf )nb) · τbi =

(
−ρ0k(uf )uf +

µαBJ√
k(ψg)

(uf − ug)

)
· τbi on B

(Coupling) Absorption/Injection condition :

uf (t, x, y, z) · nb = ug(t, x, y, z) · nb on B

Pressure condition :

−(σ(uf )nb) · nb = ρ0gψg on B.
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Small parameter identification and asymptotic regime

(Characteristic) Water height H is assumed small with respect to the
horizontal length L of the domain and vertical variations Wf are small
compared to the horizontal Uf ones :

ε :=
H

L
=
Wf

Uf
� 1

→ Fluid and ground characteristic time : Tf =
L

Uf
=

H

Wf
= εδTg with

Tg =
L

Ug
=

H

Wg
where δ ∈ R∗+, a parameter that allows us to control

the difference between speeds in the fluid and ground domains. As a
consequence, one has

Ug = εδUf and Wg = ε εδUf .

The pressure scale is defined as :

Pf := ρ0U
2
f .
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Small parameter identification

Introduce the dimensionless quantities of time t̃f , space (x̃, ỹ, z̃), pressure
p̃f , and velocity field (ũf , ṽf , w̃f ) via the following scaling relations :

t̃f :=
t

Tf
, p̃f :=

pf
Pf

K̃ := K−1K ũg :=
ug
Ug

x̃ :=
x

L
, ỹ :=

y

L
, ũf :=

uf
Uf

, ṽf :=
vf
Uf

h̃g :=
hg
H

ṽg :=
vg
Vg

z̃ :=
z

H
=

z

εL
, w̃f :=

wf
Vf

=
wf
εUf

ψ̃g :=
ψg
H

w̃g :=
wg
Wg


with

K = εδUf


1

ε
0 0

0
1

ε
0

0 0 ε

 .
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Small parameter identification

The laminar and turbulent friction factors are scaled, respectively,

Clam,0 :=
Clam

Vf
=
Clam

εUf
, Ctur,0 :=

Ctur

ε
.

The dimensionless number αBJ is rescaled as :

αBJ,0 :=
αBJ

γ
with γ = ε

δ+1
2 .

Finally, the following non-dimensional numbers are defined as :

Froude’s number, Fr := Uf/
√
gH,

Reynolds number with respect to µ, Re := ρ0UfL/µ.
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Determining the leading order terms : dimensionless equations

Dimensionless incompressible Navier-Stokes equations :

divx̃ỹ(ũf ) + ∂z̃w̃f = 0

∂t̃ũf+divx̃ỹ(ũf ⊗ ũf ) + ∂z̃(w̃f ũf ) +∇x̃ỹp̃f =

Re−1

(
2divx̃ỹ(Dx̃ỹ(ũf )) +∇x̃ỹ(∂z̃w̃f ) +

1

ε
∂z̃z̃ũf

)
∂z̃ p̃f =Re−1

(
ε2δxtytw̃f + divx̃ỹ(∂z̃ũf ) + 2∂z̃z̃w̃f

)
−ε2

(
∂t̃w̃f + divx̃ỹ(w̃f ũf ) + ∂z̃(w̃

2
f )
)
− Fr−2

Dimensionless Richards’ equation :

∂t̃θ(Hψ̃g) + ∂x̃ũg + ∂ỹ ṽg + ∂z̃w̃g = 0
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Determining the leading order terms : dimensionless boundary conditions

Navier boundary condition on B with X = ũf and ṽf :

∂z̃Xf

ε2Re
=−

(
Clam,0 + Ctur,0

√
ũ2
f + ṽ2

f

)
Xf

+
1

√
ε
√

ReFr

αBJ,0√
K̃x + K̃y

(Xf − εδXg) +O(Re−1) +O(ε2).

Permeable boundary condition B :

−ũf∂x̃z̃b − ṽf∂ỹ z̃b + w̃f = −εδũg∂x̃z̃b − εδ ṽg∂ỹ z̃b + εδw̃g

Balance of pressure on B :

p̃f =
1

Fr2
ψ̃g − Re−1(2∂x̃z̃b∂z̃ũf + 2∂ỹ z̃b∂z̃ ṽf − 2∂z̃w̃f ) +O(ε2)

Kinematic boundary condition on F : ∂t̃ζ̃ + ũf∂x̃ζ̃ + ṽf∂ỹ ζ̃ − w̃f = 0

Stress boundary condition on F :
∂z̃ũf
ε2Re

= O(Re−1) and
∂z̃ ṽf
ε2Re

= O(Re−1)
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Simplifying equations : first-order approximation and asymptotic regime

Drop all the term of O(ε) : hydrostatic approximation of the dimensionless
NS eqs :

divx̃ỹ(ũf ) + ∂z̃w̃f = 0

∂t̃ũf + divx̃ỹ(ũf ⊗ ũf ) + ∂z̃ [w̃f ũf ] +∇x̃ỹ p̃f = Re−1
(
2divx̃ỹ(Dx̃ỹ(ũf ))

+
1

ε2
∂z̃z̃ũf + ∂z̃ [∇x̃ỹ(w̃f )]

)
∂z̃ p̃f = Re−1

(
∂z̃ [divx̃ỹ(ũf )]

+ 2∂z̃z̃w̃f

)
− Fr−2

Turbulent (asymptotic) regime consideration : Re−1 = ε and drop all the
term of O(ε) :

divx̃ỹ(ũf ) + ∂z̃w̃f = 0

∂t̃ũf + divx̃ỹ(ũf ⊗ ũf ) + ∂z̃ [w̃f ũf ] +∇x̃ỹp̃f = ∂z̃

[
1

ε
∂z̃ũf

]
∂z̃ p̃f = −Fr−2
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Simplifying equations : first-order approximation and asymptotic regime

By dropping ·̃ we obtain

Free surface first order approximation :

∂xuf,ε + ∂yuf,ε + ∂zwf,ε = 0,

∂tuf,ε + ∂x
[
u2
f,ε

]
+ ∂y [uf,εvf,ε] + ∂z [uf,εwf,ε] + ∂xpf,ε = ∂z

[
1

ε
∂zuf,ε

]
,

∂tvf,ε + ∂x [uf,εvf,ε] + ∂y
[
v2
f,ε

]
+ ∂z [vf,εwf,ε] + ∂ypf,ε = ∂z

[
1

ε
∂zvf,ε

]
,

∂zpf,ε = −Fr−2

with (uf,ε, vf,ε, wf,ε, pf,ε) the solution of the first-order dimensionless
Navier-Stokes system.

Ground first order approximation :

∂tθ(Hψg) + ∂x̃ug + ∂yvg + ∂zwg = 0

with (ug,ε, vg,ε, wg,ε, ψg,ε, hg,ε) the solution of the first-order dimensionless
Richards’equation.
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Simplifying equations : first-order boundary conditions

On B :

1

ε
∂zuf,ε = −k0(uf,ε)uf,ε +

Fr−1αBJ,0√
Kx +Ky

(uf,ε − εδug,ε)

uf,ε∂xzbvf,ε∂yzb − wf,ε = εδug,ε∂xzb + εδvg,ε∂yzb − εδwg,ε

pf,ε =
1

Fr2
ψg,ε

with k0(uf,ε) := Clam,0 + Ctur,0|uf,ε|
On F :

1

ε
∂zuf,ε = 0

∂tζ + uf,ε∂xζ + vf,ε∂yζ − wf,ε = 0
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Hydrostatic pressure

Vertically integrating ∂zpf,ε = −Fr−2 between z and ζ(t, x, y), the hydrostatic
pressure is obtained∫ ζ

z

∂zpf,εdz = −
∫ ζ

z

Fr−2dz

pf,ε(t, x, y, ζ)− pf,ε(t, x, y, z) = −Fr−2(ζ(t, x, y)− z)

Assuming that the pressure exerted on the free-surface pf,ε(t, x, y, ζ) = patm for
some constant patm ∈ R (all other meteorological phenomena are neglected), this
becomes

pf,ε(t, x, y, z) = Fr−2(ζ(t, x, y)− z) + patm
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Mass conservation equation

Integrating Indicator transport equation between z = zb(x, y) and
z = ζ(t, x, y) :∫ ζ

zb

∂tΦdz +

∫ ζ

zb

∂x(Φuf,ε)dz +

∫ ζ

zb

∂y(Φvf,ε)dz +

∫ ζ

zb

∂z(Φw)dz = 0

⇐⇒

∂th(t, x, y) + ∂x

(∫ ζ

zb

uf,εdz

)
+ ∂y

(∫ ζ

zb

vf,εdz

)
+ (uf,ε∂xzb + vf,ε∂yzb − w) |z=zb
− (∂tζ + uf,ε∂xζ + vf,ε∂yζ − w) |z=ζ = 0

Using the permeable boundary condition and the kinematic one :

∂th(t, x, y) + ∂x

(∫ ζ

zb

udz

)
+ ∂y

(∫ ζ

zb

vdz

)
= −εδug,ε∂xzb − εδvg,ε∂yzb

+ εδwg,ε.
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Mass conservation equation

Noting f̄ as the mean of a generic function f over the section
[zb(x, y), ζ(t, x, y)],

f̄(t, x, y) =
1

h(t, x, y)

∫ ζ(t,x,y)

zb(x,y)

f(t, x, y, η)dη,

Using the following approximations :

uf,ε(t, x, y, z) = ūε +O(ε) and u2
f,ε = ū2

ε +O(ε),

and dropping the first higher order terms in ε gives a mass-balance equation :

∂t [h] + ∂x [hūε] + ∂y [hv̄ε] = −εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε.
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Momentum conservation equation

Similarly, we get

∂t [hūε] + ∂x

[
hū2

ε +
h2

2Fr2

]
+ ∂y [hūεv̄ε] = − 1

Fr2
h∂x [zb]

− k0(uf,ε)uf,ε +
Fr−1αBJ,0√
Kx +Ky

(uf,ε − εδug,ε)

+ (−εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε)uf,ε

and

∂t [hv̄ε] + ∂x [hūεv̄ε] + ∂y

[
hv̄2

ε +
h2

2Fr2

]
= − 1

Fr2
h∂y [zb]

− k0(uf,ε)vf,ε +
Fr−1αBJ,0√
Kx +Ky

(vf,ε − εδvg,ε)

+ (−εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε)vf,ε
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Saint-Venant system with recharge

Dropping ·̄, we get

∂t [h] + ∂x [huf ] + ∂y [hvf ]

= εδ(−ug∂xzb − vg∂yzb + wg)

∂t [huf ] + ∂x

[
hu2

f +
h2

2Fr2

]
+ ∂y [hufvf ] = − 1

Fr2
h∂x [zb]

− k0(uf , vf )uf +
Fr−1αBJ,0√
Kx +Ky

(uf − εδug)

+ εδ(−ug∂xzb − vg∂yzb + wg)uf

∂t [hvf ] + ∂x [hufvf ] + ∂y

[
hv2

f +
h2

2Fr2

]
= − 1

Fr2
h∂y [zb]

− k0(uf , vf )vf +
Fr−1αBJ,0√
Kx +Ky

(vf − εδvg)

+ εδ(−ug∂xzb − vg∂yzb + wg)vf
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Validation and discussion on the parameter δ and two-coupling
justification

εδ : influence of ground flow on free-surface flow valid only for specific values
of δ.

For establishing the classic Shallow-Water system, terms of order greater
than ε are dropped : range of validity for δ is 0 ≤ δ < 1.

δ ∈]0, 1[ : two-way coupling is valid if Ug ≈ Uf ⇐⇒ Tg ≈ Tf , i.e. δ . 1
specific to the permeability of the ground (coarse grained beaches).

Hydraulic conductivity in horizontal directions is greater than in vertical
directions. This characteristic is observed and documented in the literature
[9, pp. 100-103]. He states that Kx/Kz, with Kx and Kz respectively
horizontal and vertical hydraulic conductivity, usually fall in the range 2 to
10 for alluvium, but values up to 100 or mode occur where clay layers are
present.
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Saint-Venant system with ground influence

Consider that 0 ≤ δ < 1 and multiply eqs by
HU2

L
gives the Saint-Venant system

with ground influence in its dimensional form :

∂t [h] + ∂x [huf ] + ∂y [hvf ] = I

∂t [huf ] + ∂x

[
hu2

f + g
h2

2

]
+ ∂y [hufvf ]

= −k(uf , vf )uf +
αBJ√
kx + ky

(uf − ug) + Iuf − gh∂x [zb]

∂t [hvf ] + ∂x [hufvf ] + ∂y

[
hv2

f + g
h2

2

]
= −k(uf , vf )vf +

αBJ√
kx + ky

(vf − vg) + Ivf − gh∂y [zb]

with I = −ug∂xzb − vg∂yzb + wg the quantity of water that enters (I>0) or
leaves (I<0) the fluid domain.
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Conservative Saint-Venant system with ground influence

Finally, the two-way coupled model of SWE and RE is :



∂th+ div(q) = I, in Ωswe,

∂tq + div

(
q⊗ q

h
+ g

h2

2
I
)

= −k(uf )uf +
αBJ√
kx + ky

(uf − ug) + Iuf

− gh∇zb, in Ωswe,

I = ug · (−∂xzb,−∂yzb, 1)
T
, in Ωswe,

ug = −K(ψg)∇hg, in Ωg,

∂tθ(ψg) + div(ug) = 0, in Ωg,

hg = h+ zb, on ΓC ,

hg = hD, on ΓD,

−ug · n = qN , on ΓN .

with q = ufh, Ωg ⊂ Rd ⇒ Ωswe ⊂ Rd−1 with d = 2, 3.
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Conclusions and perspectives

By Asymptotic Reduction Methods, we have

identified small parameter ε and specific asymptotic regime

expanded the solution in terms of ε

analyzed the eqs and identified dominant terms as ε→ 0

retained leading-order terms to derive the hydrostatic approximation

vertically averaged these eqs to get the Saint-Venant system with recharge

this results in a simpler form (loss of one dimension)

formally justified the two-way coupling

To do,

Derivation of the Richards’ equation for saturated/unsaturated porous media
(c.f. Lecture 2)

Introduction to the Discontinuous Galerkin (DG) method for transport
equation (hyperbolic, c.f. M. Parisot’s lectures for the Finite Volume
approach)

Introduction to the DG method for parabolic-elliptic equations

Application of the DG method for a convection diffusion equation
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