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sROUNDWATER FLOW DYNAMICS IN COASTAL AREAS AND COASTLINE RETREAT

o General context : coastal engineering, sustainable development and climate
change
o Application : sandy beaches
— 1/3 of beaches are sandy and 1/4 are eroding at rates of 0.5m/year due
to rising sea levels [6, 10]
—» socio-economic impact

F1cURE — Almanarre beach, Hyeres, France®

a. (source : http ://laurejo.canalblog.com/)
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AiMs & CONTENTS

Aims of these lectures :
o Free surface and groundwater modeling
o Dimension reduction techniques

o Numerical method based on Discontinuous Galerkin method

Applications
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Avs & CONTENTS

Aims of these lectures :

]

o

]

]

Free surface and groundwater modeling

Dimension reduction techniques

Numerical method based on Discontinuous Galerkin method
Applications

Lectures are organized as follows :

o

]

]

L1 : Dimension reduction for free surface flows model including recharge
L2 : Groundwater flows modeling

L3 : Introduction to the Discontinuous Galerkin (DG) method for transport
equation (hyperbolic, c.f. M. Parisot's lectures for the Finite Volume
approach)

L4 : Introduction to the DG method for parabolic-elliptic equations

L5 : Application of the DG method for a convection-diffusion equation
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LECTURE 1 :
Dimension reduction for free surface flows model including recharge



OUTLINE OF THE LECTURE

@ MATHEMATICAL MOTIVATIONS
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@ DIMENSIONLESS EQUATIONS

@ FIRST ORDER APPROXIMATION
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@ CONCLUSIONS AND PERSPECTIVES
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ASYMPTOTIC REDUCED MODELS FOR WHAT 7

Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition
about complex systems without solving them exactly !
o Simplification of complex mathematical models :
—» Many physical systems are governed by complex equations that are

difficult to solve or simulate directly.
— ARM helps identify dominant balances and approximate the behavior of

the system reducing model complexity.
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Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition
about complex systems without solving them exactly !
o Simplification of complex mathematical models :
—» Many physical systems are governed by complex equations that are
difficult to solve or simulate directly.
— ARM helps identify dominant balances and approximate the behavior of
the system reducing model complexity.
o Computational Efficiency :
— Full-scale models are often computationally expensive due to high

dimensionality.
— ARM vyields simplified models that require fewer resources for numerical

simulations.
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ASsYMPTOTIC REDUCED MODELS FOR WHAT ?

Asymptotic Reduction Methods (ARM) provide a powerful way to gain intuition
about complex systems without solving them exactly !

o Simplification of complex mathematical models :

—» Many physical systems are governed by complex equations that are
difficult to solve or simulate directly.

— ARM helps identify dominant balances and approximate the behavior of
the system reducing model complexity.

o Computational Efficiency :

— Full-scale models are often computationally expensive due to high
dimensionality.

— ARM vyields simplified models that require fewer resources for numerical
simulations.

o Improved Insight and Analytical Solutions :

— ARM often provides closed-form solutions or simple approximations,
making it easier to understand the system's qualitative behavior.

— Asymptotic analysis can reveal hidden structures, and stability
properties that are hard to identify in the original model.
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AsyMPTOTIC REDUCED MODELS HOW 7

o Identify Small or Large Parameters :

— Determine the key parameters ¢ that are very small or large.
—» Expand the solution in terms of these parameters using asymptotic
expansions or perturbation methods.

o Determine the Leading Order Terms :

— Analyze the egs to identify which terms dominate as ¢ — 0 or co.

— Neglect higher-order terms that become negligible in the asymptotic reg.
o Simplify the Governing Equations :

— Derive reduced equations that retain the leading-order behavior and
dynamics.
—» This results in simpler ODEs, PDEs, or algebraic equations.

o Validate the Reduced Model :
— Compare the reduced model’s predictions to the full-scale model or

experimental data in the asymptotic regime.
— Ensure that critical behaviors (e.g., stability) are preserved.
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9 (GOVERNING EQUATIONS AND GEOMETRICAL SETTINGS
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sOVERNING EQUATIONS : INCOMPRESSIBLE NAVIER-STOKES

o Free surface flow eqgs [4, 5, 7]

{diV(pouf) =0

. . on 2
B(pouy) + div(pous @ uy) — div(o(us)) — poF =0 /

where
Qp(t) == {(z,9,2) €R® | z(w,y) < 2 < ((t,w,y)}

o Notations : (a,b) € R*xR? a®b =ab”, and
3

(dIV(A))Z = Z@AU fori = 1,2,3

Jj=1
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sOVERNING EQUATIONS : INCOMPRESSIBLE NAVIER-STOKES

o Free surface flow eqgs [4, 5, 7]

div(pouy) =0
. . on Qf
9 (pouy) + div(pous @ uy) —div(o(uy)) — poF =0
where
Qp(t) = {(2,9,2) € R’ | zp(w,y) <z <((ta,y)}
¢ . absolute height of the surface ([L])
2 : topography ([L])
h:=(—2z : water height ([L])
up = (ug,vp,wyp)’ . velocity field ([L-T7"])
) F = (0,0,—g)" : gravity acceleration ([L - T?])
with o(uy) = —psI+2uD(uy) : total stress tensor ([M - L™ - T72])
D(u) = % (Vuf + (Vuf)T) :  strain stress tensor
Df . pressure of fluid (M -L~"-T7?])
00 . density ([M - L™%))
>0 : dynamic viscosity ([M - L™'-T7 ")
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sOVERNING EQUATIONS : INCOMPRESSIBLE NAVIER-STOKES

o Free surface flow eqgs [4, 5, 7]

div(pouy) =0

. . on ()
du(pouy) + div(pous @ uy) — div(o(uy)) — poF =0 !

where

Qp(t) == {(z,9,2) €R® | z(w,y) < 2 < ((t,w,y)}

o : : x

(a) Sketch of variables with / the water height, ¢ the free- (b) Sketck of basis with (m,,‘rl,1 ,Thy) ON the bathymetry
surface height and z;, the bathymetry and (nf,7f,,7f,) on the free-surface
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sOVERNING EQUATIONS : INCOMPRESSIBLE NAVIER-STOKES

o Free surface flow eqgs [4, 5, 7]

{diV(pouf) =0

. . on ()
du(pouy) + div(pous @ uy) — div(o(uy)) — poF =0 !

where
Qf(t) = {($,y,2') eR? | Zb(z7y) <z< C(tamvy)}
o Fluid region indicator function :
‘I’(t,xay,z) = ]lﬂf(t)(xa y,z) = ]lzb(z,y)<z<ﬁ(t,a:,y)7 for all (t,x,y, Z) € R*
o & satisfies the following indicator transport equation :

O ® + 0 (Puy) + 0y (Pvy) + 0. (Pwy) = 0 on Qy.
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© BOUNDARY CONDITIONS
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FREE SURFACE AND BOTTOM BOUNDARY CONDITIONS

(0] . X (0] X

(a) Sketch of variables with & the water height, { the free- (b) Sketck of basis with (np,7p,, Tp,) on the bathymetry
surface height and z;, the bathymetry and (ny, 7y, ,7s,) on the free-surface




FREE SURFACE BOUNDARY CONDITIONS

o (Navier) Stress boundary condition [4, 7] :
(o(ug)ng) - 75, = Mon §.

where 9 is any meteorological phenomena (such as evaporation, rainfall,
wind, etc.), set to 0 in what follows,

§ = {2y, |[t>0, (z,y) € R?},
the upward normal of B is defined with :

_6a:<
L [-a.¢

nf = ————-
VIFIVER

and (7y,),_, , is a basis of the tangential surface :
1 _8y< 1 —3zC
Th=—==| 0. | and 7f, = ——— | —0,(¢
e\ % BT VNEFIVE \ v
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FREE SURFACE BOUNDARY CONDITIONS

o (Navier) Stress boundary condition [4, 7] :

(o(up)ng) - 7p =Mon §.

o Kinematic boundary condition :

¢ = ong§

Uy -nyp=-————
VN

or using definition of ny and 7y, kinematic boundary condition can be
rewritten as :

O0r¢ + w0, +v0y¢ —w = 0.
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BOTTOM BOUNDARY CONDITIONS AND RICHARDS’ EQUATION

(0] . X (0] X

(a) Sketch of variables with & the water height, { the free- (b) Sketck of basis with (np,7p,, Tp,) on the bathymetry
surface height and z;, the bathymetry and (ny, 7y, ,7s,) on the free-surface




BOTTOM BOUNDARY CONDITIONS AND RICHARDS’ EQUATION

o (Navier) Stress boundary condition [3, 4] :

(oug)m) -, = (—pok<uf>uf - ug>> 7, on B

(1

where
B:= {(x,y,Zb) | ($7y) € RQ}’

the upward normal of B is defined with :
1 —8902’1)
\/ 1+ |Vzb|2 1
and (7y,);_, o is a basis of the tangential surface :

1 _8yzb 1 _ngb
= w 8121; and Thy = yZh

0 \/|VZb|2—|—|VZb|4 —|Vzb|2
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BOTTOM BOUNDARY CONDITIONS AND RICHARDS’ EQUATION

o (Navier) Stress boundary condition [3, 4] :

(oug)m) -, = (—pomuf)uf - ug>> 7, on B

(1

and
Clam >0 . laminar friction coefficient
Ciur >0 : turbulent friction coefficient
k(us) = (Clam + Crurl€]), V€ € R® 1 a kinematic friction law
k(1pg) = trace(k(vy)) . structure of the porous medium
aBy : a dimensionless constant
ug . Darcy velocity field
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BOTTOM BOUNDARY CONDITIONS AND RICHARDS’ EQUATION

o (Navier) Stress boundary condition [3, 4] :

(oug)m) -, = (—pomuf)uf + s ug>> 7, on B

u, ([L-T7']) is a function of the hydraulic head h, ([L]) which is a
solution of the Richards’ equation (RE) (porous media, c.f. Lecture 2, and
[1,2,8]):

{ug = —K(¢,)Vhy -
g

9,0(1hg) + div(ug) =0
where the ground region (fixed in time) :

Qg = {(m,y,z) eR? | z < Zb(fﬂ,y)}

0 : water content ([-])
where K : hydraulic conductivity ([L - T7])
vy ¢ pressure head ([L-T71)

EcoLE CIMPA, 2024 19 OCTOBRE 2024 9/26



BOTTOM BOUNDARY CONDITIONS AND RICHARDS’ EQUATION

o (Navier) Stress boundary condition [3, 4] :

(oug)m) -, = (—pok<uf>uf - ug>> 7, on B

(1
o (Coupling) Absorption/Injection condition :
us(t,z,y,z) -ny =uy(t,z,y,2) - ny on B

If uy(t,z,y,2) - np > 0, water enters the fluid domain, and if
uy(t,z,y,2) - ny < 0 water leaves the fluid domain.
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BOTTOM BOUNDARY CONDITIONS AND RICHARDS’ EQUATION

o (Navier) Stress boundary condition [3, 4] :

(oug)m) -, = (—pok<uf>uf - ug>> 7, on B

(1
o (Coupling) Absorption/Injection condition :
us(t,z,y,z) -ny =uy(t,z,y,2) - ny on B
o Pressure condition :

—(o(ug)ny) - np = pogipy on B.
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@ DIMENSIONLESS EQUATIONS
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SMALL PARAMETER IDENTIFICATION AND ASYMPTOTIC REGIME

o (Characteristic) Water height H is assumed small with respect to the
horizontal length L of the domain and vertical variations W are small
compared to the horizontal Uy ones :

H Wy
== K 1
T T U,
. L L H 5 .
— Fluid and ground characteristic time : Ty = — = — = ¢"T}; with
Usp Wy
L H i .
T, = — = — where 0 € RY, a parameter that allows us to control
Uy Wy

the difference between speeds in the fluid and ground domains. As a
consequence, one has

Uy = E(SUf and W, = 55‘;Uf.
o The pressure scale is defined as :

Py = pOU]%.
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SMALL PARAMETER IDENTIFICATION

o Introduce the dimensionless quantities of time t~f, space (Z, 9, ), pressure
Py, and velocity field (@z,¥f,W¢) via the following scaling relations :

P i _ Dy = -1 . Ug
ty = — = —= K:= K 'K = 7
f Tf’ f Pf U’Q Ug
T~ Y - us o~ vro3 hg ~ Yy
==, yi== —- = hy == ==
X Lay 7’ Uuy vavf Uf g H Vg Vg
s B E p . W W L R
CETa YTy @, YT YT,
with
1
- 0 0
K=:U N 1
- f1o0 = 0
€
0 0 ¢
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SMALL PARAMETER IDENTIFICATION

o The laminar and turbulent friction factors are scaled, respectively,

C'Iam C(Iam Ctul’
G = = , G = .
lam,0 Vf EUf tur,0 .

o The dimensionless number ag; is rescaled as :

aBJ . 541
oBJo = T with vy =72

o Finally, the following non-dimensional numbers are defined as :

Froude's number, Fr =U¢/\/gH,
Reynolds number with respect to 1, Re := poUsL/p.
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DETERMINING THE LEADING ORDER TERMS : DIMENSIONLESS EQUATIONS

o Dimensionless incompressible Navier-Stokes equations :
divzg(ay) + 0zwy =0
Ortup+divgg(Uy @ Uy) + 0z (Wyply) + Vagpy =
Re~! <2divig(pg~;g(ﬁf)) #5(0z ) + iassﬁf)
d:ps =Re™" (5 dwtytiy + divag(9z0y) + 20z:Wy)
< (Opiny + divag (i iiy) + 0:(3) ) - Fr

o Dimensionless Richards’ equation :

D;0(Hby) + D3ty + Oy + Os0y = 0
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DETERMINING THE LEADING ORDER TERMS : DIMENSIONLESS BOUNDARY CONDITIONS
o Navier boundary condition on B with X = 4y and oy :

0:X; 2+ 7
—Ro = — (C|am’() + Ctur,O\/W) X5

1 @BJ,0 s -1 2
+ : (Xf—e"Xg)+ O(Re ) +0(c7).
VeV ReFr K, + K, 7

o Permeable boundary condition B :
— iy 032, — V052 + Wy = —"ly05 2 — £° 0% + £°104
o Balance of pressure on B :

1 -
br=r3%s ~ Re™ (203,051 + 20520505 — 2051¢) + O(£?)

o Kinematic boundary condition on § : 9;C + if0zC + 9595 — Wy =0

82af _ —1 -1
2Re = O(Re™") and O(Re™)

030y B
e2Re

o Stress boundary condition on § :
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OUTLINE

@ FIRST ORDER APPROXIMATION
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SIMPLIFYING EQUATIONS : FIRST-ORDER APPROXIMATION AND ASYMPTOTIC REGIME

o Drop all the term of O(z) : hydrostatic approximation of the dimensionless
NS egs :

divig(ﬁf) =+ ag’LZJf =0
Oty + divag (g ® Gy) + Oz [yly] + Vagpy = Re™! (2diViy(Dig(ﬁf))

1 - _

+ 500y + 0 [Viﬂ(wf)])
0:p = Re™" (0 [divay (i)
+ 2655’J)f> — FI’_2
o Turbulent (asymptotic) regime consideration : Re ™' = ¢ and drop all the
term of O(¢) :
divgzg(ﬁf) + agﬁ)f =0
_ L - - _ 1,
agllf + dlvig(llf ® llf) + 0; [waf] + Vazgps = 0z |:Eagujt:|

O:py = —Fr?
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SIMPLIFYING EQUATIONS : FIRST-ORDER APPROXIMATION AND ASYMPTOTIC REGIME

By dropping - we obtain

o Free surface first order approximation :
pufe+ Oyuype + 0:wype =0,

1
Ovuge + 0n [uF ] + 0y [ufcvpel + 0. [ugewse] + Oopge = 0- [gazw,s] ;

1
Ovye + Oy Uy cvye] + 0y [UJ%,E] + 0, v ewye] + Oypre =0, [g@zvﬁg] ,
0:Dfe = —Fr2

with (ug., V¢, Wse,pre) the solution of the first-order dimensionless
Navier-Stokes system.

o Ground first order approximation :
09(Hpg) + Ozug + Oyvg + 0wy =0

with (ug.e, Vg e, Wy e, Vg.e, Rge) the solution of the first-order dimensionless
Richards'equation.
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SIMPLIFYING EQUATIONS : FIRST-ORDER BOUNDARY CONDITIONS

o OnB:

1 Fr_laBJ’O 5
gazu‘f’e = —ko(u‘f,e)u‘f’g + ﬁ(uf’e — €Oug,g)

5 P 5
Uf,eOp2pVf Oyt — Wre = € Ug e Op 2y + €°Vg,cO0y2p — €"Wg e
1
Pfe = P €
f Fr2 Y

with kO(uf,s) = Cvlam,O + Ctur,0|uf,6|
o OngF:

1
gazllf,g =0
0¢¢ + Uf,eaacC + Uf,sayc —wype.=0

19 OCTOBRE 2024



OUTLINE

@ VERTICALLY AVERAGED EQUATIONS
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HYDROSTATIC PRESSURE

Vertically integrating 0,py. = —Fr™2 between z and ¢(t,x,y), the hydrostatic
pressure is obtained

¢ ¢
/ 0.pfedz = —/ Fr2dz
4 z

pf,s(ta z,Y, C) - pf,s(ta z,Y, Z) = _Fr_z(C(ta xz, y) - Z)
Assuming that the pressure exerted on the free-surface ps (¢, 2,y, () = pam for

some constant paim € R (all other meteorological phenomena are neglected), this
becomes

pf@(t,ili, Y, Z) = Fr_2(C(t,:L',y) - Z) + Patm
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MASS CONSERVATION EQUATION

o Integrating Indicator transport equation between z = z(z,y) and
z=((t2,y):

¢ ¢ ¢ ¢
/8t<I>dz+/ &c((I)uf,s)dz—i—/ 8y(<1>’uf,€)dz+/ 0, (dw)dz =0
—

¢ ¢
ath(tax)y) + a:l? (/ vasdz) + ay </ vasdz)
Zp Zb

+ (Uf,eaaczb +vy0y2p — W) | 1=z,
— (8,5( + uf,aawc + ’Uf,gayc - ’U)) |z:§ =0

o Using the permeable boundary condition and the kinematic one :

¢ ¢ i )
Oth(t,z,y) + 0, (/ Udz> + 0y (/ Udz) = _ebug,eaxzb - Eévg,eayzb
Zp Zp

s
+ e wg e
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MASS CONSERVATION EQUATION

o Noting f as the mean of a generic function f over the section
[Zb(xa y)a C(t7 Z, y)]'
C(t,z,y)

_ 1
flt,z,y) = —/ f(t,z,y,m)dn,
h(t,ﬁ,y) zp(z,y)

o Using the following approximations :

ufe(t,x,y,2) = 4. + O(e) and K = a2+ 0(e),

and dropping the first higher order terms in ¢ gives a mass-balance equation :

O [h] + 0y [ha.] + Oy [ho.] = —5‘$u9758xzb — 551197581,% + 5‘5wg75.

EcoLE CIMPA, 2024 19 OCTOBRE 2024

20 /26




MOMENTUM CONSERVATION EQUATION

Similarly, we get
_ h? o 1
6t [h’U,E] + 8 hu + F + (9y [h’Ll,E’UE] = —?hax [Zb]

—ko(use)use + m(ﬂfa—fduga)

5 5
+(—c'ug oz — € 'Ug,sayzb telwge)uge

and

hay [Zb]

2
0y [hve] + 0, [hicve] + 0y [hvf + h—} S

oF?] FP
Fr om0
_ ko(uf’s)vf’ \/K—W&}f’s — g(s’l)g’e)

b b
+ (—c"ug 02y — € Ug,aayzb + "Wy, ) Vs e
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SAINT-VENANT SYSTEM WITH RECHARGE
Dropping ~, we get
¢ [h] + Ox [hug] + Oy [hvy]

=" (—ugOpzp — VgOyzp + Wy)
2

h 1
O [th] + Oy [huf + 9F2 :| + (9 [thUf] F—rzham [Zb]

Fr—! QaBJ,0 (u —s‘Su )
/—Kz+Ky f g

+ 5‘5(—u98mzb — 0G0y 2 + Wy)uf

— ko(uyg,vp)us +

h? 1
O¢ [hvg] + Oy [husvg] + 0y [hvf + } = ——5hd, [z]
2Fr? Fr
Fl'_laB_j’o

— ko(up,vp)vf + ———= (vy — 0
O(f f)f \/m(f g)

+ 55(—%83721) — 0Oy 2y + Wy)Vf
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VALIDATION AND DISCUSSION ON THE PARAMETER § AND TWO-COUPLING
JUSTIFICATION
o &° :influence of ground flow on free-surface flow valid only for specific values
of ¢.
o For establishing the classic Shallow-Water system, terms of order greater
than ¢ are dropped : range of validity for § is 0 <0 < 1.
o 0 €]0,1] : two-way coupling is valid if Uy = Uy <= Ty = Ty ,ie. 0 S1
specific to the permeability of the ground (coarse grained beaches).
o Hydraulic conductivity in horizontal directions is greater than in vertical
directions. This characteristic is observed and documented in the literature
[9, pp. 100-103]. He states that K, /K., with K, and K, respectively
horizontal and vertical hydraulic conductivity, usually fall in the range 2 to
10 for alluvium, but values up to 100 or mode occur where clay layers are
present.
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SAINT-VENANT SYSTEM WITH GROUND INFLUENCE

2
Consider that 0 < ¢ < 1 and multiply eqgs by

gives the Saint-Venant system
with ground influence in its dimensional form :
O [h] + Oy [hug] + Oy [huy] =T

h2
O [hug] + Oy {hu? + 97] + 0y [hufvy]

aB)

Vo + ky

h2
Oy [h”Uf] + 0y [thUf] + 3y [hv? + g?]

= —k(uys,vp)uy + (uf —ug) + Tuy — ghy [2]

+ Ivy — gh0y [2)

aBy
= —k(uy, b2
(ug,vf)vg Tt (vf — vg)

with [ = —u40,2, — v40y 2, + wy the quantity of water that enters (1>0) or
leaves (1<0) the fluid domain.
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CONSERVATIVE SAINT-VENANT SYSTEM WITH GROUND INFLUENCE

Finally, the two-way coupled model of SWE and RE is :

O¢h +div(q) =1, in Qswe,
0+q + div <q§)q +g%2]1> = —k(uy)uy + \/k:jiB%ky(uf —ugy) + Tuy

— ghVzy, in Qswe,
I=uy (=825, —0yz, )7, in Qswe,

uy = —K(¥y)Vhy, in Qg,

0:0(g) + div(ug) = 0, in Qg,

hg = h + zp, onIl'c,

hy =hp, onI'p,

—uy-n=gn, onI'y.

with g = ush, Q, € R = Qqpe € R with d = 2,3.
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@ CONCLUSIONS AND PERSPECTIVES
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CONCLUSIONS AND PERSPECTIVES

By Asymptotic Reduction Methods, we have

]

]

]

]

]

]

]

identified small parameter € and specific asymptotic regime

expanded the solution in terms of ¢

analyzed the egs and identified dominant terms as ¢ — 0

retained leading-order terms to derive the hydrostatic approximation
vertically averaged these egs to get the Saint-Venant system with recharge
this results in a simpler form (loss of one dimension)

formally justified the two-way coupling

To do,

o

Derivation of the Richards' equation for saturated/unsaturated porous media
(c.f. Lecture 2)

Introduction to the Discontinuous Galerkin (DG) method for transport
equation (hyperbolic, c.f. M. Parisot's lectures for the Finite Volume
approach)

Introduction to the DG method for parabolic-elliptic equations

Application of the DG method for a convection diffusion equation
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