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LAST LECTURE AND AIMS

We have presented
o review of existing classical numerical scheme

o apply the RKDG scheme for scalar conservation laws
To do,
o Introduction to the DG method for parabolic-elliptic equation
o Application of the DG method for a convection-diffusion equation
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DGM FOR ELLIPTIC EQUATIONS

Elliptic PDEs arise in steady-state problems such as electrostatics, structural
analysis, and incompressible fluid flow (e.g., the Poisson equation). Several DG
methods have been developed for elliptic problems :

o Interior Penalty DG Methods (IPDG) : One of the most common
approaches, IPDG, introduces a penalty term to enforce continuity weakly
between the discontinuous elements. The penalty term controls the
inter-element jump and ensures stability.

o Local Discontinuous Galerkin (LDG) Methods : LDG methods introduce
auxiliary variables to split second-order elliptic equations into first-order
systems, which are then discretized using a DG framework. LDG offers
advantages in handling higher-order PDEs and flux terms.

o Nonsymmetric DG (NDG) Methods : These methods avoid symmetric
treatment of fluxes and often introduce additional stabilizing terms to ensure
convergence and robustness for elliptic problems.

Theoretical results for elliptic PDEs, such as error estimates and stability
analyses, have been well established, with the method shown to be stable and
convergent under appropriate choices of the penalty parameter and element
polynomial degrees.
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LECTURE 4 :
Introduction to DGM for elliptic/parabolic equations



OUTLINE OF THE LECTURE

@ MODEL PROBLEM

O A cLass or DGM

© EXISTENCE AND UNIQUENESS OF THE DG SOLUTION

© LINEAR SYSTEM
o Computing the matrix A
o Computing the RHS
©@ CONVERGENCE OF THE DGM
@ CONCLUSIONS AND PERSPECTIVES

@ REFERENCES
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OUTLINE

@ MODEL PROBLEM




Toy MODEL
Let us consider the following two-point boundary problem P on the unit interval
—(K(@)u'(z)) = f(z), Yz €]0,1]
u(0) = 1
u(l) = 0
where K € C'(0,1) and f € CY(0,1). We also assume that
Vr € [0,1], 0<K0§K(.’E) < K.

We say that u is a solution of this problem if u € C%(0,1) and satisfies the
equation pointwise.
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OUTLINE

O A cLass or DGM




SETTINGS

1
o Letx;=1h,i=0,...,N+1with h = N for the sake of simplicity.

+1
o As done in the previous lecture, we recall Vi¥ = {v;v;, € Py(I;)} the space
of piecewise discontinuous polynomials of degree k on the interval I;
o we recall that
— v(:vljE
— jump : [u(z)] = v(z]) —v(x]), i =1, N and [v(zo)] = —v(zg),
[v(zni1)] = v(x;/+1)

— average : {v(z;)} = 1 (v(z;) +wv(z;)), i=1,N and

)= gl_r%v(l‘i +e)

2
{v(@o)} = v(zg ), {v(@n+1)} = v(ry,y)
N+1 0’0
—» jump penalization : Jy(v, w) = Z %[[v(xl)]][[w(xl)]]
=0
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WEAK FORMULATION

o LetveVf= {v;vr; € Px(I;)}, multiply equation by and integrate by parts on
each interval I; gives :

/ K (@) (@) (2) do — K (@i ) (wie)o(ery) + K (@) (@)v(a?)

:/ f@)v(z) dz, i=0,...N

o By adding all equations above, we get

N N+1 N
Z/ K (z)u (z)v (x) do — Z[[K z)u (z)v(z:)] = Z/ f(z)v(z) dz
i=0 /i i=0V/1i

o Easy to check that [uv] = [u] {v} + [v] {u}

o Since [K(z:i)u /(:cl)}] = 0, applying this property provides
N+1

Z/ K(z v'(z) dx — Z {K(zi)u'(z:) } [v(:)] + Jo(u, v)
= ;/It f(@)v(z) dz
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WEAK DG FORMULATIONS I

o Since u is continuous : [u(z;)] =0, fori=1,...,N

o if u is a solution of P then w satisfies

Z/I K(z)u'(z)v'(x) dz

N+1 N+1

- Z {K(z;)u'(z;)} [v(z:)] + € Z {K (z;)v" (z3)} [u(z)] + Jo(u,v)

—Z [, J0t0) e - Kl oo + e e ulo )

where € € R. We restrict to e € {—1,0,1}.
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WEAK DG FORMULATIONS 11

Letac: VFxVF SR

N N+1
alw) =3 /1 (e (@) (2) d Z (K (z:) (2:))} [0(2:)]
N+1 0 N1
+e Z {K (z)v (2;)} [u(z:)] + — Z[[u i) [v(x;)]
° lif e = —1, then a.(u,v) = ae(v,u) is symmetric

o if e € {0,1}, then a. is nonsymmetric
yields to several DGM. More precisely, one has the class of well-known DGM :
o ife=—1and ¢” > 0 : Symmetric Interior Penalty Galerkin (SIPG) [1]
o ife=—1and ¢ =0 : Global Elemen Method (GEM) [2]
o if e=1and ¢ =1 : Nonsymmetric Interior Penalty Galerkin (NIPG) [6]
o if e=1and ¢° = 0 : Nonsymmetric Interior Penalty Galerkin (NIPG) by [3]
o if e =0 : Incomplete Interior Penalty Galerkin (1IPG) [1]

o if e=0and ¢’ =0 : the method is not convergent and not stable! One
cannot even prove the existence and uniqueness.

In practice, it is useful to use variable penalty parameter a?.
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OUTLINE

© EXISTENCE AND UNIQUENESS OF THE DG SOLUTION
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FINITE DIMENSONAL PROBLEM

Since the problem is finite-dimensional, the existence of a solution is equivalent to
uniqueness. Let us assume that u; and u2 are two solutions and let us define
w = u1 — uz. Since both w;, for i = 1, 2 satisfies

ae(u,v) = L(v)

for all v € V¥ with

L(v) = Z/ f@)v(@) do — eK (z0)v (zo)u(zo) + K (zn 1)V (zv 1 )ulzn 1)
i=0 7/ Li

It yields to
ac(w,v) =0 .
For the NIPG case with ¢° > 0, with v = w, one has Vi

0

/1. K () (w (2))? d = 0 and T (e =0

Since K > 0, the first equation implies that w is a constant and the second one implies
that the constant is precisely 0 which ends the uniqueness. Proofs in the other case are
more complex and we refer to [4] and [5].
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OUTLINE

@ LINEAR SYSTEM
o Computing the matrix A
o Computing the RHS
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SETTINGS

As done in the previous lecture, we consider the monomial basis {1,$,m2, . ,xk}
) 2 7
which are given by ¢}(z) = (E(m — x,»+1/2)) , for j =0,...,k, translated from

the interval [—1, 1] where z; /5 is the midpoint of the interval I;. We expand
the DG solution of the problem P as follows :

N
up(x) = Z o Ui

=0

where U? € R**! are the dof of u, on the interval I;.
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SETTINGS
Let us define
o A= <I>Z <I>Z
° BZ] )
o Dyl(x) = (
° D”( )=
and remark that

[+

(K () ()]
= (VT (RGP @@ @) U RS @@ @)
0 (FREDP @@ @) U+ SR @)@ @)
= (v (JEEOHDIN T @)U LD )

O (GREODE @)U+ KD U
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SETTINGS

and
{K (@) (i) } [u(z)]
= (v HT (%K(m{)fol’i_l(zi)Ui_l - %K(m;)Di_l’i(:ci)Ui>
) (FRENDE @)U = JK DY w0 )

[u(e)]lo(@)] = (u(z;) = u(@))(v(z;) - v(z))
= u(z; Jo(r;) —ula v(z;) — u( oy Jo(a)) +u(z o)
_ (V ) B —1,2 71(1_ )U - (Vifl)TBifl,i(xi)Ui
—(VYTBY @)U+ (VYT BY (@)U
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SETTINGS

N
2/ K(x)u'(x)v'(z) dx
i=0 7 1i

N+1 N1 50 Nt1

=D K@) (@)} [o(a ]]+62{K ) } [u(z: ]]+*ZHU(E )Nv(:)]
i=0

= Z/ f(@)v(z) de — eK (z0)v' (z0)u(xo0) + eK (xn+1)v (zn+1)u(TNi1)
i=0 7 Li
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SETTINGS

Z/I K(x)u'(x)v'(z) dx
3 (K Gou @)} 0] + €3 {K @' o) InGe] + Z[[u (o]

0 0

+%U(wo)v(wo) + %

— Z/ f(@)v(z) dz + —uov(mo )+ uN+1v(mN+1)

w(rN+1)v(TN+1)

—K(2g)u (x5 )Jv(zg) + K(zy 1)U (@y11)v(@ N 41)
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OUTLINE

@ MODEL PROBLEM

O A cLass or DGM

@ EXISTENCE AND UNIQUENESS OF THE DG SOLUTION

© LINEAR SYSTEM
o Computing the matrix A
©@ CONVERGENCE OF THE DGM
@ CONCLUSIONS AND PERSPECTIVES

@ REFERENCES
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SETTINGS

Fori=1,..., N we have
—{K(zi)u'(z:) } [o(@:)] + e {K (z:)v" (2:) } [u(z:)] + %[[U(wi)]][[v(wi)]]

_ (Vi—l)T (Mi—l,z‘—lUi—l +Mi—1,iUz‘) n (Vi)T (Mi,i—lUi—l + M”U’)
Vi—vl Mz—lz—l Mz—lz Ui—ll
Vz Mz,zfl M'L,z U’L

. 1 o o o
Mz 1,2 1:_§K($1 )DZL 1,2 1(581)-1—%}((1’1 )DZ, 1,2 1($Z)+%Bl 1,2 1(1'1,)

with

O'O

o 1 L L o
M = SR (@)D @) - SR @)Dy (@) - 5B (@)
ii—1 1 —\ b=l € +\ ybi—1g,. a® ii—1, .
MY = SR (@)D () = SK(@)DY T (@) = 5B (@)
iyi 1 +\ i € 4\ isé o’ iy
M™ = SK(z)Dy' (x:) + 5 K(2") Dy (i) + - B (2:)
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ASSEMBLY

(VO (A + B (a0))U”

Mz

(Vz 1) (Mi—l,i—l(wi)Ui—l_'_Mi—l,i(mi)Ui)

.
Il
—

VO (MY @)U+ (A+ MY (@)U

'MZ

o
Il
—

(VT (BY N (@n 1)U
<
(VOT(A+ B*°(20) + M (21))U° + M** (21)U*

—1
+ Z(Vi)T <Mi,i—1(xi)Ui—1 T (A+ M”(xz) + Mi,i(xi+1))Ui T Mi,i+1(xi+l)Ui+1)

+(VN)T (MN,N—l(wN)UN—l + (A+BN’N(:IIN+1) + MN,N(xN))UN)

yielding to
v AU
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OUTLINE

@ MODEL PROBLEM
O A cLass or DGM
@ EXISTENCE AND UNIQUENESS OF THE DG SOLUTION
© LINEAR SYSTEM
o Computing the RHS
©@ CONVERGENCE OF THE DGM
@ CONCLUSIONS AND PERSPECTIVES

@ REFERENCES
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AsSEMBLY RHS

L(v) = [ f(z)v(z) dx + %uov(ﬂﬁ) — K (g )/ (25 )v(@])

+1:72_;1/1, f(@)v(z) dz

/ F@o(a) de + Toun 0@y ) + K @) @y )o@

L(v) = (V)T (FO + 7 @ (z0) — K(xg)u'(xg)cp‘)(xo))

0
0 (FY 4 S (o) 4 Ko o) (o) )

yielding to
viFE
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OUTLINE

@ CONVERGENCE OF THE DGM
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ERROR AND NORM

One can show that if the exact solution is smooth enough, the numerical error
decreases as one increases the number of intervals, i.e., as one decreases the
mesh size h. We define the numerical error

Ep = U — Up
and we define the energy norm

1/2

N 1 1/2
leall = (3 [ K@ eh@)? dot do(enen) | and fenll, = ([ en(o)® ac)

1 1
and 81 = In len] and B = In lenlly we get
(2) "\ flenz| (2) =\ flenslly
Convergence rates of primal DG method for uniform meshes in one dimension.
Method Bi B
NIPGo®>0 | k | k+1ifkodd
kif k even
SIPGo® > 0? | k k+1
PGo® >0 | k | k+1ifkodd
k if k even
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OUTLINE

@ CONCLUSIONS AND PERSPECTIVES
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JONCLUSIONS AND PERSPECTIVES

We have presented
o existing classical numerical scheme

o apply the IIPG scheme for elliptic/parabolic equations

To do,
o Application of the DGM for a convection-diffusion equation
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OUTLINE
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