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Motivations

Physical motivations : to be able to simulate applications in real-life fluid
mechanics in dimension 2 and 3

I wave-breaking,
I wave-impacting,
I tsunami . . .

Numerical motivations : to be able to design a model and a numerical code
for such applications

I fast and accurate,
I limiting the numerical diffusion,
I adaptive and a suitable meshing machinery,
I optimized numerical code,
I . . .

Mathematical motivations : introducing new tools
I a suitable mesh refinement tool and its mathematical properties
I consistency at interface of two cells of different level,
I . . .
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Hyperbolic equations and entropy condition

We focus on general non linear hyperbolic conservation laws{
∂w

∂t
+
∂f(w)

∂x
= 0, (t, x) ∈ R+ × R

w(0, x) = w0(x), x ∈ R

w ∈ Rd : vector state,
f : flux governing the physical description of the flow.

Weak solutions satisfy

S =
∂s(w)

∂t
+
∂ψ(w)

∂x

 = 0 for smooth solution
= 0 across rarefaction
< 0 across shock

where (s, ψ) stands for a convex entropy-entropy flux pair :

(∇ψ(w))
T

= (∇s(w))
T
Dwf(w)

Entropy inequality '“smoothness indicator”

Croisille J.-P., Contribution à l’Étude Théorique et à l’Approximation par Éléments Finis du Système

Hyperbolique de la Dynamique des Gaz Multidimensionnelle et Multiespèces, PhD thesis, Université de
Paris VI, 1991
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Hyperbolic equations and entropy condition

We focus on general non linear hyperbolic conservation laws{
∂w

∂t
+ div(f(w)) = 0, (t, x) ∈ R+ × Rm

w(0, x) = w0(x), x ∈ Rm

Weak solutions satisfy

S =
∂s(w)

∂t
+ div(ψ(w))

 = 0 for smooth solution
= 0 across rarefaction
< 0 across shock
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Paris VI, 1991

M. Ersoy (IMATH) BB-AMR 2015, 10-13 June, Porto, Portugal 6 / 29



Finite volume approximation

Figure: a cell Ck

Finite volume approximation :

wn+1
k = wn

k −
δtn
hk

(
F n
k+1/2 − F n

k−1/2

)
with

wn
k '

1

hk

∫
Ck

w (tn, x) dx and F n
k+1/2 ≈

1

δt

∫
Ck

f(t, w(t, xk+1/2)) dx

The numerical density of entropy production :

Snk =
sn+1
k − snk
δtn

+
ψnk+1/2 − ψ

n
k−1/2

hk
/ 0
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Mesh refinement indicator : principle & illustration

Given wnk → compute wn+1
k

Compute Snk : Snk 6= 0 =⇒ the cell is refined or coarsened

More precisely :

I Sn
k 6 αminS =⇒ the cell is refined with S =

1

|Ω|

∫
Ω

Sn
k

I Sn
k > αmaxS =⇒ the cell is coarsened
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I Sn
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I Dynamic mesh refinement :

F Non-structured grid : macro-cell

F Dyadic tree (1D)

, Quadtree (2D), Octree (3D)

F hierarchical numbering : basis 2

,4,8
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∫
Ω

Sn
k

I Sn
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I Simple approach but the scheme is locally non consistent [SO88, TW05]

I Limit the mesh level of adjacent cells by 2
I A correction can be obtained (work in progress) [AE15]

Altazin T., Ersoy, M. Analyze of the inconsistency of adaptive scheme. Preprint (in progress),

2015.

Shu C. W., Osher S., Efficient implementation of essentially nonoscillatory shock-capturing

schemes. J. Comput. Phys., 77(2) :439–471, 1988.

Tang H., Warnecke G., A class of high resolution difference schemes for nonlinear Hamilton-Jacobi

equations with varying time and space grids. SIAM J. Sci. Comput., 26(4) :1415–1431, 2005.
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An example : the one-dimensional gas dynamics equations for ideal gas

∂ρ

∂t
+
∂ρu

∂x
= 0

∂ρu

∂t
+
∂
(
ρu2 + p

)
∂x

= 0

∂ρE

∂t
+
∂ (ρE + p)u

∂x
= 0

p = (γ − 1)ρε

where

ρ(t, x) : density
u(t, x) : velocity
p(t, x) : pressure
γ := 1.4 : ratio of the specific heats
E(ε, u) : total energy
ε : internal specific energy

E = ε+ u2

2

Conservative variables
w = (ρ, ρu, ρE)

t

entropy

s(w) = −ρ ln

(
p

ργ

)
of flux ψ(w) = u s(w) .

Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
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Sod’s shock tube problem

Mesh refinement parameter αmax : 0.01 ,
Mesh coarsening parameter αmin : 0.001 ,

Mesh refinement parameter S̄ :
1

|Ω|
∑
kb

Snkb

CFL : 0.25,
Simulation time (s) : 0.4,
Initial number of cells : 200,
Maximum level of mesh refinement : Lmax .
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Figure: Sod’s shock tube problem : solution at time t = 0.4 s using the AB1M scheme
on a dynamic grid with Lmax = 5 and the AB1 scheme on a uniform fixed grid of 681
cells.
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Time restriction

, local time stepping approach & Aims

Explicit adaptive schemes : time consuming due to the restriction

‖w‖δt
h

6 1, h = min
k
hk

Local time stepping algorithm :
I Sort cells in groups w.r.t. to their level
I Update the cells following the local time stepping algorithm.
I save the cpu-time keeping the accuracy.

M. Ersoy, F. Golay, L. Yushchenko. Adaptive multi-scale scheme based on numerical entropy production

for conservation laws. CEJM, Central European Journal of Mathematics, 11(8), pp 1392-1415, 2013.

M. Ersoy, F. Golay, L. Yushchenko. Adaptive scheme based on entropy production : robustness through

severe test cases for hyperbolic conservation laws. Preprint,
https://hal.archives-ouvertes.fr/hal-00918773, 2013.

Muller S., Stiriba Y., Fully adaptive multiscale schemes for conservation laws employing locally varying

time stepping. SIAM J. Sci. Comput., 30(3) :493–531, 2007.
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two and three dimensional case : BB-AMR

Main difficulty : mesh and data structure.
For fast computation, the following are required

I parallel treatment
I hierarchical grids

The strategy adopted :
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two and three dimensional case : BB-AMR

Main difficulty : mesh and data structure.
Some interesting issues :

I 2D quad-tree [ZW11],
I 3D octree [LGF04],
I 2D/3D anisotropic AMR [HFCC13].

The strategy adopted :

Zhang, M., and W.M. Wu. 2011. A two dimensional hydrodynamic and sediment transport model for

dam break based on finite volume method with quadtree grid. Applied Ocean Research 33 (4) : 297 –
308.

Losasso, F., F. Gibou, and R. Fedkiw. 2004. Simulating Water and Smoke with an Octree Data

Structure. ACM Trans. Graph. 23 (3) : 457–462, 2004.

Hachem, E., S. Feghali, R. Codina, and T. Coupez. Immersed stress method for fluid structure

interaction using anisotropic mesh adaptation. International Journal for Numerical Methods in
Engineering 94 (9) : 805–825, 2013.
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1 1 fixed domain= 1 fixed block=1 cpu : “failure”→ synchronization depends on

the finest domain

2 1 dynamic domain= n × static blocks = 1cpu : “good compromise”→ each
domain has almost the same number number of cells →“better”
synchronization = Block-Based Adaptive Mesh Refinement (BB-AMR)

3 It certainly exists better strategy . . .
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BB-AMR

How it works ?

each domain has almost the same number of cells

domain are defined using Cuthill-McKee numbering

more sophisticated numbering exists . . .

re-numbering and re-meshing being expensive
I the mesh should be kept constant on a time interval

I AMR time-step computed through the smallest block and not the smallest cell
I Gain is important and numerical stability is conserved !
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BB-AMR

How it works ?

each domain has almost the same number of cells

domain are defined using Cuthill-McKee numbering

more sophisticated numbering exists . . .

re-numbering and re-meshing being expensive
I the mesh should be kept constant on a time interval
I AMR time-step computed through the smallest block and not the smallest cell
Tn+1 − Tn = ∆TAMR is given by the CFL

∆TAMR 6 β
mink hblockk

maxk ‖ublockk‖
, 0 < β 6 1.

I Gain is important and numerical stability is conserved !
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BB-AMR

How it works ?

each domain has almost the same number of cells

domain are defined using Cuthill-McKee numbering

more sophisticated numbering exists . . .

re-numbering and re-meshing being expensive
I the mesh should be kept constant on a time interval
I AMR time-step computed through the smallest block and not the smallest cell
I Gain is important and numerical stability is conserved !

Thomas Altazin, Mehmet Ersoy, Frédéric Golay, Damien Sous, and Lyudmyla Yushchenko. Numerical

entropy production for multidimensional conservation laws using Block-Based Adaptive Mesh Refinement
scheme. preprint, 2015.
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Examples :

A two dimensional example of BB-AMR with 3 domains and 9 blocks.

(a) AMR T0 (b) AMR T1 (c) AMR T2

A three dimensional example of BB-AMR with 3 domains and 27 blocks.

(d) Block-based
mesh

(e) Domain de-
composition
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Examples :

A two dimensional example of BB-AMR with 3 domains and 9 blocks.

(f) AMR T0 (g) AMR T1 (h) AMR T2

A three dimensional example of BB-AMR with 3 domains and 27 blocks.

(i) Block-based
mesh

(j) Domain
decomposition
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Simulation of wave propagation, wave breaking and wave impacting

Understanding of wave hydrodynamics is of primary interest for ocean and
naval engineering applications :

I dynamics of ships and floating structures,
I stability of offshore structures,
I coastal erosion and submersion processes, . . . .

It’s difficult to describe accurately wave dynamics and still a fairly open
research field.

involved physical processes, such as splash-ups or gas pockets entrapment,
are quite complex and can hardly be characterized by field or laboratory
experiments or analytical approaches : several models ! :

Therefore, numerical simulation of breaking and impacting waves is both
I an attractive research topic
I a challenging task for coastal and environmental engineering
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The governing equations

Assumptions : physics of impacting/breaking waves can be simplified
I mainly governed by pressure forces and overturning forces
I Mach number < 0.3 → fluid is slightly compressible

I small-scale friction and dissipation process are neglected
I two-phase flow Compressible Euler equations can be considered
I An artificial linearized pressure law is used to compute low Mach flows [C67]

Model (2D and 3D) : low mach two phase

Moreover,

hyperbolic system
entropy available
automatic mesh refinement
local time stepping
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∂t
+ u · ∇ϕ = 0

where

ρ(t, x) : density
u(t, x) : velocity
p(t, x) : pressure
ϕ : fluid’s fraction

with p = p0 + c0 (ρ− (ϕρw + (1− ϕ)ρa))

Moreover,

hyperbolic system
entropy available
automatic mesh refinement
local time stepping

Chorin, A.J. . A Numerical Method for Solving Incompressible Viscous Flow Problems. Journal of

Computational Physics 2 (1) : 12 – 26, 1967
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The governing equations

Assumptions

Model (2D and 3D) : low mach two phase
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Equation of state with artificial sound speed → CFL less restrictive

Explicit scheme → easy parallel implementation (MPI)
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A two-dimensional dam-break problem [KTO95]

capture the complex structure of the air-water interface after wave impact

Koshizuka, S., H. Tamako, and Y. Oka. A particle method for incompressible viscous flow with fluid

fragmentations. Computational Fluid Dynamics Journal, 4 (1) : 29–46, 1995.
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A two-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Experimental configuration
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A two-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Numerical parameters :

Mesh refinement parameter αmax : 0.2 ,
Mesh coarsening parameter αmin : 0.02 ,
Number of domain : 321,
Number of blocks : 321,
Number of processors : 120,
Maximum level of mesh refinement : Lmax = 5 ,
CFL : CFL = 0.8 ,
Simulation time : T = 1.5 ,
AMR time : AMR = 300 .
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A two-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Confrontation with experiments : T = 0

Figure: mesh (left), density with blue and red corresponding to air and water,
respectively (center), mesh refinement level (1 to 5) per block (right)
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A two-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Confrontation with experiments : T = 0.2

Figure: (a) Mesh ; (b) Density (air-blue, water-red) ; (c) Density of numerical
entropy production (green-zero, blue-negative values) ; (d) Mesh refinement level
per block (1 to 5) ; (e) Experiment ; (f) Mesh refinement criterion per block.
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A two-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Confrontation with experiments : T = 0.4

Figure: (a) Mesh ; (b) Density (air-blue, water-red) ; (c) Density of numerical
entropy production (green-zero, blue-negative values) ; (d) Mesh refinement level
per block (1 to 5) ; (e) Experiment ; (f) Mesh refinement criterion per block.

M. Ersoy (IMATH) BB-AMR 2015, 10-13 June, Porto, Portugal 23 / 29



A two-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Remarks :
I number of cells varies from 70 000 and 100 000
I elapsed computing time about 5 hours
I 1 domain = 1 block → better results with BB-AMR.
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A three-dimensional dam-break problem [K05]

capture the complex structure of the air-water interface after wave impact

Kleefsman, K.M.T., G. Fekken, A.E.P. Veldman, B. Iwanowski, and B. Buchner. A Volume-of-Fluid

based simulation method for wave impact problems. Journal of Computational Physics 206 (1) : 363 –
393, 2005.
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A three-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Experimental configuration

Figure: domain geometry and sensors points from
http://www.math.rug.nl/$\sim$veldman/comflow/dambreak.html
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A three-dimensional dam-break problem 2

capture the complex structure of the air-water interface after wave impact

Numerical parameters :

Mesh refinement parameter αmax : 0.2 ,
Mesh coarsening parameter αmin : 0.02 ,
Number of domain : 48,
Number of blocks : 3628,
Number of processors : 48,
Maximum level of mesh refinement : Lmax = 4 ,
CFL : CFL = 0.8 ,
Simulation time : T = 4.8 ,
AMR time : AMR = 240 .

2. 48 Intel X5675 cores
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A three-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Confrontation with experiments :

Figure: Free surface computed by Kleefsman (left), the experimentation (center)
and our (right) at t = 0.4, 0.6, 1, 1.8, 2, 4.8s
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A three-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Confrontation with experiments :

Lee, E.S., D. Violeau, R. Issa, and S. Ploix. Application of weakly compressible and truly incompressible

SPH to 3-D water collapse in waterworks. Journal of Hydraulic Research 48 (sup1) : 50–60, 2010.

Vincent, S., G. Balmigère, J.-P. Caltagirone, and E. Meillot. Eulerian-Lagrangian multiscale methods for

solving scalar equations - Application to incompressible two-phase flows. Journal of Computational
Physics 229 (1) : 73 – 106, 2010
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A three-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Confrontation with experiments :

Figure: Domains due to the BB-AMR scheme (left) and air-water interface (right)
at time 0.4s, 0.6s, 1.0s, 2s.
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A three-dimensional dam-break problem

capture the complex structure of the air-water interface after wave impact

Remarks :
I number of cells varies from 800 000 cells up to about 1 500 000 cells
I elapsed computing time about 10 hours (instead of 24h [GH07])

Golay, F., and P. Helluy. Numerical schemes for low Mach wave breaking. International Journal of

Computational Fluid Dynamics 21(2) : 69–86, 2007.

YUSHCHENKO, L., GOLAY, F., ERSOY, M. Production d’entropie et raffinement de maillage.

Application au déferlement de vague. 21ème Congrès Francais de Mécanique, 26 au 30 aout 2013,
Bordeaux, France (FR).

Golay, F., Ersoy, M., Yushchenko, L., Sous, D. Block-based adaptive mesh refinement scheme using

numerical density of entropy production for three-dimensional two-fluid flows. International Journal of
Computational Fluid Dynamics 29.1, 67-81, 2015.
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A three-dimensional dam-break problem [AEGDSL15]

A “block” dam break problem with a confrontation of RK2 and AB2

Thomas Altazin, Mehmet Ersoy, Frédéric Golay, Damien Sous, and Lyudmyla Yushchenko. Numerical

entropy production for multidimensional conservation laws using Block-Based Adaptive Mesh Refinement
scheme. preprint, 2015.
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A three-dimensional dam-break problem

A “block” dam break problem with a confrontation of RK2 and AB2

Initial configuration

Figure: Unit cube
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A three-dimensional dam-break problem

A “block” dam break problem with a confrontation of RK2 and AB2

Numerical parameters :

Mesh refinement parameter αmax : 0.2 ,
Mesh coarsening parameter αmin : 0.02 ,
Number of domain : 1, 2, 4, 8, 32,
Number of blocks : 3375,
Number of processors : 40,
Maximum level of mesh refinement : Lmax = 4 ,
Simulation time : T = 2.5 ,
AMR time : AMR = 100 .
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A three-dimensional dam-break problem

A “block” dam break problem with a confrontation of RK2 and AB2

Confrontation with experiments :

(a) Speed up vs proc number (b) cpu time vs proc number

Figure: AB2 vs RK2
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A three-dimensional dam-break problem

A “block” dam break problem with a confrontation of RK2 and AB2

Remarks :
I number of cells varies from 172215 cells up to about 587763 cells

I The efficiency, i.e.
speed up

number of processors
, of the computation is roughly 85%

for 8 domains and 60% for 32 domains.
I performance decrease after 20 processors → optimization is required to get

more efficiency.
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Conclusions

& Perspectives

Several numerical validation on Euler equations

Several numerical validation (in progress) for shallow water equations

local consistency error between two adjacent cells of different levels

capture accurately rarefactions and contact discontinuities

Develop a ’returning’ wave model (as an intermediate one between the
two-phase flow model and the shallow water equations)
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Figure: (left) L and (right) Kleefsman test case (B. Cleirec)
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